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Abstract
 
 
IP address lookup at the router is a complex 
problem. This has been primarily due to the 
increasing table sizes, growth in traffic rate and 
high link capacities. In this work we have 
proposed an algorithm for fast routing lookup 
with reduced memory utilization and access time. 
This approach shows significant performance 
improvement in the average case and optimizes 
the overall time taken for packet routing. Since 
storage requirement, processing time and number 
of lookups performed are reduced, power 
consumption by the router is also reduced. Our 
simulation result indicates that the proposed 
technique works approximately 4.11 times better 
than the standard LC Trie approach in the 
average case. 
 
 
1. Introduction 
 
     Due to the technology advancement, the 
packet transmission rate is ever growing. With 
increasing number of hosts and sessions in the 
Internet, the processing of packets at the routers 
has become a major concern. While the current 
technology supports fast switching, packet 
forwarding is still a bottleneck. This is either due 
to a high processing cost or large memory 
requirement [9].  
     The routing tables implemented in most 
routers today generally follow the software-based 
approach, as they are more flexible and adaptive 
to any changes in the protocol. The hardware 
solutions are also not scalable and hence with the 
emergence of the IPv6, these approaches are 
nearly impractical. The software approaches 
expect to gain speed as the processing rate is 
doubled every 18 months (Moore’s law). 
     From early 90’s to late 90’s, the number of 
entries in the lookup table has changed from 
linear to super linear. In 2002, the backbone 
router contains approximately 100,000 prefixes 

and is constantly growing [9]. A lookup engine 
deployed in the year 2002 should be able to 
support approximately 400,000-512,000 prefixes 
in order to be useful for atleast another 3 years. 
Thus the lookup algorithms must be able to 
accommodate future growth.                                          
     Apart from the lookup entries the speed of the 
links are doubling every year. The links running 
on OC768c (approximately 40Gbps) require the 
router to process 125 million packets per second 
(Mpps) (assuming minimum sized 40 byte 
TCP/IP packets) [9]. For applications that do not 
require quality of service, a lookup or 
classification algorithm that performs well in the 
average case is desirable. This is so because the 
average lookup performance can be much higher 
than the worst-case performance. For such 
applications the algorithm needs to process 
packets at the rate of 14.1 Mpps for OC768clinks, 
assuming an average Internet packet size of 
approximately 354 bytes [9]. 
 
2. Research Objectives 
 
The main motivation behind our approach is as 
follows:  
1) Reducing the lookup time: Many of the trie-
based approaches like [1] [2] take 6-7 memory 
references for lookup, while hash technique 
combined with Tries in [3] takes 5 memory 
references. Our goal is to modify the trie-based 
approach to reduce the number of memory 
references for each lookup.  
2) Reduce routing table storage: Implementing 
the routing table using trie [4] could be an 
expensive process. In this work our aim is to 
reduce the storage requirements by eliminating 
unnecessary and redundant data especially when 
the number of nodes are large. 
3) Ability to handle large routing tables: Most 
of algorithms support routing table sizes for the 
current needs. However an algorithm needs to be 
scalable so that it supports the routing table 
storage requirements for atleast the next 3 years.  



 

3. Previous work on lookup algorithms 
 
We have classified the existing approaches into 
Trie and Non-Trie based approaches. We briefly 
analyze the different approaches with respect to 
lookup time and memory utilization.   

a modification of a regular trie. The difference is that it 
has no one-degree nodes. Each branch is compressed to 
a single node in a Patricia tree. Thus, the traversal 
algorithm may not necessarily inspect all bits of the 
address consecutively, skipping bits that formed part of 
the label of some previous trie branch. Patricia tree 
loses information while compressing chains; the 
bit-string represented by the other branches of the  
 Table 1. Binary Strings to be stored in a Trie
 

