Continued Fractions

Andreas Klappenecker

Texas A&M University

Let m be a nonnegative integer. A **finite continued fraction** is an expression of the form

It is notationally more convenient to denote this expression in the form

$$[a_0, a_1, \ldots, a_m].$$

The terms a_0, \ldots, a_m are called **partial quotients** of the continued fraction.

and

We note that

$$egin{aligned} [a_0] &= rac{a_0}{1}, & \quad [a_0,a_1] &= rac{a_1a_0+1}{a_1} = a_0 + rac{1}{a_1}, \end{aligned}$$

$$[a_0, a_1, \ldots, a_{m-1}, a_m] = [a_0, a_1, \ldots, a_{m-2}, a_{m-1} + \frac{1}{a_m}].$$

If $\alpha = [a_0, \dots, a_m]$ is a continued fraction, then we call $[a_0, \dots, a_k]$

the k^{th} principal convergent to α (or the k^{th} convergent to α for short), where k is an integer in the range $0 \le k \le m$.

Theorem

Let $\alpha = [a_0, \ldots, a_m]$ be a continued fraction such that the partial quotients a_1, \ldots, a_m are positive. For all k in the range $0 \le k \le m$, we define numbers p_k and q_k by

$$egin{pmatrix} p_k & p_{k-1} \ q_k & q_{k-1} \end{pmatrix} = egin{pmatrix} a_0 & 1 \ 1 & 0 \end{pmatrix} egin{pmatrix} a_1 & 1 \ 1 & 0 \end{pmatrix} \cdots egin{pmatrix} a_k & 1 \ 1 & 0 \end{pmatrix} .$$

Then the k^{th} convergent of α is given by

$$\frac{p_k}{q_k} = [a_0,\ldots,a_k].$$

For k = 0 this follows directly from the definitions.

Suppose that the theorem holds for k < m. Our goal is to show that the $(k + 1)^{\text{th}}$ convergent is of the form p_{k+1}/q_{k+1} .

Equation (4) shows that the numbers p_{k+1} and q_{k+1} can be expressed in terms of the numbers p_k , p_{k-1} and q_k , q_{k-1} , respectively. More explicitly,

$$\begin{pmatrix} p_{k+1} & p_k \\ q_{k+1} & q_k \end{pmatrix} = \begin{pmatrix} p_k & p_{k-1} \\ q_k & q_{k-1} \end{pmatrix} \begin{pmatrix} a_{k+1} & 1 \\ 1 & 0 \end{pmatrix}.$$
 (2)

Proof (2/3)

Recall that

$$[a_0, a_1, \ldots, a_{k-1}, a_k, a_{k+1}] = [a_0, a_1, \ldots, a_{k-1}, a_k + \frac{1}{a_{k+1}}].$$

By induction hypothesis, the right hand side can be expressed in the form

$$egin{aligned} &\left[a_{0},a_{1},\ldots,a_{k-1},a_{k}+rac{1}{a_{k+1}}
ight] &=& rac{\left(a_{k}+rac{1}{a_{k+1}}
ight)p_{k-1}+p_{k-2}}{\left(a_{k}+rac{1}{a_{k+1}}
ight)q_{k-1}+q_{k-2}} \ &=& rac{a_{k+1}(a_{k}p_{k-1}+p_{k-2})+p_{k-1}}{a_{k+1}(a_{k}q_{k-1}+q_{k-2})+q_{k-1}} \end{aligned}$$

$$\begin{bmatrix} a_0, a_1, \dots, a_{k-1}, a_k + \frac{1}{a_{k+1}} \end{bmatrix} = \frac{a_{k+1}(a_k p_{k-1} + p_{k-2}) + p_{k-1}}{a_{k+1}(a_k q_{k-1} + q_{k-2}) + q_{k-1}} \\ = \frac{a_{k+1} p_k + p_{k-1}}{a_{k+1} q_k + q_{k-1}} = \frac{p_{k+1}}{q_{k+1}},$$

where we have used the recurrence

$$\begin{pmatrix} p_{k+1} & p_k \\ q_{k+1} & q_k \end{pmatrix} = \begin{pmatrix} p_k & p_{k-1} \\ q_k & q_{k-1} \end{pmatrix} \begin{pmatrix} a_{k+1} & 1 \\ 1 & 0 \end{pmatrix}.$$
 (3)

Therefore, the theorem follows by induction.

Corollary

The convergents satisfy for all positive integers k the equation

$$p_k q_{k-1} - p_{k-1} q_k = (-1)^{k+1}.$$

Proof.

Taking determinants in the equation

$$\begin{pmatrix} p_k & p_{k-1} \\ q_k & q_{k-1} \end{pmatrix} = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_k & 1 \\ 1 & 0 \end{pmatrix}.$$
(4)

yields the claim.

Corollary

For $k \ge 1$, we have

$$rac{p_{k-1}}{q_{k-1}} - rac{p_k}{q_k} = rac{(-1)^k}{q_k q_{k-1}}.$$

Proof.

Divide

$$p_k q_{k-1} - p_{k-1} q_k = (-1)^{k+1}$$

by $q_k q_{k-1}$ and simplify.

If a_0 is an integer and a_1, \ldots, a_m are positive integers, then $[a_0, \ldots, a_m]$ is called a **simple continued fraction**.

