Tensor Products

Andreas Klappenecker

Texas A\&M University

Tensor Product: A Wish List

Let V and W be finite-dimensional complex vector spaces. We envision a tensor product $V \otimes W$ as a vector space, which is spanned by linear combinations of elements $v \otimes w$ such that $v \in V$ and $w \in W$.

Tensor Product: A Wish List

Let V and W be finite-dimensional complex vector spaces. We envision a tensor product $V \otimes W$ as a vector space, which is spanned by linear combinations of elements $v \otimes w$ such that $v \in V$ and $w \in W$. We would like the product $v \otimes w$ to satisfy the additive relations

$$
\begin{align*}
\left(v_{1}+v_{2}\right) \otimes w & =v_{1} \otimes w+v_{2} \otimes w \tag{1}\\
v \otimes\left(w_{1}+w_{2}\right) & =v \otimes w_{1}+v \otimes w_{2} \tag{2}
\end{align*}
$$

Tensor Product: A Wish List

Let V and W be finite-dimensional complex vector spaces. We envision a tensor product $V \otimes W$ as a vector space, which is spanned by linear combinations of elements $v \otimes w$ such that $v \in V$ and $w \in W$. We would like the product $v \otimes w$ to satisfy the additive relations

$$
\begin{align*}
\left(v_{1}+v_{2}\right) \otimes w & =v_{1} \otimes w+v_{2} \otimes w \tag{1}\\
v \otimes\left(w_{1}+w_{2}\right) & =v \otimes w_{1}+v \otimes w_{2} \tag{2}
\end{align*}
$$

and the balancing relations

$$
\begin{equation*}
c(v \otimes w)=(c v) \otimes w=v \otimes(c w) \tag{3}
\end{equation*}
$$

for each v, v_{1}, v_{2} in V, each w, w_{1}, w_{2} in W, and each complex number c.

Tensor Product: A Wish List

Let V and W be finite-dimensional complex vector spaces. We envision a tensor product $V \otimes W$ as a vector space, which is spanned by linear combinations of elements $v \otimes w$ such that $v \in V$ and $w \in W$. We would like the product $v \otimes w$ to satisfy the additive relations

$$
\begin{align*}
\left(v_{1}+v_{2}\right) \otimes w & =v_{1} \otimes w+v_{2} \otimes w \tag{1}\\
v \otimes\left(w_{1}+w_{2}\right) & =v \otimes w_{1}+v \otimes w_{2} \tag{2}
\end{align*}
$$

and the balancing relations

$$
\begin{equation*}
c(v \otimes w)=(c v) \otimes w=v \otimes(c w) \tag{3}
\end{equation*}
$$

for each v, v_{1}, v_{2} in V, each w, w_{1}, w_{2} in W, and each complex number c. Of course, we need to establish the existence of such a product \otimes.

Warning

We emphasize that not every element of $V \otimes W$ is of the form $v \otimes w$ for some $v \in V$ and $w \in W$!

However, every element of $V \otimes W$ can be expressed as a sum $\sum_{i, j} v_{i} \otimes w_{j}$ of such tensor products, with $v_{i} \in V$ and $w_{j} \in W$.

Construction of the Tensor Product

We can formally construct this vector space $V \otimes W$ as follows. Form the vector space A of all linear combinations of elements (v, w) with $v \in V$ and $w \in W$.

Construction of the Tensor Product

We can formally construct this vector space $V \otimes W$ as follows. Form the vector space A of all linear combinations of elements (v, w) with $v \in V$ and $w \in W$. Consider the subspace B of A, which consists of all linear combinations of the elements

$$
\begin{array}{r}
\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right), \\
\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right), \\
c(v, w)-(c v, w), \quad c(v, w)-(v, c w),
\end{array}
$$

for $v, v_{1}, v_{2} \in V, w, w_{1}, w_{2} \in W$, and $c \in \mathbf{C}$.

Construction of the Tensor Product

We can formally construct this vector space $V \otimes W$ as follows. Form the vector space A of all linear combinations of elements (v, w) with $v \in V$ and $w \in W$. Consider the subspace B of A, which consists of all linear combinations of the elements

$$
\begin{array}{r}
\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right), \\
\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right), \\
c(v, w)-(c v, w), \quad c(v, w)-(v, c w),
\end{array}
$$

for $v, v_{1}, v_{2} \in V, w, w_{1}, w_{2} \in W$, and $c \in \mathbf{C}$. We define the tensor product $V \otimes W$ to be the quotient space A / B. The image of the element (v, w) of A in $V \otimes W$ is denoted by $v \otimes w$.

