
Randomized
Algorithms

Andreas Klappenecker Texas A&M University

Lecture notes of the course Randomized Algorithms, Fall 2003. Preliminary draft.

c© 2003 by Andreas Klappenecker. All rights reserved.

Chapter 1

Algorithmic Appetizers

A randomized algorithm is an algorithm that receives, in addition to its in-
put, a stream of random bits which is used to make random choices. The
random bits are assumed to be independent of the input. A salient feature
is that repeated runs of a randomized algorithm with fixed input data will,
in general, not produce the same result. You might be perplexed that such a
lack of definiteness is desirable, but consider that this feature allows to trans-
form deterministic algorithms with bad worst case behaviour into randomized
algorithms that perform well with high probability on any input.

We give a short exposition of selected randomized algorithms to provide
you with an impression of the flavor of the subject. I hope that these examples
can convey that randomized algorithms are often simple and efficient.

§1 A Minimum Cut Algorithm

Our first example is a graph-theoretic algorithm. Let G = (V,E) be a con-
nected, undirected, loopfree multigraph with n vertices. A multigraph may
contain multiple edges between two vertices, as the following example shows.

A B

C D E

F

A cut in the multigraph G = (V,E) is a partition of the vertex set V into two
disjoint nonempty sets V = V1∪V2. An edge with one end in V1 and the other

1

2 CHAPTER 1. ALGORITHMIC APPETIZERS

in V2 is said to cross the cut. The cut is often identified with the multiset of
crossing edges.

The term cut is chosen because the removal of the edges in a cut partitions
the multigraph. For example, if we partition V = {A,B,C,D,E, F} into the
sets V1 = {A,C} and V2 = {B,D,E, F} in the previous example, then this
cut has five crossing edges, and removing these edges yields the disconnected
multigraph:

A B

C D E

F

The size of the cut is given by the number of edges crossing the cut. Our goal
is to determine the minimum size of a cut in a given multigraph G.

We describe a very simple randomized algorithm for this purpose. If e is
an edge of a loopfree multigraph G, then the multigraph G/e is obtained from
G by contracting the edge e = {x, y}, that is, we identify the vertices x and y
and remove all resulting loops.

A B

C D E

F

{C,D}
=⇒

A B

D E

F

The above figure shows a multigraph G and the multigraph G/{C,D} resulting
from contracting an edge between C and D. We keep the label of one vertex
to avoid cluttered notations, but keep in mind that a node D in the graph
G/{C,D} really represents the set of all nodes that are identified with D.

Note that any cut of G/e induces a cut of G. For instance, in the above
example the cut {A,B} ∪ {D,E, F} in G/{C,D} induces the cut {A,B} ∪
{C,D,E, F} in G. In general, the vertices that have been identified in G/e
are in the same partition of G.

The size of the minimum cut of G/e is at least the size of the minimum
cut of G, because all edges are kept. Thus we can use successive contractions
to estimate the size of the minimum cut of G. This is the basic idea of the
following randomized algorithm.

§1. A MINIMUM CUT ALGORITHM 3

Contract(G)

Input: A connected loopfree multigraph G = (V,E) with at least 2 vertices.
1: while |V | > 2 do

2: Select e ∈ E uniformly at random;
3: G := G/e;
4: od;
5: return |E|.

Output: An upper bound on the minimum cut of G.

The algorithms Contract selects uniformly at random one of the remaining
edges and contracts this edge until two vertices remain. The cut determined
by this algorithm contains precisely the edges that have not been contracted.
Counting the edges between the remaining two vertices yields an estimate of
the size of the minimum cut of G.

The algorithm is best understood by an example. Figure 1.1 shows two
different runs of the algorithm Contract. Let us have a closer look at the run
shown in the left column of this figure. The multigraph provided as an input
is depicted in the top left. First the edge {D,E} is contracted. The resulting
graph is shown directly below. The edges {D,F}, {C,D}, and {B,D} are
respectively contracted in the remaining steps.

Each contraction identifies two vertices. The remaining two nodes A
and B in the final multigraph in the lower left represent the sets {A} and
{B,C,D,E, F}, since the contractions produced the identifications

E ∼ D ∼ F ∼ C ∼ B,

respectively. Therefore, the cut {A}∪{B} in the final multigraph corresponds
to the cut {A} ∪ {B,C,D,E, F} in the input multigraph.

Exercise 1.1 Describe the cut in the input graph that is induced by the cut

{C} ∪ {D} in the final multigraph in the right column of Figure 1.1. Assume

that {D,F} was the last contracted edge. If there is some ambiguity, then list

all possibilities.

