Continued Fractions

Andreas Klappenecker

Let m be a nonnegative integer. A finite continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}+\frac{1}{a_{m}}}}}
$$

It is notationally more convenient to denote this expression in the form

$$
\left[a_{0}, a_{1}, \ldots, a_{m}\right]
$$

The terms a_{0}, \ldots, a_{m} are called partial quotients of the continued fraction.
Example 1. We note that

$$
\left[a_{0}\right]=\frac{a_{0}}{1}, \quad\left[a_{0}, a_{1}\right]=\frac{a_{1} a_{0}+1}{a_{1}}=a_{0}+\frac{1}{a_{1}},
$$

and

$$
\left[a_{0}, a_{1}, \ldots, a_{m-1}, a_{m}\right]=\left[a_{0}, a_{1}, \ldots, a_{m-2}, a_{m-1}+\frac{1}{a_{m}}\right] .
$$

We may assume that the partial quotients a_{1}, \ldots, a_{m} of the continued fraction $\left[a_{0}, a_{1}, \ldots, a_{m}\right]$ are positive.

We closely follow in these notes the excellent exposition of continued fractions given in [S. Lang "Introduction to Diophantine Approximations", Springer Verlag, 2nd edition, 1995].

Convergents. If $\alpha=\left[a_{0}, \ldots, a_{m}\right]$ is a continued fraction, then we call

$$
\left[a_{0}, \ldots, a_{k}\right]
$$

the $k^{\text {th }}$ principal convergent to α (or the $k^{\text {th }}$ convergent to α for short), where k is an integer in the range $0 \leq k \leq m$.

Theorem 2. Let $\alpha=\left[a_{0}, \ldots, a_{m}\right]$ be a continued fraction such that the partial quotients a_{1}, \ldots, a_{m} are positive. For all k in the range $0 \leq k \leq m$, we define numbers p_{k} and q_{k} by

$$
\left(\begin{array}{cc}
p_{k} & p_{k-1} \tag{1}\\
q_{k} & q_{k-1}
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \ldots\left(\begin{array}{cc}
a_{k} & 1 \\
1 & 0
\end{array}\right)
$$

Then the $k^{\text {th }}$ convergent of α is given by

$$
\frac{p_{k}}{q_{k}}=\left[a_{0}, \ldots, a_{k}\right] .
$$

Proof. For $k=0$ this follows directly from the definitions.
Suppose that the theorem holds for $k<m$. Our goal is to show that the $(k+1)^{\text {th }}$ convergent is of the form p_{k+1} / q_{k+1}.

Equation (1) shows that the numbers p_{k+1} and q_{k+1} can be expressed in terms of the numbers p_{k}, p_{k-1} and q_{k}, q_{k-1}, respectively. More explicitly,

$$
\left(\begin{array}{cc}
p_{k+1} & p_{k} \tag{2}\\
q_{k+1} & q_{k}
\end{array}\right)=\left(\begin{array}{cc}
p_{k} & p_{k-1} \\
q_{k} & q_{k-1}
\end{array}\right)\left(\begin{array}{cc}
a_{k+1} & 1 \\
1 & 0
\end{array}\right) .
$$

Recall that

$$
\left[a_{0}, a_{1}, \ldots, a_{k-1}, a_{k}, a_{k+1}\right]=\left[a_{0}, a_{1}, \ldots, a_{k-1}, a_{k}+\frac{1}{a_{k+1}}\right]
$$

By induction hypothesis, the right hand side can be expressed in the form

$$
\begin{aligned}
{\left[a_{0}, a_{1}, \ldots, a_{k-1}, a_{k}+\frac{1}{a_{k+1}}\right] } & =\frac{\left(a_{k}+\frac{1}{a_{k+1}}\right) p_{k-1}+p_{k-2}}{\left(a_{k}+\frac{1}{a_{k+1}}\right) q_{k-1}+q_{k-2}} \\
& =\frac{a_{k+1}\left(a_{k} p_{k-1}+p_{k-2}\right)+p_{k-1}}{a_{k+1}\left(a_{k} q_{k-1}+q_{k-2}\right)+q_{k-1}} \\
& =\frac{a_{k+1} p_{k}+p_{k-1}}{a_{k+1} q_{k}+q_{k-1}}=\frac{p_{k+1}}{q_{k+1}}
\end{aligned}
$$

where we have used the recurrence (2). Therefore, the theorem follows by induction.

Corollary 3. The convergents satisfy for all positive integers k the equation

$$
p_{k} q_{k-1}-p_{k-1} q_{k}=(-1)^{k+1}
$$

Proof. Taking determinants in equation (1) yields the claim.
Corollary 4. For $k \geq 1$, we have

$$
\frac{p_{k-1}}{q_{k-1}}-\frac{p_{k}}{q_{k}}=\frac{(-1)^{k}}{q_{k} q_{k-1}}
$$

If a_{0} is an integer and a_{1}, \ldots, a_{m} are positive integers, then $\left[a_{0}, \ldots, a_{m}\right]$ is called a simple continued fraction.

Theorem 5. The convergents of simple continued fractions have the following properties:
(i) If $k>1$, then $q_{k} \geq q_{k-1}+1$; in particular, $q_{k} \geq k$.
(ii) $\frac{p_{2 k+1}}{q_{2 k+1}}<\frac{p_{2 k-1}}{q_{2 k-1}}$ and $\frac{p_{2 k}}{q_{2 k}}>\frac{p_{2 k-2}}{q_{2 k-2}}$
(iii) Every convergent of a simple continued fraction is a reduced fraction.

