
Hints for the LZW Project

This project is on a larger scale than the previous lab assignments, and you
need to manage the time of your team wisely to be able to complete this
project within the given time frame. It is unlikely that you will be able to
complete the project if you start programming shortly before the deadline.

The extended deadline is: Friday, October 10

• Study the LZW compression program by Mark Nelson. Get familiar
with the abstract algorithm in pseudocode, and then with the imple-
mentation details.

• For your implementation, you can assume that the uncompressed input
text is stored in the data segment in the form:

.data
inpstr: .ascii "abracadabradiblabladidududidada"

.ascii "makethistextsmallmakethistexttiny"

.ascii "abracadabradiblabladidududidada"

.asciiz "hokuspokussneezeandsqueeze"

• The encoding and decoding process of your assembly program is en-
tirely performed within the memory because there are no file I/O op-
erations available in spim .

• You need to allocate memory for the hash tables of the encoder and of
the decoder. Each hash table consists of an array of integers containing
the code symbols, and array of integers containing the code of the
prefix, and an array of bytes containing the code of the character
suffix.

• The encoded symbols are stored in an array of integers (representing
the channel). We make the following simplification: You do not need
to implement the buffering mechanism (Nelson’s input code and out-
put code procedures), since this belongs to the file I/O part. Store
the code symbols that are transmitted by the encoder in the array
representing the channel.

• Write a procedure that calculates the file length (in bytes) of the com-
pressed file, based on the information given in the channel and the
number of bits used to represent each symbol (BITS in Nelson’s code).
Should correspond to the file length generated by Nelson’s lzw imple-
mentation.

1



• Include the following printf statement into the code generation routine
of Nelson’s compress procedure:

...
if (next_code <= MAX_CODE) {

printf("code %d prefix %d suffixc %d\n",
next_code,string_code,character);

code_value[index]=next_code++;
prefix_code[index]=string_code;
append_character[index]=character;

...

This printf statement illustrates the code symbol generation of the
encoder. For example, if the input is ABAAABBAA, then the modified
program will print

Compressing...
code 256 prefix 65 suffix 66
code 257 prefix 66 suffix 65
code 258 prefix 65 suffix 65
code 259 prefix 258 suffix 66
code 260 prefix 66 suffix 66
code 261 prefix 257 suffix 65
Expanding...

You can test your encoder by comparing the symbol generation with
Nelson’s C program, even if you do not have completed the decoder.
Whenever the encoder attempts to include some new string into the
hash table, then it will output the code of the prefix, and add it to the
channel.

• If the hash table gets full, then stop including new symbols, as in
Nelsons C code (in practice, you might want to clear the table or use
some LRU scheme).

2


