Teleportation

Andreas Klappenecker

The Problem

Alice wants to send the state of a quantum bit to Bob.
We assume that they share a pair of entangled quantum bits in the state $(|00>+| 11>) / \sqrt{ } 2$.

How can they do it if classical communication is allowed?

The Quantum Circuit

Let's assume that Alice wants to teleport a quantum bit in the state $a|0\rangle+b \mid 1>$ to Bob and that they share a pair of entangled quantum bits such that the system is in the state: $(a|0\rangle+b|1\rangle) \otimes(|00\rangle+|11\rangle) / \sqrt{ } 2$. We claim that the following quantum circuit can solve the problem:

State Evolution (1)

Initial state:

$$
(a|0\rangle+b|1\rangle) \otimes\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right) .
$$

Applying the controlled not yields

$$
a|0\rangle \otimes\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right)+b|1\rangle \otimes\left(\frac{1}{\sqrt{2}}|10\rangle+\frac{1}{\sqrt{2}}|01\rangle\right) .
$$

State Evolution (2)

$$
a|0\rangle \otimes\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right)+b|1\rangle \otimes\left(\frac{1}{\sqrt{2}}|10\rangle+\frac{1}{\sqrt{2}}|01\rangle\right) .
$$

Applying the Hadamard gate on the most significant qubit yields the state

$$
\begin{array}{r}
a\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right) \\
+b\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}|10\rangle+\frac{1}{\sqrt{2}}|01\rangle\right) .
\end{array}
$$

Rewriting the State

Rewriting the state yields

$$
\begin{aligned}
a\left(\frac{1}{2}|000\rangle+\frac{1}{2}|011\rangle\right. & \left.+\frac{1}{2}|100\rangle+\frac{1}{2}|111\rangle\right) \\
+b\left(\frac{1}{2}|001\rangle\right. & \left.+\frac{1}{2}|010\rangle-\frac{1}{2}|101\rangle-\frac{1}{2}|110\rangle\right) .
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{1}{2}(|00\rangle \otimes(a|0\rangle+b|1\rangle)+|01\rangle \otimes(a|1\rangle+b|0\rangle) \\
& +|10\rangle \otimes(a|0\rangle-b|1\rangle)+|11\rangle \otimes(a|1\rangle-b|0\rangle)) .
\end{aligned}
$$

Measurement and Correction

$$
\begin{aligned}
& \frac{1}{2}(|00\rangle \otimes(a|0\rangle+b|1\rangle)+|01\rangle \otimes(a|1\rangle+b|0\rangle) \\
& +|10\rangle \otimes(a|0\rangle-b|1\rangle)+|11\rangle \otimes(a|1\rangle-b|0\rangle)) .
\end{aligned}
$$

measuring the two most significant quantum bits yields

Observation	Resulting State	Alice tells Bob
00	$\|00\rangle \otimes(a\|0\rangle+b\|1\rangle)$	to do nothing
01	$\|01\rangle \otimes(a\|1\rangle+b\|0\rangle)$	to apply X
10	$\|10\rangle \otimes(a\|0\rangle-b\|1\rangle)$	to apply Z
11	$\|11\rangle \otimes(a\|1\rangle-b\|0\rangle)$	to apply $Z X$

