Controlled Unitary Gates

Andreas Klappenecker

Texas A\&M University

Theorem

For each unitary matrix $U \in \mathcal{U}(2)$ there exist matrices A, B, C, and E in $\mathcal{U}(2)$ such that

Dramatis Personae

Phase shift matrix

$$
S(b)=\left(\begin{array}{rr}
e^{-i b} & 0 \\
0 & e^{i b}
\end{array}\right)
$$

Rotation matrix

$$
R(c)=\left(\begin{array}{rr}
\cos c & -\sin c \\
\sin c & \cos c
\end{array}\right)
$$

Lemma

A unitary matrix $U \in \mathcal{U}(2)$ can be expressed in the form

$$
\begin{aligned}
U & =e^{i a}\left(\begin{array}{rr}
e^{-i b} & 0 \\
0 & e^{i b}
\end{array}\right)\left(\begin{array}{rr}
\cos c & -\sin c \\
\sin c & \cos c
\end{array}\right)\left(\begin{array}{rr}
e^{-i d} & 0 \\
0 & e^{i d}
\end{array}\right) \\
& =e^{i a} S(b) R(c) S(d)
\end{aligned}
$$

for some real numbers a, b, c, and d.

We can write U in the form $U=e^{i a} V$, where V is some unitary matrix with determinant 1 . The matrix V has to be of the form

$$
V=\left(\begin{array}{rr}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)
$$

Indeed, the columns of a unitary matrix are orthogonal, hence the right column of V has to be a multiple of $(-\bar{\beta}, \bar{\alpha})^{t}$; and the determinant constraint forces V to be of the given form.

We can write α and β in the form $\alpha=e^{i h} \cos c$ and $\beta=e^{-i k} \sin c$ for some real numbers h, k, c, because α and β satisfy $|\alpha|^{2}+|\beta|^{2}=1$; it follows that

$$
V=\left(\begin{array}{rr}
e^{i h} \cos c & -e^{i k} \sin c \\
e^{-i k} \sin c & e^{-i h} \cos c
\end{array}\right) \text {. }
$$

We can find real numbers b and d satisfying $h=-d-b$ and $k=d-b$, hence

$$
V=\left(\begin{array}{rr}
e^{-i b} & 0 \\
0 & e^{i b}
\end{array}\right)\left(\begin{array}{rr}
\cos c & -\sin c \\
\sin c & \cos c
\end{array}\right)\left(\begin{array}{rr}
e^{-i d} & 0 \\
0 & e^{i d}
\end{array}\right),
$$

which proves the claim.

Let

$$
S(b)=\left(\begin{array}{rr}
e^{-i b} & 0 \\
0 & e^{i b}
\end{array}\right) \quad \text { and } \quad R(c)=\left(\begin{array}{rr}
\cos c & -\sin c \\
\sin c & \cos c
\end{array}\right) .
$$

Then

$$
\begin{aligned}
& S(-b)=X S(b) X \\
& R(-c)=X R(c) X
\end{aligned}
$$

Theorem

For each unitary matrix $U \in \mathcal{U}(2)$ there exist matrices A, B, C, and E in $\mathcal{U}(2)$ such that

If $U=e^{i a} S(b) R(c) S(d)$, choosing the matrices

$$
\begin{aligned}
& E=\operatorname{diag}\left(1, e^{i a}\right) \\
& C=S(b) R(c / 2) \\
& B=R(-c / 2) S(-(d+b) / 2), \\
& A=S((d-b) / 2),
\end{aligned}
$$

yields the desired result. Indeed, we have $C B A=I$. Therefore, the circuit on the right hand side yields on input of $|00\rangle$ and $|01\rangle$ the same result as $\Lambda_{0 ; 1}(U)$.

Using $X^{2}=I$, we obtain for $C X B X A$ the expression
$C X B X A=\underbrace{S(b) R(c / 2)}_{C} \times \underbrace{R(-c / 2) X X S(-(d+b) / 2)}_{B} \times \underbrace{S((d-b) / 2)}_{A}$, which simplifies to

$$
\begin{aligned}
C X B X A & =S(b) R(c / 2) R(c / 2) S((d+b) / 2) S((d-b) / 2) \\
& =S(b) R(c) S(d)
\end{aligned}
$$

It follows that $|1\rangle \otimes|\psi\rangle$ is transformed by the circuit on the right hand side to

$$
e^{i a}|1\rangle \otimes S(b) R(c) S(d)|\psi\rangle=|1\rangle \otimes U|\psi\rangle
$$

which coincides with the action of $\Lambda_{0 ; 1}(U)$.

Controlled-U

Done!

