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If the state shared by Alice and Bob is not entangled, then teleportation is not
possible. However, not every entangled state can be used in for teleportation.
We will show later that the shared state has to be a so-called maximally
entangled state.

Extensions. Suppose that Alice wants to communicate the state of a sys-
tem of several quantum bits to Bob. Can she teleport one qubit at a time?
We contend that this is the case. To prove this claim, we assume that Alice
has n+ 1 quantum bits, which are in the state
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If Alice wants to communicate this state to Bob using the teleportation pro-
tocol, then she needs to share n+1 EPR pairs with Bob. It would be tedious
to give a direct proof that this approach works. We show instead that tele-
portation is faithful in the following sense: If Alice teleports a single qubit,
then Alice’s remaining n qubits, and the qubit that Bob has received, are in
the state (3.3), and these n + 1 qubits are not entangled with the remaining
part of the system. It follows that we can teleport one qubit at a time.

It remains to show that the teleportation of one qubit will preserve the
state (3.3), except that one qubit is transferred from Alice to Bob. The intial
state of the system is
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Note that it suffices to consider one EPR state to teleport a single qubit. We
now repeat the exact same teleportation protocol as before. Intially, Alice
applies the controlled-not gates Λ2,1(X); this yields the state
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Then she applies the Hadamard gate on the qubit at position 2, which yields
the state
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