 
3.1. Non-Trie based approaches 
Linear search is simplest data-structure with the 
linked list of all prefixes in the forwarding table. 
Storage and time complexity is O (N). With the 
emergence of IPv6 this approach is almost impractical 
to continue. Binary search algorithms include the 
classical methods like the hashing and tree based 
approaches. These techniques cannot distinguish 
matches based on prefix length. However [3] takes care 
of this constraint and proposes a modified binary search 
technique that uses log2 (2N), where N is the number of 
routing table entries. These algorithms are also 
computation intensive and require a large storage 
especially as the lookup table grows. Caching is a 
better technique than other memory reference 
techniques, as it is faster [10] [6]. A fully associative 
memory, or content-addressable memory (CAM) [8] 
[9], can be used to perform an exact match search 
operation in hardware in a single clock cycle. CAM 
implementation is a costly mechanism and is not 
feasible. Thus the storage requirements for these 
become a limiting factor. Also CAM based approaches 
are for fixed length prefixes. A better solution is to use 
a ternary-CAM (TCAM), a more flexible type of CAM 
that enables comparisons of the input key with variable 
length elements. 
 
3.2. Trie based approaches 
Trie [4] is a general-purpose data structure for storing 
strings. Each string (prefix) in the routing table is 
represented by a leaf node in the trie. The longest 
prefix search operation on a given destination address 
starts from the root node of the trie [9]. Patricia trie is 

uncompressed chain is lost. This is overcome by a 
path compression technique that records by 
maintaining a skip value at each node that 
indicates how many bits have been skipped in the 
path [5]. The statistical property of this trie 
(Patricia trie) indicates that it gives an asymptotic 
reduction of the average depth for a large class 
distribution [11]. However when the trie is 
densely distributed this approach fails in terms of 
storage and processing for lookup. Level 
compressed trie (LC-trie) [1] is a modification to 
this scheme for densely populated tries. An LC-
trie is created by path compressing a binary trie 
and expanding every node rooted at a complete 
sub-trie of maximum depth to create a 2k-degree 
node [9]. This expansion is done recursively on 
each subtrie of the trie. It replaces the i highest 
complete levels of the binary trie with a single 
node of degree 2i. All the internal nodes 
represented in this trie contain no information but 
pointers to the first child. Hence a separate vector 
is needed to store all possible prefix in a prefix 
vector in case of a failure in search. Also since 
each node is traversed again by backtracking in 
case of failure this is an inefficient method both in 
terms of processing time and storage. Thus all the 
variants of the trie-based approach are not storage 
efficient and require a lot of processing.  
 
4. Modified LC-Trie 
 
In this section we describe a scalable time 
efficient level compression technique. The 
approach presented here is motivated to minimize 
the access time and memory utilization during 
routing table lookup, to transfer packets to the 
appropriate Ethernet port. A few approaches like 
[1] have been proposed to better storage and time 
complexity.  Our approach is based on the LC-trie 
approach for compressing the trie. We use the 
same compression technique as in LC-trie. 
However we try to avoid additional storage (LC-
Trie uses additional data structures like base, 
prefix and nexthop vector to store prefixes) and 
processing (like backtracking), which are the 
major flaws of LC-Trie approach. Figure 1 
represents the tree corresponding to Table 1 for 
the proposed approach. From the Figure 1 we see 

Nbr String Nbr String 

1 000 11 0110 

2 00101 12 0111 

3 010 13 10100 

4 011 14 10101 

5 100 15 10110 

6 101 16 10111 

7 110 17 11101000 

8 1110100 18 11101001 

9 0000 19 101000 

10 0001 20 101010 



 

 

that unlike the LC-trie approach our approach 
stores all the prefixes either in the internal nodes 
or leaf nodes. 
     The algorithm first converts the routing table 
entries into a binary trie. Then path compression 
is done on this trie to reduce its depth. This path-
compressed trie is now level compressed by 
storing the sub strings at the internal nodes and 
the strings at the leaves. When the routing table is 
built we use a FILL FACTOR (this represents the 
maximum number of branches that each node can 
have during the build) to help make the future 
updates easier. 
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4.1 Storage data structure 
 
Each node of our trie is represented as in Figure 
2. Following is a brief description of the 
significance of each of the fields in the data 
structure. 
  
