Problem Set 4
 CPSC 440/640 Quantum Algorithms
 Andreas Klappenecker

The assignment is due on Wednesday, November 8, before class.

Problem 1. Let G_{n} denote the Pauli group $G_{n}=\left\{ \pm X(a) Z(b) \mid a, b \in \mathbf{F}_{2}^{n}\right\}$. Show that two matrices A, B in G_{n} either commute or anticommute, that is, $A B= \pm B A$.

Problem 2. Recall that the trace $\operatorname{tr} P$ of a matrix P is given by the sum of its diagonal elements, that is, $\operatorname{tr} P=\sum P_{i i}$. It is easy to show that $\operatorname{tr}\left(A P A^{-1}\right)=$ $\operatorname{tr}(P)$ holds for all invertible matrices A.

Let Q be a quantum code of length n. Let $P: \mathbf{C}^{2^{n}} \rightarrow \mathbf{C}^{2^{n}}$ denote the orthogonal projector onto Q, that is, P is the unique linear map that satisfies $P^{2}=P$, $P^{\dagger}=P$, and image $(P)=Q$. Prove that $\operatorname{dim} Q=\operatorname{tr} P$.

Problem 3. Recall that a group G is a set with a binary operation o: $G \times G \rightarrow G$ such that (i) $a \circ(b \circ c)=(a \circ b) \circ c$ holds for all $a, b, c \in G$; (ii) there exists an element 1 in G, called the identity, such that $a \circ 1=1 \circ a=a$ for all a in G; (iii) for each a in G there exists an element a^{-1} in G such that $a \circ a^{-1}=a^{-1} \circ a=1$. The group G is called abelian if $a \circ b=b \circ a$ holds for all a, b in G.

Let S denote an abelian subgroup of the Pauli group G_{n}.
(a) Let A be an element of S. Prove that the map $m_{A}: S \rightarrow S$ given by $m_{A}(x)=$ $A x$ is a bijective map ($=$ one-to-one and onto).
(b) Prove that $P=|S|^{-1} \sum_{B \in S} B$ is an orthogonal projector.
(c) Prove that if the group S has 2^{n-k} elements, then the quantum code given by the image of P has dimension 2^{k}.

Problem 4. Let Q denote the quantum code $Q=\{a|001\rangle+b|110\rangle \mid a, b \in \mathbf{C}\}$.
(a) Determine all matrices A in S such that $A|x\rangle=|x\rangle$ for all $|x\rangle$ in Q. Prove that this set forms an abelian group T.
(b) Let P denote the orthogonal projector corresponding to the abelian group T, as define in the previous problem. Show that the image of P is Q.

