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Continued Fractions

Let m be a nonnegative integer. A finite continued fraction is an
expression of the form

a0 ` 1

a1 ` 1
a2 ` 1

a3 ` 1
. . . ` 1

am

It is notationally more convenient to denote this expression in the
form

ra0, a1, . . . , ams.
The terms a0, . . . , am are called partial quotients of the continued
fraction.
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Examples

We note that

ra0s “ a0

1
, ra0, a1s “ a1a0 ` 1

a1
“ a0 ` 1

a1
,

and

ra0, a1, . . . , am´1, ams “ ra0, a1, . . . , am´2, am´1 ` 1

am
s.
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Convergents

If ↵ “ ra0, . . . , ams is a continued fraction, then we call

ra0, . . . , aks

the k

th
principal convergent to ↵ (or the k

th
convergent to ↵ for

short), where k is an integer in the range 0 § k § m.
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Convergents

Theorem
Let ↵ “ ra0, . . . , ams be a continued fraction such that the partial

quotients a1, . . . , am are positive. For all k in the range 0 § k § m,

we define numbers pk and qk by

ˆ
pk pk´1

qk qk´1

˙
“

ˆ
a0 1
1 0

˙ ˆ
a1 1
1 0

˙
¨ ¨ ¨

ˆ
ak 1
1 0

˙
. (1)

Then the k

th
convergent of ↵ is given by

pk

qk
“ ra0, . . . , aks.
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Proof (1/3)

For k “ 0 this follows directly from the definitions.

Suppose that the theorem holds for k † m. Our goal is to show
that the pk ` 1qth convergent is of the form pk`1{qk`1.

Equation (4) shows that the numbers pk`1 and qk`1 can be
expressed in terms of the numbers pk , pk´1 and qk , qk´1,
respectively. More explicitly,

ˆ
pk`1 pk

qk`1 qk

˙
“

ˆ
pk pk´1

qk qk´1

˙ ˆ
ak`1 1
1 0

˙
. (2)
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Proof (2/3)

Recall that

ra0, a1, . . . , ak´1, ak , ak`1s “ ra0, a1, . . . , ak´1, ak ` 1

ak`1
s.

By induction hypothesis, the right hand side can be expressed in
the form

ra0, a1, . . . , ak´1, ak ` 1
ak`1

s “

´
ak ` 1

ak`1

¯
pk´1 ` pk´2

´
ak ` 1

ak`1

¯
qk´1 ` qk´2

“ ak`1pakpk´1 ` pk´2q ` pk´1

ak`1pakqk´1 ` qk´2q ` qk´1
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Proof (3/3)

ra0, a1, . . . , ak´1, ak ` 1
ak`1

s “ ak`1pakpk´1 ` pk´2q ` pk´1

ak`1pakqk´1 ` qk´2q ` qk´1

“ ak`1pk ` pk´1

ak`1qk ` qk´1
“ pk`1

qk`1
,

where we have used the recurrence
ˆ
pk`1 pk

qk`1 qk

˙
“

ˆ
pk pk´1

qk qk´1

˙ ˆ
ak`1 1
1 0

˙
. (3)

Therefore, the theorem follows by induction.

8 / 22



Corollary

The convergents satisfy for all positive integers k the equation

pkqk´1 ´ pk´1qk “ p´1qk`1.

Proof.
Taking determinants in the equation

ˆ
pk pk´1

qk qk´1

˙
“

ˆ
a0 1
1 0

˙ ˆ
a1 1
1 0

˙
¨ ¨ ¨

ˆ
ak 1
1 0

˙
. (4)

yields the claim.
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Corollary

For k • 1, we have

pk´1

qk´1
´ pk

qk
“ p´1qk

qkqk´1
.

Proof.
Divide

pkqk´1 ´ pk´1qk “ p´1qk`1

by qkqk´1 and simplify.
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If a0 is an integer and a1, . . . , am are positive integers, then
ra0, . . . , ams is called a simple continued fraction.

Theorem
The convergents of simple continued fractions have the following

properties:

(i) If k ° 1, then qk • qk´1 ` 1; in particular, qk • k .

(ii)

p2k`1

q2k`1
† p2k´1

q2k´1
and

p2k

q2k
° p2k´2

q2k´2
(iii) Every convergent of a simple continued fraction is a reduced

fraction.

Proof.
See S. Lang “Introduction to Diophantine Approximations”,
Springer Verlag, Chapter 1.
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Continued Fraction Algorithm
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The Continued Fraction Algorithm

Let ↵0 be a positive rational number. Our goal is to find a simple
continued fraction representing ↵0.

