Controlled Unitary Gates

Andreas Klappenecker

Lemma 1 A unitary matrix $U \in \mathcal{U}(2)$ can be expressed in the form

$$
U=e^{i a}\left(\begin{array}{cc}
e^{-i b} & 0 \\
0 & e^{i b}
\end{array}\right)\left(\begin{array}{rr}
\cos c & -\sin c \\
\sin c & \cos c
\end{array}\right)\left(\begin{array}{cc}
e^{-i d} & 0 \\
0 & e^{i d}
\end{array}\right),
$$

for some real numbers a, b, c, and d.

Proof. We can write U in the form $U=e^{i a} V$, where V is some unitary matrix with determinant 1. The matrix V has to be of the form $V=\left(\begin{array}{cc}\alpha & -\bar{\beta} \\ \beta & \bar{\alpha}\end{array}\right)$. Indeed, the columns of a unitary matrix are orthogonal, hence the right column of V has to be a multiple of $(-\bar{\beta}, \bar{\alpha})^{t}$; and the determinant constraint forces V to be of the given form. We can write α and β in the form $\alpha=e^{i h} \cos c$ and $\beta=$ $e^{i k} \sin c$ for some real numbers h, k, c, because α and β satisfy $|\alpha|^{2}+|\beta|^{2}=1$; it follows that

$$
V=\left(\begin{array}{cc}
e^{i h} \cos c & -e^{i k} \sin c \\
e^{-i k} \sin c & e^{-i h} \cos c
\end{array}\right) .
$$

We can find real numbers b and d satisfying $h=-d-b$ and $k=d-b$, hence
$\left.V=\left(\begin{array}{c}e^{-i(b+d)} \cos c \\ e^{i(b-d)} \sin c\end{array} e^{i(d-b)} \sin c\right) \cos c\right)=\left(\begin{array}{cc}e^{-i b} & 0 \\ 0 & e^{i b}\end{array}\right)\left(\begin{array}{cc}\cos c & -\sin c \\ \sin c & \cos c\end{array}\right)\left(\begin{array}{cc}e^{-i d} & 0 \\ 0 & e^{i d}\end{array}\right)$, which proves the claim.

Let us denote by $S(b)$ and $R(c)$ the matrices

$$
S(b)=\left(\begin{array}{cc}
e^{-i b} & 0 \\
0 & e^{i b}
\end{array}\right) \quad \text { and } \quad R(c)=\left(\begin{array}{rr}
\cos c & -\sin c \\
\sin c & \cos c
\end{array}\right) .
$$

The statement of the previous lemma is that a unitary matrix can be written in the form $U=e^{i a} S(b) R(c) S(d)$ for some $a, b, c, d \in \mathbf{R}$. Notice that

$$
X R(c) X=R(-c) \quad \text { and } \quad X S(b) X=S(-b) .
$$

Theorem 1 For each unitary matrix $U \in \mathcal{U}(2)$ there exist matrices A, B, C, and E in $\mathcal{U}(2)$ such that

Proof. If $U=e^{i a} S(b) R(c) S(d)$, choosing the matrices

$$
\begin{array}{cc}
C=S(b) R(c / 2), & B=R(-c / 2) S(-(d+b) / 2), \\
A=S((d-b) / 2), & E=\operatorname{diag}\left(1, e^{i a}\right),
\end{array}
$$

yields the desired result. Indeed, we have $C B A=\mathbf{1}$. Therefore, the circuit on the right hand side yields on input of $|00\rangle$ and $|01\rangle$ the same result as the controlled- U gate. Using $X^{2}=1$, we obtain for $C X B X A$ the expression

$$
C X B X A=\underbrace{S(b) R(c / 2)}_{C} X \underbrace{R(-c / 2) X X S(-(d+b) / 2)}_{B} X \underbrace{S((d-b) / 2)}_{A},
$$

which simplifies to $C X B X A=S(b) R(c / 2) R(c / 2) S((d+b) / 2) S((d-b) / 2)=$ $S(b) R(c) S(d)$. It follows that $|1\rangle \otimes|\psi\rangle$ is transformed by the circuit on the right hand side to

$$
e^{i a}|1\rangle \otimes S(b) R(c) S(d)|\psi\rangle=|1\rangle \otimes U|\psi\rangle,
$$

which coincides with the action of the controlled- U gate.

