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Tensor Product: A Wish List

Let V and W be finite-dimensional complex vector spaces. We envision a tensor
product V bW as a vector space, which is spanned by linear combinations of
elements v b w such that v P V and w P W .

We would like the product v b w
to satisfy the additive relations

pv1 ` v2q b w “ v1 b w ` v2 b w (1)

v b pw1 ` w2q “ v b w1 ` v b w2 (2)

and the balancing relations

cpv b wq “ pcvq b w “ v b pcwq (3)

for each v , v1, v2 in V , each w ,w1,w2 in W , and each complex number c .

Of course, we need to establish the existence of such a product b.
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Important Note

Warning

We emphasize that not every element of V bW is of the form
v b w for some v P V and w P W !

However, every element of V bW can be expressed as a sum
ř

i ,j vi b wj of such tensor products, with vi P V and wj P W .
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Construction of the Tensor Product

We can formally construct this vector space V bW as follows.
Form the vector space A of all linear combinations of elements
pv ,wq with v P V and w P W .

Consider the subspace B of A,
which consists of all linear combinations of the elements

pv1 ` v2,wq´ pv1,wq ´ pv2,wq,
pv ,w1 ` w2q´ pv ,w1q ´ pv ,w2q,

cpv ,wq ´ pcv ,wq, cpv ,wq ´ pv , cwq,

for v , v1, v2 P V , w ,w1,w2 P W , and c P C. We define the tensor
product V bW to be the quotient space A{B . The image of the
element pv ,wq of A in V bW is denoted by v b w .
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Equivalence Relation (1/2)

Recall that the vector space A that is spanned by linear
combinations of the elements

pv ,wq, v ,w P C2.

Let u1 and u2 be vectors in A. We consider them the same if and
only if they differ by a vector in B . We define

u1 ” u2 pmod Bq

if and only if
u1 ´ u2 P B .

Then ” is an equivalence relation; A{B is the set of equivalence
classes.
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Equivalence Relation (2/2)

In particular, we have u1 ” 0 pmod Bq if and only if u1 P B .

The equivalence class of pv ,wq in A modulo B is denoted by

v b w P A{B “ V bW .

Since pv1 ` v2,wq ´ pv1,wq ´ pv2,wq P B , we have

pv1 ` v2q b w ´ v1 b w ´ v2 b w “ 0

in A{B “ V bW . Other rules: similar!
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Dimension

Observation
Let BV be a basis of V and BW be a basis of W . Then

tx b y | x P BV , y P BW u

is a basis of V bW .

In particular, dimV bW “ pdimV qpdimW q.
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Example

Let C2 the vector space with basis |0y and |1y.

Then C2 b C2 is a 4-dimensional vector space with basis

|0y b |0y, |0y b |1y, |1y b |0y, |1y b |1y.

We will identify C2 b C2 with C4 by the following isomorphism

|xy b |yy ÞÑ |xyy

for x , y P t0, 1u.
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Example

The vector space C2 b C2 contains the vector

1
?

2
|0y b |0y `

1
?

2
|1y b |1y.

We cannot write it in the form

pa|0y ` b|1yq b pc |0y ` d |1yq,

since this would mean that

ac ‰ 0, ad “ 0, bc “ 0, bd ‰ 0.
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Tensor Product of Linear Maps

Let V and W be finite-dimensional vector spaces. Let te1, . . . , emu
be a basis of V and tf1, . . . , fnu be a basis of W .

Suppose that A is a linear map on V , and B is a linear map on W .
Let AbB denote the linear map on V bW , which is determined by

pAb Bqpei b fjq “ Aei b Bfj .

This uniquely determines the values of Ab B on other elements of
V bW because the elements ei b fj are a basis.
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Example

Suppose that the linear map A and B are given by the matrices
ˆ

a00 a01
a10 a11

˙

and

ˆ

b00 b01
b10 b11

˙

.

Then Ab B is given by the matrix
¨

˚

˚

˝

a00b00 a00b01 a01b00 a01b01
a00b10 a00b11 a01b10 a01b11
a10b00 a10b01 a11b00 a11b01
a10b10 a10b11 a11b10 a11b11

˛

‹

‹

‚

.
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