Set a0 “ t↵0u. For k • 1, we inductively define rational numbers
↵k and their integral parts ak “ t↵ku by

↵k´1 “ ak´1 ` 1

↵k
(5)

assuming that ↵k´1 ‰ ak´1.
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The Continued Fraction Algorithm

This process stops after a finite number of steps. Indeed, suppose
that ↵k´1 “ a{b, where a and b are coprime integers such that
b ° 0. Then

1

↵k
“ ↵k´1 ´ ak´1 “ a ´ b ta{bu

b

.

Since c “ a ´ b ta{bu is the remainder of the divison of a by b, we
have c † b. Therefore, ↵k “ b{c is a rational number whose
denominator is strictly less than the denominator of ↵k´1.
Assuming that the process terminates after m iterations, it follows
from equation (5) that ra0, . . . , ams is a simple continued fraction
representation of the input ↵0.
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Example

19

256
“ 1

256
19

“ 1

13 ` 9
19

“ 1

13 ` 1
2` 1

9

.

In other words,
19

256
“ r0; 13, 2, 9s.

Convergents
1

13
,

2

27
,

19

256
.
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Best Approximation

For a real number �, we denote by }�} the distance between � and
the nearest integer; put di↵erently,

}�} “ mint|� ´ n| | n P Zu.

A best approximation to a real number ↵ is a fraction p{q such
that

}q↵} “ |q↵ ´ p|
and }q1↵} ° }q↵} holds for all q1 in the range 1 § q

1 † q.

16 / 22



Best Approximations are Principal Convergents

Theorem
The best approximations to ↵ are the principal convergents to ↵.
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Proof (1/3)

Our first goal is to show that a best approximation is a convergent.
Let a{b denote a reduced fraction with b ° 0 such that a{b is a
best approximation to ↵. In other words, we need to show that
a{b “ pn{qn for some integer n • 0.

Suppose that a{b † p0{q0 “ a0. Then

|↵ ´ a0| † |↵ ´ a

b

| § |b↵ ´ a|,

contradicting our assumption that a{b is a best approximation to ↵.
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Proof (2/3)

Suppose that a{b ° p1{q1. Then
ˇ̌
ˇ
a

b

´ ↵
ˇ̌
ˇ °

ˇ̌
ˇ̌a
b

´ p1

q1

ˇ̌
ˇ̌ • 1

bq1
.

Therefore,

|b↵ ´ a| ° 1

q1
“ 1

a1
• |↵ ´ a0|,

contradicting our assumption that a{b is a best approximation to ↵.
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Proof (3/3)

Finally, suppose that a{b lies between pn´1{qn´1 and pn`1{qn`1,
but is not equal to either of these fractions. Then

1

bqn´1
§

ˇ̌
ˇ̌a
b

´ pn´1

qn´1

ˇ̌
ˇ̌ †

ˇ̌
ˇ̌pn`1

qn`1
´ pn´1

qn´1

ˇ̌
ˇ̌ “ 1

qnqn´1
.

Hence, qn † b. On the other hand,

1

nqn´1
§

ˇ̌
ˇ̌pn`1

qn`1
´ a

b

ˇ̌
ˇ̌ §

ˇ̌
ˇ↵ ´ a

b

ˇ̌
ˇ ,

whence

|qn↵ ´ pn| † 1

qn`1
§ |b↵ ´ a|,

which contradicts once again our assumption that a{b is a best
approximation to ↵. [For the converse, see Lang.]
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Corollary

If a{b is a reduced fraction with b ° 0 such that

ˇ̌
ˇ↵ ´ a

b

ˇ̌
ˇ † 1

2b2
,

then a{b is a principal convergent to ↵.
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Proof.
It su�ces to show that a{b is a best approximation to ↵. Let c{d
be any fraction with d ° 0 that is di↵erent from a{b such that

|d↵ ´ c | § |b↵ ´ a| † 1

2b
.

Then

1

bd

§
ˇ̌
ˇ
c

d

´ a

b

ˇ̌
ˇ §

ˇ̌
ˇ↵ ´ c

d

ˇ̌
ˇ `

ˇ̌
ˇ↵ ´ a

b

ˇ̌
ˇ † 1

2bd
` 1

2b2
“ b ` d

2b2d
.

This implies that b ° d . Therefore, a{b is a best approximation to
↵; hence, a{b is a principal convergant to ↵ by the previous
theorem.
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