Teleporting Several Quantum Bits

Andreas Klappenecker

The Problem

Alice wants to send $n+1$ quantum bits to Bob. These quantum bits can be in any state.

We assume that they share $n+1$ pairs of entangled quantum bits in the state $(|00\rangle+|11\rangle) / \sqrt{ } 2$.

Can they solve the problem by separately teleporting each quantum bit?

The Quantum Circuit

$n+1$ quantum bits to be teleported $n+1$ entangled pairs (triangles)

Is entanglement among $n+1$ quantum bits a problem?

Can we teleport one qubit at a time?

Initial State

We have $n+1$ quantum bits and want to teleport the least significant bit. Their state is:

$$
\sum_{k=0}^{2^{n}-1} \sum_{j=0}^{1} a_{k j}|k\rangle \otimes|j\rangle \in \mathbf{C}^{2^{n}} \otimes \mathbf{C}^{2}
$$

Goal: Show that after teleporting one quantum bit, the state of Bob's qubit and the remaining n qubits on Alice's side are in the same state, not entangled with anything else.

Applying Controlled Not

$$
\sum_{k=0}^{2^{n}-1} \sum_{j=0}^{1} a_{k j}|k\rangle \otimes|j\rangle \otimes\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right)
$$

Apply $\mathrm{CNOT}_{2,1}$:

$$
\begin{aligned}
& \sum_{k=0}^{2^{n}-1}\left(a_{k 0}|k\rangle \otimes|0\rangle\right. \otimes\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right) \\
&\left.\quad+a_{k 1}|k\rangle \otimes|1\rangle \otimes\left(\frac{1}{\sqrt{2}}|10\rangle+\frac{1}{\sqrt{2}}|01\rangle\right)\right)
\end{aligned}
$$

Applying Hadamard

$$
\begin{aligned}
& \sum_{k=0}^{2^{n}-1}\left(a_{k 0}|k\rangle \otimes|0\rangle \otimes\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right)\right. \\
& \left.\quad+a_{k 1}|k\rangle \otimes|1\rangle \otimes\left(\frac{1}{\sqrt{2}}|10\rangle+\frac{1}{\sqrt{2}}|01\rangle\right)\right)
\end{aligned}
$$

Apply Hadamard gate on position 2:

$$
\begin{aligned}
\sum_{k=0}^{2^{n}-1}\left(a_{k 0}|k\rangle\right. & \otimes \frac{1}{2}(|0\rangle+|1\rangle) \otimes(|00\rangle+|11\rangle) \\
\quad+a_{k 1}|j\rangle & \left.\otimes \frac{1}{2}(|0\rangle-|1\rangle) \otimes(|10\rangle+|01\rangle)\right)
\end{aligned}
$$

Rewriting State

$$
\begin{aligned}
& \sum_{k=0}^{2^{n}-1}\left(a_{k 0}|k\rangle \otimes\right. \frac{1}{2}(|0\rangle+|1\rangle) \otimes(|00\rangle+|11\rangle) \\
&+a_{k 1}|k\rangle \otimes\left.\frac{1}{2}(|0\rangle-|1\rangle) \otimes(|10\rangle+|01\rangle)\right) \\
&=\sum_{k=0}^{2^{n}-1} \frac{1}{2}\left(|k\rangle \otimes|00\rangle \otimes\left(a_{k 0}|0\rangle+a_{k 1}|1\rangle\right)\right. \\
&+|k\rangle \otimes|01\rangle \otimes\left(a_{k 0}|1\rangle+a_{k 1}|0\rangle\right) \\
&+|k\rangle \otimes|10\rangle \otimes\left(a_{k 0}|0\rangle-a_{k 1}|1\rangle\right) \\
&\left.+|k\rangle \otimes|11\rangle \otimes\left(a_{k 0}|1\rangle-a_{k 1}|0\rangle\right)\right)
\end{aligned}
$$

Measurement and Correction

$$
\begin{aligned}
\sum_{k=0}^{2^{n}-1} \frac{1}{2}(|k\rangle & \otimes|00\rangle \otimes\left(a_{k 0}|0\rangle+a_{k 1}|1\rangle\right) \\
+|k\rangle & \otimes|01\rangle \otimes\left(a_{k 0}|1\rangle+a_{k 1}|0\rangle\right) \\
+|k\rangle & \otimes|10\rangle \otimes\left(a_{k 0}|0\rangle-a_{k 1}|1\rangle\right) \\
+|k\rangle & \left.\otimes|11\rangle \otimes\left(a_{k 0}|1\rangle-a_{k 1}|0\rangle\right)\right)
\end{aligned}
$$

Suppose that Alice measures the qubits at positions 2 and 1. If she observes x_{2} and x_{1}, respectively, and informs Bob to apply $Z^{x_{2}} X^{x_{1}}$, then after applying Bob's correction operations, we get

$$
\sum_{k=0}^{2^{n}-1} \sum_{j=0}^{1}|k\rangle \otimes\left|x_{2} x_{1}\right\rangle \otimes a_{k j}|j\rangle=\sum_{k=0}^{2^{n}-1} \sum_{j=0}^{1} a_{k j}|k\rangle \otimes\left|x_{2} x_{1}\right\rangle \otimes|j\rangle .
$$

Conclusion

If Alice wants to communicate $n+1$ quantum bits to Bob, then she can do that by teleporting one quantum bit at a time.

How could you arrive at the same conclusion without any calculation at all?

