
§1. ANALYSIS OF A MINIMUM CUT ALGORITHM 1

§1 Analysis of a Minimum Cut Algorithm

We introduced in Chapter 1 a randomized algorihm to compute the size of a
minimum cut of a loopfree multigraph. You might recall that this algorithm
repeatedly selects and contracts edges as follows:

Contract(G)
Input: A connected loopfree multigraph G = (V, E) with at least 2 vertices.
1: while |V | > 2 do
2: Select e ∈ E uniformly at random;
3: G := G/e;
4: od;
5: return |E|.

Output: An upper bound on the minimum cut of G.

We now want to analyze this algorithm. Our goal is to determine a lower
bound on the probability that the algorithm correctly determines the mini-
mum cut. We will see that this algorithm produces the correct answer with
probability Ω(1/n2). We need remarkably few tools from probability theory
in this proof: All we need is the innocuous formula

Pr[E ∩ F] = Pr[E|F] Pr[F]

Exercise 3.1 Prove the following straightforward consequence of the previ-
ous formula

Pr[∩n
`=1E`] =

(
n∏

m=2

Pr[Em| ∩m−1
`=1 E`]

)
Pr[E1].

If you expand the formula then you will immediately see the pattern.

Let me motivate the approach taken in the analysis by emphasizing a spe-
cial case. Suppose that the multigraph has a uniquely determined minimum
cut. If the algorithm selects in this case any edge crossing this cut, then the
algorithm will fail to produce the correct result. The analysis is largely guided
by this observation.

Exercise 3.2 Give an example of a connected, loopfree multigraph with at
least four vertices that has a uniquely determined minimum cut.

Let G = (V, E) be a loopfree connected multigraph with n = |V | vertices.
Note that each contraction reduces the number of vertices by one, so the
algorithm terminates after n− 2 steps.

2

Suppose that C is a particular minimum cut of G. Let Ei denote the
event that the algorithm selects in the ith step an edge that does not cross
the cut C. Therefore, the probability that no edge crossing the cut C is ever
picked during an execution of the algorithm is Pr[∩n−2

j=1 Ej]. By Exercise 3.1,
this probability can be calculated by

Pr[∩n−2
m=1Em] =

(
n−2∏

m=2

Pr[Em| ∩m−1
`=1 E`]

)
Pr[E1]. (3.1)

Suppose that the size of the minimum cut is k. This means that the
degree of each vertex is at least k, hence there exist at least kn/2 edges. The
probability to select an edge crossing the cut C in the first step is at most
k/(kn/2) = 2/n. Consequently, Pr[E1] ≥ 1− 2/n = (n− 2)/n.

Similarly, at the beginning of the mth step, with m ≥ 2, there are n−m+1
remaining vertices. The minimum cut is still at least k, hence the multigraph
has at this stage at least k(n −m + 1)/2 edges. Assuming that none of the
edges crossing C was selected in an earlier step, the probability to select an
edge crossing the cut C is 2/(n−m + 1). It follows that

Pr
[
Em|

m−1⋂

j=1

Ej

] ≥ 1− 2
n−m + 1

=
n−m− 1
n−m + 1

.

Applying these lower bounds to the terms in equation (3.1) yields the result:

Pr
[n−2⋂

j=1

Ej

] ≥
n−2∏

m=1

(
n−m− 1
n−m + 1

)
=

2
n(n− 1)

.

The last equality is obtained by canceling terms in the telescoping product.
In conclusion, we have shown that the contraction algorithm yields the

correct answer with probability at least Ω(1/n2).

Repetitions. We can repeatedly execute the randomized algorithm Con-
tract and take the minimum of all results. Recall from calculus that(

1 +
x

n

)n
≤ ex,

and, in fact, limn→∞
(
1 + x

n

)n = ex. The probability that the algorithm fails to
produce the correct result in one execution is Pr[failure] = (1− 2/n2). Recall
that for independent event E and F , the probability is given by Pr[E ∩ F] =
Pr[E] Pr[F]. Therefore, if we execute the algorithm n2/2 times, then the
probability that the repeated executions will never reveal the correct size of
the minimum cut is given by (1 − 2/n2)n2/2 ≤ e−1. We can conclude that
repeating the contraction algorithm O(n2 log n) times yields the correct size
of the minimum cut with high probability.