Theorem

The convergents of simple continued fractions have the following properties:

(i) If
$$k > 1$$
, then $q_k \ge q_{k-1} + 1$; in particular, $q_k \ge k$.
(ii) $\frac{p_{2k+1}}{q_{2k+1}} < \frac{p_{2k-1}}{q_{2k-1}}$ and $\frac{p_{2k}}{q_{2k}} > \frac{p_{2k-2}}{q_{2k-2}}$
(iii) Every convergent of a simple continued fraction is a reduced fraction.

Proof.

See S. Lang "Introduction to Diophantine Approximations", Springer Verlag, Chapter 1.

Continued Fraction Algorithm

Let α_0 be a positive rational number. Our goal is to find a simple continued fraction representing α_0 .

Set $a_0 = \lfloor \alpha_0 \rfloor$. For $k \ge 1$, we inductively define rational numbers α_k and their integral parts $a_k = \lfloor \alpha_k \rfloor$ by

$$\alpha_{k-1} = \mathbf{a}_{k-1} + \frac{1}{\alpha_k} \tag{5}$$

assuming that $\alpha_{k-1} \neq a_{k-1}$.

The Continued Fraction Algorithm

This process stops after a finite number of steps. Indeed, suppose that $\alpha_{k-1} = a/b$, where a and b are coprime integers such that b > 0. Then

$$\frac{1}{\alpha_k} = \alpha_{k-1} - a_{k-1} = \frac{a - b\lfloor a/b\rfloor}{b}$$

Since $c = a - b \lfloor a/b \rfloor$ is the remainder of the divison of a by b, we have c < b. Therefore, $\alpha_k = b/c$ is a rational number whose denominator is strictly less than the denominator of α_{k-1} . Assuming that the process terminates after m iterations, it follows from equation (5) that $[a_0, \ldots, a_m]$ is a simple continued fraction representation of the input α_0 .

Example

$$\frac{19}{256} = \frac{1}{\frac{256}{19}} = \frac{1}{13 + \frac{9}{19}} = \frac{1}{13 + \frac{1}{2 + \frac{1}{9}}}.$$

In other words,
$$\frac{19}{256} = [0; 13, 2, 9].$$

Convergents
$$\frac{1}{13}, \quad \frac{2}{27}, \quad \frac{19}{256}.$$

For a real number β , we denote by $\|\beta\|$ the distance between β and the nearest integer; put differently,

$$|\beta|| = \min\{|\beta - n| \mid n \in \mathbf{Z}\}.$$

A **best approximation** to a real number α is a fraction p/q such that

$$\|\boldsymbol{q}\boldsymbol{\alpha}\| = |\boldsymbol{q}\boldsymbol{\alpha} - \boldsymbol{p}|$$

and $\|q'\alpha\| > \|q\alpha\|$ holds for all q' in the range $1 \leq q' < q$.

Theorem

The best approximations to α are the principal convergents to α .

Our first goal is to show that a best approximation is a convergent. Let a/b denote a reduced fraction with b > 0 such that a/b is a best approximation to α . In other words, we need to show that $a/b = p_n/q_n$ for some integer $n \ge 0$.

Suppose that $a/b < p_0/q_0 = a_0$. Then

$$|\alpha - a_0| < |\alpha - \frac{a}{b}| \leq |b\alpha - a|,$$

contradicting our assumption that a/b is a best approximation to α .

Proof (2/3)

Suppose that $a/b > p_1/q_1$. Then

$$\left|\frac{a}{b}-lpha\right| > \left|\frac{a}{b}-\frac{p_1}{q_1}\right| \ge \frac{1}{bq_1}.$$

Therefore,

$$|blpha-a|>rac{1}{q_1}=rac{1}{a_1}\geqslant |lpha-a_0|,$$

contradicting our assumption that a/b is a best approximation to α .

Proof (3/3)

Finally, suppose that a/b lies between p_{n-1}/q_{n-1} and p_{n+1}/q_{n+1} , but is not equal to either of these fractions. Then

$$\frac{1}{bq_{n-1}} \leqslant \left|\frac{a}{b} - \frac{p_{n-1}}{q_{n-1}}\right| < \left|\frac{p_{n+1}}{q_{n+1}} - \frac{p_{n-1}}{q_{n-1}}\right| = \frac{1}{q_n q_{n-1}}.$$

Hence, $q_n < b$. On the other hand,

$$\frac{1}{nq_{n-1}} \leqslant \left| \frac{p_{n+1}}{q_{n+1}} - \frac{a}{b} \right| \leqslant \left| \alpha - \frac{a}{b} \right|$$

whence

$$|q_n\alpha-p_n|<rac{1}{q_{n+1}}\leqslant |blpha-a|,$$

which contradicts once again our assumption that a/b is a best approximation to α . [For the converse, see Lang.]

Corollary

If a/b is a reduced fraction with b > 0 such that

$$\left|\alpha-\frac{a}{b}\right|<\frac{1}{2b^2},$$

then a/b is a principal convergent to α .

Proof.

It suffices to show that a/b is a best approximation to α . Let c/d be any fraction with d > 0 that is different from a/b such that

$$|\mathbf{d}lpha - \mathbf{c}| \leq |\mathbf{b}lpha - \mathbf{a}| < \frac{1}{2b}.$$

Then

$$\frac{1}{bd} \leq \left|\frac{c}{d} - \frac{a}{b}\right| \leq \left|\alpha - \frac{c}{d}\right| + \left|\alpha - \frac{a}{b}\right| < \frac{1}{2bd} + \frac{1}{2b^2} = \frac{b+d}{2b^2d}.$$

This implies that $b > d$. Therefore, a/b is a best approximation to α ; hence, a/b is a principal convergant to α by the previous theorem.