§1 Analysis of a Minimum Cut Algorithm

We introduced in Chapter 1 a randomized algorihm to compute the size of a minimum cut of a loopfree multigraph. You might recall that this algorithm repeatedly selects and contracts edges as follows:

Contract(G)

Input: A connected loopfree multigraph $G=(V, E)$ with at least 2 vertices.
: while $|V|>2$ do
Select $e \in E$ uniformly at random;
$\mathrm{G}:=\mathrm{G} / \mathrm{e}$;
od;
return $|E|$.
Output: An upper bound on the minimum cut of G.
We now want to analyze this algorithm. Our goal is to determine a lower bound on the probability that the algorithm correctly determines the minimum cut. We will see that this algorithm produces the correct answer with probability $\Omega\left(1 / n^{2}\right)$. We need remarkably few tools from probability theory in this proof: All we need is the innocuous formula

$$
\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]
$$

Exercise 3.1 Prove the following straightforward consequence of the previous formula

$$
\operatorname{Pr}\left[\cap_{\ell=1}^{n} E_{\ell}\right]=\left(\prod_{m=2}^{n} \operatorname{Pr}\left[E_{m} \mid \cap_{\ell=1}^{m-1} E_{\ell}\right]\right) \operatorname{Pr}\left[E_{1}\right] .
$$

If you expand the formula then you will immediately see the pattern.
Let me motivate the approach taken in the analysis by emphasizing a special case. Suppose that the multigraph has a uniquely determined minimum cut. If the algorithm selects in this case any edge crossing this cut, then the algorithm will fail to produce the correct result. The analysis is largely guided by this observation.

Exercise 3.2 Give an example of a connected, loopfree multigraph with at least four vertices that has a uniquely determined minimum cut.

Let $G=(V, E)$ be a loopfree connected multigraph with $n=|V|$ vertices. Note that each contraction reduces the number of vertices by one, so the algorithm terminates after $n-2$ steps.

Suppose that C is a particular minimum cut of G. Let E_{i} denote the event that the algorithm selects in the i th step an edge that does not cross the cut C. Therefore, the probability that no edge crossing the cut C is ever picked during an execution of the algorithm is $\operatorname{Pr}\left[\cap_{j=1}^{n-2} E_{j}\right]$. By Exercise 3.1, this probability can be calculated by

$$
\begin{equation*}
\operatorname{Pr}\left[\cap_{m=1}^{n-2} E_{m}\right]=\left(\prod_{m=2}^{n-2} \operatorname{Pr}\left[E_{m} \mid \cap_{\ell=1}^{m-1} E_{\ell}\right]\right) \operatorname{Pr}\left[E_{1}\right] \tag{3.1}
\end{equation*}
$$

Suppose that the size of the minimum cut is k. This means that the degree of each vertex is at least k, hence there exist at least $k n / 2$ edges. The probability to select an edge crossing the cut C in the first step is at most $k /(k n / 2)=2 / n$. Consequently, $\operatorname{Pr}\left[E_{1}\right] \geq 1-2 / n=(n-2) / n$.

Similarly, at the beginning of the m th step, with $m \geq 2$, there are $n-m+1$ remaining vertices. The minimum cut is still at least k, hence the multigraph has at this stage at least $k(n-m+1) / 2$ edges. Assuming that none of the edges crossing C was selected in an earlier step, the probability to select an edge crossing the cut C is $2 /(n-m+1)$. It follows that

$$
\operatorname{Pr}\left[E_{m} \mid \bigcap_{j=1}^{m-1} E_{j}\right] \geq 1-\frac{2}{n-m+1}=\frac{n-m-1}{n-m+1}
$$

Applying these lower bounds to the terms in equation (3.1) yields the result:

$$
\operatorname{Pr}\left[\bigcap_{j=1}^{n-2} E_{j}\right] \geq \prod_{m=1}^{n-2}\left(\frac{n-m-1}{n-m+1}\right)=\frac{2}{n(n-1)}
$$

The last equality is obtained by canceling terms in the telescoping product.
In conclusion, we have shown that the contraction algorithm yields the correct answer with probability at least $\Omega\left(1 / n^{2}\right)$.

Repetitions. We can repeatedly execute the randomized algorithm Contract and take the minimum of all results. Recall from calculus that

$$
\left(1+\frac{x}{n}\right)^{n} \leq e^{x}
$$

and, in fact, $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$. The probability that the algorithm fails to produce the correct result in one execution is $\operatorname{Pr}[$ failure $]=\left(1-2 / n^{2}\right)$. Recall that for independent event E and F, the probability is given by $\operatorname{Pr}[E \cap F]=$ $\operatorname{Pr}[E] \operatorname{Pr}[F]$. Therefore, if we execute the algorithm $n^{2} / 2$ times, then the probability that the repeated executions will never reveal the correct size of the minimum cut is given by $\left(1-2 / n^{2}\right)^{n^{2} / 2} \leq e^{-1}$. We can conclude that repeating the contraction algorithm $O\left(n^{2} \log n\right)$ times yields the correct size of the minimum cut with high probability.

