Tensor Products

Andreas Klappenecker

Texas A&M University

Let V and W be finite-dimensional complex vector spaces. We envision a **tensor** product $V \otimes W$ as a vector space, which is spanned by linear combinations of elements $v \otimes w$ such that $v \in V$ and $w \in W$.

Let V and W be finite-dimensional complex vector spaces. We envision a **tensor** product $V \otimes W$ as a vector space, which is spanned by linear combinations of elements $v \otimes w$ such that $v \in V$ and $w \in W$. We would like the product $v \otimes w$ to satisfy the additive relations

$$(v_1 + v_2) \otimes w = v_1 \otimes w + v_2 \otimes w$$
(1)

$$v \otimes (w_1 + w_2) = v \otimes w_1 + v \otimes w_2$$
(2)

Let V and W be finite-dimensional complex vector spaces. We envision a **tensor** product $V \otimes W$ as a vector space, which is spanned by linear combinations of elements $v \otimes w$ such that $v \in V$ and $w \in W$. We would like the product $v \otimes w$ to satisfy the additive relations

$$(v_1 + v_2) \otimes w = v_1 \otimes w + v_2 \otimes w$$
(1)

$$v \otimes (w_1 + w_2) = v \otimes w_1 + v \otimes w_2$$
(2)

and the balancing relations

$$c(v \otimes w) = (cv) \otimes w = v \otimes (cw)$$
(3)

for each v, v_1, v_2 in V, each w, w_1, w_2 in W, and each complex number c.

Let V and W be finite-dimensional complex vector spaces. We envision a **tensor** product $V \otimes W$ as a vector space, which is spanned by linear combinations of elements $v \otimes w$ such that $v \in V$ and $w \in W$. We would like the product $v \otimes w$ to satisfy the additive relations

$$(v_1 + v_2) \otimes w = v_1 \otimes w + v_2 \otimes w$$
(1)

$$v \otimes (w_1 + w_2) = v \otimes w_1 + v \otimes w_2$$
(2)

and the balancing relations

$$c(v \otimes w) = (cv) \otimes w = v \otimes (cw)$$
(3)

for each v, v_1, v_2 in V, each w, w_1, w_2 in W, and each complex number c. Of course, we need to establish the existence of such a product \otimes .

Warning

We emphasize that not every element of $V \otimes W$ is of the form $v \otimes w$ for some $v \in V$ and $w \in W$!

However, every element of $V \otimes W$ can be expressed as a sum $\sum_{i,j} v_i \otimes w_j$ of such tensor products, with $v_i \in V$ and $w_j \in W$.

We can formally construct this vector space $V \otimes W$ as follows. Form the vector space A of all linear combinations of elements (v, w) with $v \in V$ and $w \in W$.

Construction of the Tensor Product

We can formally construct this vector space $V \otimes W$ as follows. Form the vector space A of all linear combinations of elements (v, w) with $v \in V$ and $w \in W$. Consider the subspace B of A, which consists of all linear combinations of the elements

$$(v_1 + v_2, w) - (v_1, w) - (v_2, w), \ (v, w_1 + w_2) - (v, w_1) - (v, w_2), \ c(v, w) - (cv, w), \ c(v, w) - (v, cw),$$

for $v, v_1, v_2 \in V$, $w, w_1, w_2 \in W$, and $c \in \mathbf{C}$.

We can formally construct this vector space $V \otimes W$ as follows. Form the vector space A of all linear combinations of elements (v, w) with $v \in V$ and $w \in W$. Consider the subspace B of A, which consists of all linear combinations of the elements

$$(v_1 + v_2, w) - (v_1, w) - (v_2, w), \ (v, w_1 + w_2) - (v, w_1) - (v, w_2), \ c(v, w) - (cv, w), \ c(v, w) - (v, cw),$$

for $v, v_1, v_2 \in V$, $w, w_1, w_2 \in W$, and $c \in C$. We define the **tensor product** $V \otimes W$ to be the quotient space A/B. The image of the element (v, w) of A in $V \otimes W$ is denoted by $v \otimes w$.

Equivalence Relation (1/2)

Recall that the vector space A that is spanned by linear combinations of the elements

$$(\boldsymbol{v}, \boldsymbol{w}), \quad \boldsymbol{v}, \boldsymbol{w} \in \mathbf{C}^2.$$

Let u_1 and u_2 be vectors in A. We consider them the same if and only if they differ by a vector in B. We define

$$u_1 \equiv u_2 \pmod{B}$$

if and only if

$$u_1-u_2\in B.$$

Then \equiv is an equivalence relation; A/B is the set of equivalence classes.

