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The Problem

Alice wants to send n+1 quantum bits to Bob. These quantum bits 
can be in any state. 

We assume that they share n+1 pairs of entangled quantum bits in 
the state (|00>+|11>)/√2.

Can they solve the problem by separately teleporting each quantum 
bit?
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might not be aware of that, and the least two qubits are in the state (3.1).

Therefore, the system is initially in the state

(a|0�+ b|1�)⊗ (
1√
2
|00�+ 1√

2
|11�). (3.2)

We assume that Alice and Bob are located far apart. They can apply op-

erations locally on the qubits in their possession and communicate over the

phone. The teleportation is surprisingly simple. Alice applies a controlled-not

operation Λ2,1(X), and a Hadamard gate to the most significant bit. Then

she measures her quantum bits, and tells Bob what kind of gate he should

apply to his quantum bit.

Alice

Alice

Bob

H

Apply

corrections

The controlled-not gate Λ2,1(X) transforms the state (3.2) to

a|0� ⊗ (
1√
2
|00�+ 1√

2
|11�) + b|1� ⊗ (

1√
2
|10�+ 1√

2
|01�).

Applying the Hadamard gate on the most significant qubit yields the state

a(
1√
2
|0�+ 1√

2
|1�)⊗ (

1√
2
|00�+ 1√

2
|11�)

+ b(
1√
2
|0� − 1√

2
|1�)⊗ (

1√
2
|10�+ 1√

2
|01�).

The bilinear relations of the tensor product allow this state to be rewritten as

follows:

a(
1
2 |000�+

1
2 |011�+

1
2 |100�+

1
2 |111�)

+b(
1
2 |001�+

1
2 |010� −

1
2 |101� −

1
2 |110�).

We collect the terms with the same two most significant qubits, and use the

bilinear relations of the tensor product to express this state in yet another,

but still equivalent, form:

1

2

�
|00� ⊗ (a|0�+ b|1�) + |01� ⊗ (a|1�+ b|0�)

+|10� ⊗ (a|0� − b|1�) + |11� ⊗ (a|1� − b|0�)
�
.
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1

2

n+1

. 

. 

.

Text

n+1 quantum bits to be teleported
n+1 entangled pairs (triangles) 

Is entanglement among n+1 
quantum bits a problem? 

Can we teleport one qubit at a 
time?
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If the state shared by Alice and Bob is not entangled, then teleportation is not

possible. However, not every entangled state can be used in for teleportation.

We will show later that the shared state has to be a so-called maximally

entangled state.

Extensions. Suppose that Alice wants to communicate the state of a sys-

tem of several quantum bits to Bob. Can she teleport one qubit at a time?

We contend that this is the case. To prove this claim, we assume that Alice

has n+ 1 quantum bits, which are in the state

2n−1�

k=0

1�

j=0

akj |k� ⊗ |j� ∈ C2n ⊗C2. (3.3)

If Alice wants to communicate this state to Bob using the teleportation pro-

tocol, then she needs to share n+1 EPR pairs with Bob. It would be tedious

to give a direct proof that this approach works. We show instead that tele-

portation is faithful in the following sense: If Alice teleports a single qubit,

then Alice’s remaining n qubits, and the qubit that Bob has received, are in

the state (3.3), and these n + 1 qubits are not entangled with the remaining

part of the system. It follows that we can teleport one qubit at a time.

It remains to show that the teleportation of one qubit will preserve the

state (3.3), except that one qubit is transferred from Alice to Bob. The intial

state of the system is

2n−1�

k=0

1�

j=0

akj |k� ⊗ |j� ⊗ (
1√
2
|00�+ 1√

2
|11�).

Note that it suffices to consider one EPR state to teleport a single qubit. We

now repeat the exact same teleportation protocol as before. Intially, Alice

applies the controlled-not gates Λ2,1(X); this yields the state

2n−1�

k=0

�
ak0|k� ⊗ |0� ⊗ (

1√
2
|00�+ 1√

2
|11�)

+ak1|k� ⊗ |1� ⊗ (
1√
2
|10�+ 1√

2
|01�)

�
.

Then she applies the Hadamard gate on the qubit at position 2, which yields

the state
2n−1�

k=0

�
ak0|k� ⊗

1

2
(|0�+ |1�)⊗ (|00�+ |11�)

+ak1|j� ⊗
1

2
(|0� − |1�)⊗ (|10�+ |01�)

�
.

We have n+1 quantum bits and want to teleport 
the least significant bit. Their state is: 

Goal: Show that after teleporting one quantum bit, 
the state of Bob’s qubit and the remaining n qubits 
on Alice’s side are in the same state, not entangled 
with anything else. 
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Applying Controlled Not

28 CHAPTER 3. ALGORITHMIC APPETIZERS

If the state shared by Alice and Bob is not entangled, then teleportation is not

possible. However, not every entangled state can be used in for teleportation.

We will show later that the shared state has to be a so-called maximally

entangled state.

Extensions. Suppose that Alice wants to communicate the state of a sys-

tem of several quantum bits to Bob. Can she teleport one qubit at a time?