Proof. See S. Lang "Introduction to Diophantine Approximations", Springer Verlag, Chapter 1.

Continued Fraction Algorithm. Let α_{0} be a positive rational number. Our goal is to find a simple continued fraction representing α_{0}.

Set $a_{0}=\left\lfloor\alpha_{0}\right\rfloor$. For $k \geq 1$, we inductively define rational numbers α_{k} and their integral parts $a_{k}=\left\lfloor\alpha_{k}\right\rfloor$ by

$$
\begin{equation*}
\alpha_{k-1}=a_{k-1}+\frac{1}{\alpha_{k}} \tag{3}
\end{equation*}
$$

assuming that $\alpha_{k-1} \neq a_{k-1}$.
This process stops after a finite number of steps. Indeed, suppose that $\alpha_{k-1}=a / b$, where a and b are coprime integers such that $b>0$. Then

$$
\frac{1}{\alpha_{k}}=\alpha_{k-1}-a_{k-1}=\frac{a-b\lfloor a / b\rfloor}{b}
$$

Since $c=a-b\lfloor a / b\rfloor$ is the remainder of the divison of a by b, we have $c<b$. Therefore, $\alpha_{k}=b / c$ is a rational number whose denominator is strictly less than the denominator of α_{k-1}.

Assuming that the process terminates after m iterations, it follows from equation (3) that $\left[a_{0}, \ldots, a_{m}\right]$ is a simple continued fraction representation of the input α_{0}.

Best Approximation. For a real number β, we denote by $\|\beta\|$ the distance between β and the nearest integer; put differently,

$$
\|\beta\|=\min \{|\beta-n| \mid n \in \mathbf{Z}\}
$$

A best approximation to a real number α is a fraction p / q such that

$$
\|q \alpha\|=|q \alpha-p|
$$

and $\left\|q^{\prime} \alpha\right\|>\|q \alpha\|$ holds for all q^{\prime} in the range $1 \leq q^{\prime}<q$.
Theorem 6. The best approximations to α are the principal convergents to α. Moreover, if $n \geq 1$, then q_{n} is the smallest integer $q>q_{n-1}$ leading to an improved approximation $\|q \alpha\|<\left\|q_{n-1} \alpha\right\|$.

Proof. Our first goal is to show that a best approximation is a convergent. Let a / b denote a reduced fraction with $b>0$ such that a / b is a best approximation to α. In other words, we need to show that $a / b=p_{n} / q_{n}$ for some integer $n \geq 0$.

Suppose that $a / b<p_{0} / q_{0}=a_{0}$. Then

$$
\left|\alpha-a_{0}\right|<\left|\alpha-\frac{a}{b}\right| \leq|b \alpha-a|
$$

contradicting our assumption that a / b is a best approximation to α.
Suppose that $a / b>p_{1} / q_{1}$. Then

$$
\left|\frac{a}{b}-\alpha\right|>\left|\frac{a}{b}-\frac{p_{1}}{q_{1}}\right| \geq \frac{1}{b q_{1}}
$$

Therefore,

$$
|b \alpha-a|>\frac{1}{q_{1}}=\frac{1}{a_{1}} \geq\left|\alpha-a_{0}\right|
$$

contradicting our assumption that a / b is a best approximation to α.
Finally, suppose that a / b lies between p_{n-1} / q_{n-1} and p_{n+1} / q_{n+1}, but is not equal to either of these fractions. Then

$$
\frac{1}{b q_{n-1}} \leq\left|\frac{a}{b}-\frac{p_{n-1}}{q_{n-1}}\right|<\left|\frac{p_{n+1}}{q_{n+1}}-\frac{p_{n-1}}{q_{n-1}}\right|=\frac{1}{q_{n} q_{n-1}}
$$

Hence, $q_{n}<b$. On the other hand,

$$
\frac{1}{n q_{n-1}} \leq\left|\frac{p_{n+1}}{q_{n+1}}-\frac{a}{b}\right| \leq\left|\alpha-\frac{a}{b}\right|
$$

whence

$$
\left|q_{n} \alpha-p_{n}\right|<\frac{1}{q_{n+1}} \leq|b \alpha-a|
$$

which contradicts once again our assumption that a / b is a best approximation to α.

For the converse, see [S. Lang "Introduction to Diophantine Approximations", Springer Verlag, Chapter 1, Theorem 6, 2nd edition, 1995].

Corollary 7. If a / b is a reduced fraction with $b>0$ such that

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{2 b^{2}}
$$

then a / b is a principal convergent to α.
Proof. It suffices to show that a / b is a best approximation to α. Let c / d be any fraction with $d>0$ that is different from a / b such that

$$
|d \alpha-c| \leq|b \alpha-a|<\frac{1}{2 b}
$$

Then

$$
\frac{1}{b d} \leq\left|\frac{c}{d}-\frac{a}{b}\right| \leq\left|\alpha-\frac{c}{d}\right|+\left|\alpha-\frac{a}{b}\right|<\frac{1}{2 b d}+\frac{1}{2 b^{2}}=\frac{b+d}{2 b^{2} d}
$$

This implies that $b>d$. Therefore, a / b is a best approximation to α; hence, a / b is a principal convergant to α by the previous theorem.

