Tensor Products

Andreas Klappenecker

Motivation

Let V and W be vector spaces. The tensor product $V \otimes W$ is a vector space that is spanned by the elements $v \otimes w$ with v in V and w in W. It satisfies the following properties: Left-Additivity: $(v_1+v_2) \otimes w = v_1 \otimes w + v_2 \otimes w$ Right-Additivity: $v \otimes (w_1 + w_2) = v \otimes w_1 + v \otimes w_2$ Balancing Relations: $c(v \otimes w) = (cv) \otimes w = v \otimes (cw)$ for all complex scalars c, vectors v, v_1 , v_2 in V, and w, w_1 , w_2 in W.

Tensor Product Construction

Let V and W be vector spaces. Form a (giant!) vector space A of linear combinations of elements (v,w) with v in V and w in W.

Let B be the subspace of A which consists of linear combination of elements:

- \oslash (v₁+v₂, w) (v₁, w) (v₂, w)
- $(v, w_1+w_2) (v, w_1) (v, w_2)$
- ∅ c(v,w) (cv,w)
- ∅ c(v,w) (v,cw)

Form the quotient space A/B and denote the image of (v,w) in A/B by v \otimes w. Set V \otimes W:= A/B.

Properties

Let B_V be a basis of V and B_W be a basis of W. Then { $x \otimes y \mid x$ in B_V and y in B_W } is a basis of V \otimes W. In particular, dim V \otimes W = (dim V)(dim W).

Universal Property

Let V and W be vector spaces. The tensor product $V \otimes W$ has the following universal property:

If B: $V \times W \rightarrow U$ is a bilinear map from (V,W) to a vector space U, then there exists a unique linear map b: V&W-> U such that B(v,w) = b(v,w)

holds for all v in V and w in W.

Caution!

Not all elements of V \otimes W can be expressed in the form v \otimes w. **Problem:** Consider C² \otimes C². Show that the vector $|0\rangle\otimes|0\rangle+|1\rangle\otimes|1\rangle$ cannot be expressed in the form $(a|0\rangle+b|1\rangle)\otimes(c|0\rangle+d|1\rangle)$. A vector in V \otimes W of the form v \otimes w is called separable. In quantum mechanics, non-separable state vectors are called entangled.