We contend that this is the case. To prove this claim, we assume that Alice

has n+ 1 quantum bits, which are in the state

2n−1�

k=0

1�

j=0

akj |k� ⊗ |j� ∈ C2n ⊗C2. (3.3)

If Alice wants to communicate this state to Bob using the teleportation pro-

tocol, then she needs to share n+1 EPR pairs with Bob. It would be tedious

to give a direct proof that this approach works. We show instead that tele-

portation is faithful in the following sense: If Alice teleports a single qubit,

then Alice’s remaining n qubits, and the qubit that Bob has received, are in

the state (3.3), and these n + 1 qubits are not entangled with the remaining

part of the system. It follows that we can teleport one qubit at a time.

It remains to show that the teleportation of one qubit will preserve the

state (3.3), except that one qubit is transferred from Alice to Bob. The intial

state of the system is

2n−1�

k=0

1�

j=0

akj |k� ⊗ |j� ⊗ (
1√
2
|00�+ 1√

2
|11�).

Note that it suffices to consider one EPR state to teleport a single qubit. We

now repeat the exact same teleportation protocol as before. Intially, Alice

applies the controlled-not gates Λ2,1(X); this yields the state

2n−1�

k=0

�
ak0|k� ⊗ |0� ⊗ (

1√
2
|00�+ 1√

2
|11�)

+ak1|k� ⊗ |1� ⊗ (
1√
2
|10�+ 1√

2
|01�)

�
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�
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It remains to show that the teleportation of one qubit will preserve the

state (3.3), except that one qubit is transferred from Alice to Bob. The intial

state of the system is

2n−1�

k=0

1�

j=0

akj |k� ⊗ |j� ⊗ (
1√
2
|00�+ 1√

2
|11�).

Note that it suffices to consider one EPR state to teleport a single qubit. We

now repeat the exact same teleportation protocol as before. Intially, Alice

applies the controlled-not gates Λ2,1(X); this yields the state

2n−1�

k=0

�
ak0|k� ⊗ |0� ⊗ (

1√
2
|00�+ 1√

2
|11�)

+ak1|k� ⊗ |1� ⊗ (
1√
2
|10�+ 1√

2
|01�)

�
.

Then she applies the Hadamard gate on the qubit at position 2, which yields

the state
2n−1�

k=0

�
ak0|k� ⊗

1

2
(|0�+ |1�)⊗ (|00�+ |11�)

+ak1|j� ⊗
1

2
(|0� − |1�)⊗ (|10�+ |01�)

�
.

Apply CNOT2,1 :
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�
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1√
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�
.

Then she applies the Hadamard gate on the qubit at position 2, which yields

the state
2n−1�

k=0

�
ak0|k� ⊗

1

2
(|0�+ |1�)⊗ (|00�+ |11�)

+ak1|j� ⊗
1

2
(|0� − |1�)⊗ (|10�+ |01�)

�
.

Apply Hadamard gate on position 2: 
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Rewriting State
§2. DEUTSCH’S PROBLEM 29

We want to measure the qubits at positions 1 and 2. We use the bilinear
relations of the tensor product to rewrite this state in the more convenient,
but equivalent, form

2n−1�

k=0

1

2

�
|k� ⊗ |00� ⊗ (ak0|0�+ ak1|1�)

+|k� ⊗ |01� ⊗ (ak0|1�+ ak1|0�)

+|k� ⊗ |10� ⊗ (ak0|0� − ak1|1�)

+|k� ⊗ |11� ⊗ (ak0|1� − ak1|0�)
�
.

Suppose that Alice measures the qubits at positions 2 and 1. If she observes
x2 and x1, respectively, and informs Bob to apply Zx2Xx1 , then after applying
Bob’s correction operations, we get

2n−1�

k=0

1�

j=0

|k� ⊗ |x2x1� ⊗ akj |j� =
2n−1�

k=0

1�

j=0

akj |k� ⊗ |x2x1� ⊗ |j�.

We note that Alice’s n most significant qubits, and Bob’s least significant
qubit are in the state (3.3), and that these qubits are not entangled with the
qubits at positions 1 and 2.

We can summarize our findings as follows: If Alice wants to communi-
cate the state of n + 1 quantum bits, then she can do that by applying the
teleportation protocol n+ 1 times. If the system is initially in the state

2n−1�

k=0

1�

j=0

akj |k� ⊗ |j� ⊗
n�

i=0

(
1√
2
|00�+ 1√

2
|11�),

then after applying 2n+2 gate operations and 2n+2 measurements on Alice’s
side, and up to 2n+ 2 operations on Bob’s side, they manage to transfer the
state (3.3) to Bob.

Remark. Note that the protocol simply communicates quantum states,
and it does not teleport matter. You find many exaggerated conclusions in
publications about teleportation – watching episodes of Star Trek seems to
have side effects.

§2 Deutsch’s Problem

Suppose that you are given a black box that contains an implementation
of a boolean function f : F2 → F2. Your task is to determine the parity

=
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Measurement and Correction
§2. DEUTSCH’S PROBLEM 29

We want to measure the qubits at positions 1 and 2. We use the bilinear
relations of the tensor product to rewrite this state in the more convenient,
but equivalent, form
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§2 Deutsch’s Problem

Suppose that you are given a black box that contains an implementation
of a boolean function f : F2 → F2. Your task is to determine the parity
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Conclusion

If Alice wants to communicate n+1 quantum bits to Bob, then she 
can do that by teleporting one quantum bit at a time. 

How could you arrive at the same conclusion without any 
calculation at all? 
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