Equivalence Relation (2/2)

In particular, we have $u_1 \equiv 0 \pmod{B}$ if and only if $u_1 \in B$.

In particular, we have $u_1 \equiv 0 \pmod{B}$ if and only if $u_1 \in B$.

The equivalence class of (v, w) in A modulo B is denoted by

 $v\otimes w\in A/B=V\otimes W.$

In particular, we have $u_1 \equiv 0 \pmod{B}$ if and only if $u_1 \in B$.

The equivalence class of (v, w) in A modulo B is denoted by

 $v \otimes w \in A/B = V \otimes W.$

Since
$$(v_1 + v_2, w) - (v_1, w) - (v_2, w) \in B$$
, we have

$$(\mathbf{v}_1 + \mathbf{v}_2) \otimes \mathbf{w} - \mathbf{v}_1 \otimes \mathbf{w} - \mathbf{v}_2 \otimes \mathbf{w} = \mathbf{0}$$

in $A/B = V \otimes W$. Other rules: similar!

Observation Let B_V be a basis of V and B_W be a basis of W. Then $\{x \otimes y \mid x \in B_V, y \in B_W\}$ is a basis of $V \otimes W$. In particular, dim $V \otimes W = (\dim V)(\dim W)$.

Let \mathbb{C}^2 the vector space with basis $|0\rangle$ and $|1\rangle$. Then $\mathbb{C}^2 \otimes \mathbb{C}^2$ is a 4-dimensional vector space with basis $|0\rangle \otimes |0\rangle$, $|0\rangle \otimes |1\rangle$, $|1\rangle \otimes |0\rangle$, $|1\rangle \otimes |1\rangle$.

Let \mathbb{C}^2 the vector space with basis $|0\rangle$ and $|1\rangle$. Then $\mathbb{C}^2 \otimes \mathbb{C}^2$ is a 4-dimensional vector space with basis $|0\rangle \otimes |0\rangle$, $|0\rangle \otimes |1\rangle$, $|1\rangle \otimes |0\rangle$, $|1\rangle \otimes |1\rangle$.

We will identify $\mathbb{C}^2 \otimes \mathbb{C}^2$ with \mathbb{C}^4 by the following isomorphism $|x\rangle \otimes |y\rangle \mapsto |xy\rangle$ for $x, y \in \{0, 1\}$.

The vector space ${\bm C}^2 \otimes {\bm C}^2$ contains the vector

$$rac{1}{\sqrt{2}}|0
angle \otimes |0
angle + rac{1}{\sqrt{2}}|1
angle \otimes |1
angle.$$

We cannot write it in the form

$$(a|0
angle+b|1
angle)\otimes(c|0
angle+d|1
angle),$$

since this would mean that

$$ac \neq 0$$
, $ad = 0$, $bc = 0$, $bd \neq 0$.

Let V and W be finite-dimensional vector spaces. Let $\{e_1, \ldots, e_m\}$ be a basis of V and $\{f_1, \ldots, f_n\}$ be a basis of W.

Suppose that A is a linear map on V, and B is a linear map on W. Let $A \otimes B$ denote the linear map on $V \otimes W$, which is determined by

 $(A \otimes B)(e_i \otimes f_j) = Ae_i \otimes Bf_j.$

This uniquely determines the values of $A \otimes B$ on other elements of $V \otimes W$ because the elements $e_i \otimes f_j$ are a basis.

Suppose that the linear map A and B are given by the matrices

$$\begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} \text{ and } \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix}.$$

Then $A \otimes B$ is given by the matrix

$(a_{00}b_{00})$	$a_{00}b_{01}$	$a_{01}b_{00}$	$a_{01}b_{01}$
$a_{00}b_{10}$	$a_{00}b_{11}$	$a_{01}b_{10}$	$a_{01}b_{11}$
$a_{10}b_{00}$	$a_{10}b_{01}$	$a_{11}b_{00}$	$a_{11}b_{01}$
$\langle a_{10}b_{10}\rangle$	$a_{10}b_{11}$	$a_{11}b_{10}$	$a_{11}b_{11}$

•