Goal
Consider a set

\[S = \{x_1 < x_2 < \ldots < x_n\} \]

from a totally ordered universe. This set can dynamically change by adding or removing elements. Our goal is to search \(S \) for an element \(k \).
Searching

Goal
Consider a set

\[S = \{x_1 < x_2 < \ldots < x_n\} \]

from a totally ordered universe. This set can dynamically change by adding or removing elements. Our goal is to search \(S \) for an element \(k \).

Bottom and Top Elements
We add a bottom element \(-\infty \) and top element \(+\infty \) to the universe such that

\[-\infty < x_1 < x_2 < \ldots < x_n < +\infty. \]

These elements can simplify the implementation of the search.
Linked List Representation

Implementation
We can represent the set S by an ordered linked list. The problem is that we cannot index into this list, so the search is slow.

Search Trees
A search tree can speed up the search, but can be a bit awkward to maintain under insert and delete operations.

Idea Behind Skip Lists
We want to obtain the speed of a binary search tree but combine it with the ease of maintaining a sorted linked list.
Skip lists were invented by Bill Pugh in 1990.

They offer an expected search time of $O(\log n)$.

They generalize linked lists and are easy to implement.
A **descending filtration** is a sequence S_i of subsets of S such that

$$\emptyset = S_r \subseteq S_{r-1} \subseteq \cdots \subseteq S_1 = S.$$

In computer science, the S_i are called levels. The idea is that S_k for a large k is easy to search, since it has fewer elements than S_1.

The idea is that we implement each S_i by a sorted linked list. Each element x in S_i is also linked to the element x in the finer level S_{i-1}.
Searching in a Skip List

Search

When we search for k:
- If $k = \text{key}$, done!
- If $k < \text{next key}$, then k is not in this list, so go down a level
- If $k \geq \text{next key}$, then go right
Example: Search for 61
Example: Search for 29
Deterministic Construction

Construction
If the set $S_1 = S$ is fixed, then we could choose to include every other element into S_2. Next, put every other element of S_2 into S_3, and so forth.

Problem
We want to be able to insert and delete elements. These operations destroy the nice structure!
Randomized Construction

Construction
Let $S_1 = S$. For every element x in S_k, include x in S_{k+1} with probability $1/2$.

Expected Number of Elements

\[
\begin{align*}
E[|S_1|] &= n, \\
E[|S_2|] &= n/2, \\
E[|S_3|] &= n/4, \\
\vdots
\end{align*}
\]
We say that an element x_k has **height** ℓ if and only if

$$x_k \in S_\ell, \quad \text{but} \quad x_k \notin S_{\ell+1}.$$

Let X_k be the random variable that gives the height of the element x_k. We have

$$\Pr[X_k = \ell] = p(1 - p)^{\ell-1}.$$

So for $p = 1/2$, we have

$$\Pr[X_k = \ell] = (1/2)^\ell = 2^{-\ell}.$$
Interlude: Jensen’s Inequality
Jensen’s Inequality for Convex Functions

Proposition (Jensen’s Inequality)

Let X be a random variable with $E[X] < \infty$. If $f : \mathbb{R} \to \mathbb{R}$ is a convex function, so \supset, then

$$f(E[X]) \leq E[f(X)].$$
Proposition (Jensen’s Inequality)

Let X be a random variable with $E[X] < \infty$. If $f: \mathbb{R} \to \mathbb{R}$ is a convex function, then

$$f(E[X]) \leq E[f(X)].$$

Proof.

Since f is convex, we can find a linear function $g(x) = ax + b$ which lies entirely below the graph of f, but touches f at $E[X]$. In other words, we can choose real numbers a and b such that

$$f(E[X]) = g(E[X])$$

and $g(x) \leq f(x)$ for all $x \in \mathbb{R}$.
Proof. (Continued).

Since \(f(x) \geq g(x) \) for all \(x \in \mathbb{R} \), it follows that

\[
E[f(X)] \geq E[g(X)]
\]

\[
= E[aX + b] = aE[X] + b
\]

\[
= g(E[X]) = f(E[X]).
\]
Jensen’s Inequality for Concave Functions

Proposition (Jensen’s Inequality)

Let X be a random variable with $E[X] < \infty$. If $f : \mathbb{R} \rightarrow \mathbb{R}$ is a concave function, so \preceq, then

$$E[f(X)] \leq f(E[X]).$$

Proof.

If f is concave, then $-f$ is convex. So

$$-f(E[X]) \leq E[-f(X)] = -E[f(X)]$$

by Jensen’s inequality for convex functions. Thus,

$$f(E[X]) \geq E[f(X)].$$
Proposition

The expected maximum height of a skip list with \(n \) elements is given by

\[
E \left[\max_{1 \leq k \leq n} X_k \right] \in O(\log n).
\]
Proof.

Let α be a real number in the range $1 < \alpha < 2$. Then

$$E \left[\max_{1 \leq k \leq n} X_k \right] \leq \log_\alpha E \left[\alpha^{\max_{1 \leq k \leq n} X_k} \right]$$

$$= \log_\alpha E \left[\max_{1 \leq k \leq n} \alpha^{X_k} \right].$$

Since $\alpha^{X_k} \geq 1$, we can estimate the right-hand side by the sum

$$E \left[\max_{1 \leq k \leq n} X_k \right] \leq \log_\alpha E \left[\sum_{k=1}^{n} \alpha^{X_k} \right].$$
Continued.

\[
E \left[\max_{1 \leq k \leq n} X_k \right] \leq \log_\alpha E \left[\sum_{k=1}^{n} \alpha^X_k \right] = \log_\alpha \left(\sum_{k=1}^{n} \sum_{k \geq 1} \alpha^k 2^{-k} \right) \\
= \log_\alpha \left(\sum_{k=1}^{n} \frac{1}{1 - \alpha/2} \right) \\
= \log_\alpha n + \log_\alpha \frac{1}{1 - \alpha/2} = O(\log n),
\]

which is what we wanted to show.
Proposition

The number of levels of a skip list of a set with \(n \) elements satisfies \(O(\log n) \) with high probability.

Proof.

Let \(X_k \) denote the random variable giving the number of levels of the \(k \)-the element of \(S \). Then

\[
Pr[X_k > t] \leq (1 - p)^t.
\]

So

\[
Pr[\max_k X_k > t] \leq n(1 - p)^t = \frac{n}{2^t}
\]

for \(p = 1/2 \). Choosing \(t = a \log n \) and \(r = \max_k X_k \), we can conclude that

\[
Pr[r > a \log n] \leq \frac{1}{n^{a-1}}
\]

for any \(a > 1 \). \(\square \)