Equivalence Relation (1/2)

Recall that the vector space A that is spanned by linear combinations of the elements

$$
(v, w), \quad v, w \in \mathbf{C}^{2} .
$$

Let u_{1} and u_{2} be vectors in A. We consider them the same if and only if they differ by a vector in B. We define

$$
u_{1} \equiv u_{2} \quad(\bmod B)
$$

if and only if

$$
u_{1}-u_{2} \in B
$$

Then \equiv is an equivalence relation; A / B is the set of equivalence classes.

Equivalence Relation (2/2)

In particular, we have $u_{1} \equiv 0(\bmod B)$ if and only if $u_{1} \in B$.

In particular, we have $u_{1} \equiv 0(\bmod B)$ if and only if $u_{1} \in B$.
The equivalence class of (v, w) in A modulo B is denoted by

$$
v \otimes w \in A / B=V \otimes W
$$

In particular, we have $u_{1} \equiv 0(\bmod B)$ if and only if $u_{1} \in B$.

The equivalence class of (v, w) in A modulo B is denoted by

$$
v \otimes w \in A / B=V \otimes W
$$

Since $\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right) \in B$, we have

$$
\left(v_{1}+v_{2}\right) \otimes w-v_{1} \otimes w-v_{2} \otimes w=0
$$

in $A / B=V \otimes W$. Other rules: similar!

Observation
Let B_{V} be a basis of V and B_{W} be a basis of W. Then

$$
\left\{x \otimes y \mid x \in B_{V}, y \in B_{W}\right\}
$$

is a basis of $V \otimes W$.
In particular, $\operatorname{dim} V \otimes W=(\operatorname{dim} V)(\operatorname{dim} W)$.

Example

Let \mathbf{C}^{2} the vector space with basis $|0\rangle$ and $|1\rangle$.
Then $\mathbf{C}^{2} \otimes \mathbf{C}^{2}$ is a 4-dimensional vector space with basis

$$
|0\rangle \otimes|0\rangle, \quad|0\rangle \otimes|1\rangle, \quad|1\rangle \otimes|0\rangle, \quad|1\rangle \otimes|1\rangle .
$$

Example

Let \mathbf{C}^{2} the vector space with basis $|0\rangle$ and $|1\rangle$.
Then $\mathbf{C}^{2} \otimes \mathbf{C}^{2}$ is a 4-dimensional vector space with basis

$$
|0\rangle \otimes|0\rangle, \quad|0\rangle \otimes|1\rangle, \quad|1\rangle \otimes|0\rangle, \quad|1\rangle \otimes|1\rangle .
$$

We will identify $\mathbf{C}^{2} \otimes \mathbf{C}^{2}$ with \mathbf{C}^{4} by the following isomorphism

$$
|x\rangle \otimes|y\rangle \mapsto|x y\rangle
$$

for $x, y \in\{0,1\}$.

Example

The vector space $\mathbf{C}^{2} \otimes \mathbf{C}^{2}$ contains the vector

$$
\frac{1}{\sqrt{2}}|0\rangle \otimes|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \otimes|1\rangle .
$$

We cannot write it in the form

$$
(a|0\rangle+b|1\rangle) \otimes(c|0\rangle+d|1\rangle),
$$

since this would mean that

$$
a c \neq 0, \quad a d=0, \quad b c=0, \quad b d \neq 0 .
$$

Let V and W be finite-dimensional vector spaces. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be a basis of V and $\left\{f_{1}, \ldots, f_{n}\right\}$ be a basis of W.

Suppose that A is a linear map on V, and B is a linear map on W. Let $A \otimes B$ denote the linear map on $V \otimes W$, which is determined by

$$
(A \otimes B)\left(e_{i} \otimes f_{j}\right)=A e_{i} \otimes B f_{j}
$$

This uniquely determines the values of $A \otimes B$ on other elements of $V \otimes W$ because the elements $e_{i} \otimes f_{j}$ are a basis.

Suppose that the linear map A and B are given by the matrices

$$
\left(\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
b_{00} & b_{01} \\
b_{10} & b_{11}
\end{array}\right) .
$$

Then $A \otimes B$ is given by the matrix

$$
\left(\begin{array}{llll}
a_{00} b_{00} & a_{00} b_{01} & a_{01} b_{00} & a_{01} b_{01} \\
a_{00} b_{10} & a_{00} b_{11} & a_{01} b_{10} & a_{01} b_{11} \\
a_{10} b_{00} & a_{10} b_{01} & a_{11} b_{00} & a_{11} b_{01} \\
a_{10} b_{10} & a_{10} b_{11} & a_{11} b_{10} & a_{11} b_{11}
\end{array}\right) .
$$

