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Continued Fractions

Let m be a nonnegative integer. A finite continued fraction is an
expression of the form

ap + 1
a]_+ 1
a3+—. 1

It is notationally more convenient to denote this expression in the
form

lag, a1, ..., am].
The terms ay, ..., a, are called partial quotients of the continued
fraction.



Examples

We note that

aog aiap + 1 1
[a0] = 1 [ag, a1] = 8—1 = dg + 8_1’
and
1
lao, @1, .-y am—1,3m] = 30,31, -, am—2, @m—1 + —|.

dm



Convergents

If « = [ag,...,am] is a continued fraction, then we call

[ao,...,ak]

the k'™ principal convergent to o (or the k!'convergent to o for
short), where k is an integer in the range 0 < k < m.



Convergents

Theorem
Let o = [ay, . ..,am| be a continued fraction such that the partial
quotients ay, ..., an are positive. For all k in the range 0 < k < m,

we define numbers py, and q, by

Pk Prk-1\ _ (a0 1\ fa 1) fac 1 (1)
Ak Gk—1 10 1 0 1 0/
Then the k' convergent of « is given by

2

= 1d0y--.,dk|-
il ]




Proof (1/3)

For k = 0 this follows directly from the definitions.

Suppose that the theorem holds for k < m. Our goal is to show
that the (k + 1)t convergent is of the form pyy1/qus1.

Equation (4) shows that the numbers pxy1 and gk, 1 can be
expressed in terms of the numbers py, px—1 and gk, gx_1,
respectively. More explicitly,

(Pk+1 Pk) _ (Pk Pk—l) <3k+1 1) (2)
Gk+1 Gk Gk Gk-1 1 0/



Proof (2/3)

Recall that
1

dk+1

]

By induction hypothesis, the right hand side can be expressed in
the form

lag, a1, - - -, ak—1, 3k, ak+1] = [0, a1, . - -, Ak—1, 3k +

(ak + L) Pk—1 + Pk—2

ak+1

1
la0, a1, ..., ak-1, ak + 3k+1] =

<3k + ﬁ) Gk—1 + Gk—2
ak+1(akPr—1 + Pk—2) + Pk-1
ak+1(ak k-1 + Gk—2) + Q-1




Proof (3/3)

1 ] ak+1(akpk—1 + Pk—2) + Pr—1

ao, al, ...,ak—1,ak +
[ ) ) ) ) Ak+1 ak+1(aqu_1 + CIk—Q) + qk—1
Ak+1Pk T Pk=1 _ Pk+1

Ak+19k + qk—1 qk+1

where we have used the recurrence

(Pk+1 Pk) _ (Pk Pk—l) <3k+1 1)
Qk+1 Gk Ak Qk-1 1 0/

Therefore, the theorem follows by induction.



Corollary
The convergents satisfy for all positive integers k the equation

PrGi1 — Pe—1qk = (—1) L.

Proof.
Taking determinants in the equation

Pk Pr-1\ _ (a0 1\ fa 1) fac 1
Ak k-1 1 0 1 0 1 0/

yields the claim.




Corollary
For k > 1, we have

dk—1 ak CIkCIk—1'

Proof.
Divide

PkGk—1 — Pk_1Gx = (—1)*?
by gxgx_1 and simplify.
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If ag is an integer and ay, ..., a,, are positive integers, then
[ag, . - ., am] is called a simple continued fraction.

Theorem
The convergents of simple continued fractions have the following
properties:

(i) If k > 1, then qx = qx—1 + 1, in particular, qx > k.
P2k+1 P2k L g P2k P2k sz 2

(i1)

Q2k+1 CI2/<—1 Q2k o k-2 o
iii) Every convergent of a simple continued fraction is a reduced
fraction.
Proof.

See S. Lang “Introduction to Diophantine Approximations”,
Springer Verlag, Chapter 1.




Continued Fraction Algorithm
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The Continued Fraction Algorithm

Let a be a positive rational number. Our goal is to find a simple
continued fraction representing ay.

Set ap = |ag|. For k = 1, we inductively define rational numbers
ay and their integral parts ax = || by

Qk_1 = Ak—1+ — (5)

assuming that a1 # ax_1.



The Continued Fraction Algorithm

This process stops after a finite number of steps. Indeed, suppose

that ax_1 = a/b, where a and b are coprime integers such that
b > 0. Then

@ik = Q-1 — dk—-1 = Lbla/bj-
Since ¢ = a — b|a/b| is the remainder of the divison of a by b, we
have ¢ < b. Therefore, ay = b/c is a rational number whose
denominator is strictly less than the denominator of oy 1.
Assuming that the process terminates after m iterations, it follows
from equation (5) that [ag, ..., an] is a simple continued fraction
representation of the input «yp.



Example

19

256 26

In other words,

Convergents



Best Approximation

For a real number 3, we denote by | 5| the distance between 3 and
the nearest integer; put differently,

|8 = min{[5 —n|[ne Z}.

A best approximation to a real number « is a fraction p/q such
that

lgedl = |go — p
and ||¢’'al| > ||ga holds for all ¢’ in the range 1 < ¢’ < q.



Best Approximations are Principal Convergents

Theorem
The best approximations to « are the principal convergents to .




Proof (1/3)

Our first goal is to show that a best approximation is a convergent.
Let a/b denote a reduced fraction with b > 0 such that a/b is a
best approximation to «. In other words, we need to show that
a/b = p,/q, for some integer n > 0.

Suppose that a/b < py/qo = ap. Then
o — a| < y@—Zy < |ba — 4,

contradicting our assumption that a/b is a best approximation to «.



Proof (2/3)

Suppose that a/b > p;/qg1. Then

1| bqi
Therefore,
1 1
b — a| > — = — = |a — a,
01 ai

contradicting our assumption that a/b is a best approximation to «.



Proof (3/3)

Finally, suppose that a/b lies between p,_1/q,—1 and ppi1/qns1,
but is not equal to either of these fractions. Then

1 E . Pn—1 Pn+1 . Pn—1 _ 1
bgn—1 |b  gna1 Gn+1 Gn-1|  GnQn—1
Hence, g, < b. On the other hand,
1 \pn—I—l_fg‘a_f"
ngn—1 dn+1 b b
whence
1
’anf_pn‘ < < ‘bO‘_a‘a
n+1

which contradicts once again our assumption that a/b is a best
approximation to «. [For the converse, see Lang.]



Corollary
If a/b is a reduced fraction with b > 0 such that

_ 1
262

then a/b is a principal convergent to «.
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Proof.
It suffices to show that a/b is a best approximation to «. Let c/d
be any fraction with d > 0 that is different from a/b such that

1
|da—c|<|ba—a\<%.
Then
L e 2 <la=3|+]e-3 < L 1 _b4d
bd d b d bl ~2bd 2b%> 2b%d

This implies that b > d. Therefore, a/b is a best approximation to
«; hence, a/b is a principal convergant to « by the previous
theorem. H