The examples amply demonstrate some unsettling property of the algo-
rithm Contract: The algorithm does not always produce the correct size of
the minimum cut. It is not difficult to show that the correct size of a minimum
cut will be found by the algorithm Contract with probability Ω(n2), where n
denotes the number of vertices of the multigraph. Repeating the algorithm
O(n2 log n) times and choosing the smallest value returned by the runs yields

4 CHAPTER 1. ALGORITHMIC APPETIZERS

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 1.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

§2. STRING COMPARISON 5

the correct size of the minimum cut with high probability. (We will explain
these facts in detail after reviewing the basics of probability theory).

The beauty of this scheme is its simplicity. If G is represented as a labeled
graph, where the labels denote the multiplicity of the edges, then Contract
can be implemented with O(n2) operations; running the algorithm repeatedly,
as suggested before, yields at total of O(n4 log n) operations.

Remark. The running time of the best deterministic minimum cut algo-
rithm is O(nm + n2 log n), where m denotes the number of edges, that is, in
the labeled graph representation the running time is at most O(n3), see for
instance [2]. It turns out that size of the minimum cut can be determined with
high probability in O(n2 log3 n) steps using a refined version of the contraction
algorithm, see [1].

§2 String Comparison

Suppose that a company has one division at the East Coast and another
one at the West Coast. The database of the company is mirrored in both
divisions, meaning that each update is performed at both divisions. The
company relies–tragically–on products of the software giant Millisoft, which
is capable to produce more software bugs per minute than any competitor.

The system administrators seek to detect inconsistencies between the two
mirrors as early as possible. They decide to run consistency checks between
the two databases every evening. It is not feasible to communicate the whole
database from coast to coast for such testing purposes. Instead, the system
administrators decide to use fingerprinting techniques.

The content of each database can be interpreted as a long string of bits.
We can interpret such a string as an integer. Suppose that the content of
the database on the East Coast is represented by integer x, and the one on
the West Coast by y. We can choose a prime p and calculate xp := x mod p.
Assuming that p is not too large, we can send the residue xp to the West Coast
division. This division calculates y := y mod p and compares the two residues.
If the two residues differ, then we clearly have a database inconsistency.

A deterministic choice of the prime p is not advisable, because there exist
many distinct integers x and y such that x − y is a multiple of p, such that
x ≡ y mod p, but x 6= y.

A randomized choice of the prime p avoids this problem. So, rather than
agreeing on a prime in advance, we select a new prime in each run of the
algorithm.

6 CHAPTER 1. ALGORITHMIC APPETIZERS

Algorithm E (Equality)

E1. Select a prime p < M uniformly at random.

E2. Compute xp := x mod p and send (xp, p) to the West Coast.

E3. The West Coast division computes yp := y mod p.

E4. If xp 6= yp then announce inconsistent otherwise consistent.

Note that the algorithm might fail, for the same reason why we rejected
the deterministic version. We will now show that if the prime p is chosen from
a suitably large range 2 ≤ p < M , then the probability that the algorithm
fails will be very small for any two strings x and y.

Let π(N) denote the number of primes less than N . It is a well-known
fact from number theory that asymptotically π(N) ∼ N/ ln N . Moreover, if
A < 2n, then the number of primes dividing A is less than π(n). Equipped
with these two facts from number theory, we can calculate the probability that
Algorithm E fails to produce the correct answer.

When does Algorithm E fail? The failure occurs if x 6= y but x ≡ y mod p,
meaning that p divides the number D = |x − y|. Suppose that x and y have
n bits, then the number D is less than 2n. Therefore, the number of primes
dividing D is less than π(n). Recall that we selected the prime p from a total
of π(M) primes, hence the probability of failure is

Pr[failure] =
|{p | p < M, p is prime, p divides |x − y|}

π(M)
≤

π(n)

π(M)
.

If the integers x and y are n = 1012 bits long, and M = 264, then the
above formula bounds the probability of failure by π(n)/π(M) ≈ 8.71× 10−8.
If the system administrators are paranoid, then they can run this test several
times to further reduce the probability of failure.

In summary, Algorithm E is a simple algorithm that gets the job done. A
deterministic algorithm for the same task is problematic, and usually inferior
to this simple randomized algorithm.

Bibliography

[1] D.R. Karger and C. Stein. A new approach to the min-cut problem. J.

ACM, 43(4):601–640, 1996.

[2] M. Stoer and F. Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–
591, 1997.

7