 
 
 
 
 
 
Branching factor [0:3]: This indicates the number 
of descendents of a node. This is a 4-bit value and 
a maximum of 16 branches to a single node can 
be represented. 
Skip value [4:10]: This indicates the number of 
bits that can be skipped in an operation. This is a 
7-bit value and a maximum of 128-bit skip can be 
represented. 
Port [11:15]: This represents the output port for 
the current node in case of a match. This is a 5-bit 
value and this field can represent a maximum of 
32 output ports. 
Pointer [16:31]:  This is a pointer to the leftmost 
child in case of an internal node and NULL in 

case of a leaf node. This is a 16 bit value and can 
represent a maximum of 65536 prefixes. The 
current implementation assumes the number of 
routing table entries to be less than 65536. 
However a scalable solution to consider more 
than 5,000,000 prefixes is discussed later. 
String [32:63]: This represents the actual value of 
the prefix the node represents. The current 
implementation assumes a 32-bit value (IPv4) 
though it can be extended to 128-bit value (IPv6). 
 
4.2 Algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The search algorithm forms the bottleneck of the 
entire routing process and hence this needs to be 
designed very efficiently. Algorithm discussed 
above is used to search a string s in the routing 
table. EXTRACT (p,b,s) is used to search s in the 
routing table, where b is the number of bits 
starting at position p. Let the array representing 
the tree be T. The root is stored in T[0]. 
Each entry in Table 2 represents a node in the 
proposed approach, for routing table described in 
Table 1, with the corresponding branch, skip and 
pointer values. In addition to these three fields 
each node also has a 32-bit (IPv4) prefix 
represented by the node, which is not indicated in 
the table. 
 
4.3 Working of the algorithm 
The working of this algorithm is illustrated with 
an example. Consider the input string 101001. We 
start from root node number 0. We see that the 
branching factor is 3 and skip value is 0 and 
hence extract 1st 3 bits from the search string. 
These 3 bits represent a value of 5, which is 
added to the pointer, leading to position 6 in the 

Figure 1. Scalable Time Efficient Level Compression 

1     2  3         4      5 

4bits 7bits   5bits          16 bits                              32 bits       
    

64 bits 
Figure 2. Proposed Data structure for node in routing  
                 table  (IPv4) 

node = T[0]; s = testdata[k]; node = table->trie[0]; 
pos = GETSKIP(node); branch = GETBRANCH(node);  
adr = GETADR(node); 
prefix=0; result=-1; /* stored in Register */ 
while(branch != 0) /* Not leaf node */ 
 {        node = table->trie[adr + EXTRACT(pos,branch,s)]; 
          if(pos) 
                    prefix<<pos;  /* skip ‘pos’ bits of the prefix */ 
           if (branch > n) 
                    prefix= prefix << (m+1)| branch;   

/* n=2m-1, m is the number of bits  
representing the branch */ 

            if(GETSTRING(node)^prefix)  
 break; /* Previous node contains largest prefix and 
interface stored in result */ 

            else 
            {     pos = pos + branch + GETSKIP(node); 
                   branch = GETBRANCH(node); 
                   adr = GETADR(node); 
                   result = GETPORT(node);}  
} 



 

array. At this node the branching value is 2 and 
the skip value is 0 and hence we extract the next 2 
bits. They have the value 0. However we check if 
the string (101) matches the prefix (101). Since it 
matches the search continues further. We now add 
the value of 0 to the pointer and arrive at position 
13.  At this node the branching factor is 1 and 
skip value is 0. They have a value of 1. We again 
compute to see if the string (10100) is same the 
prefix (10100). Since it matches we continue and 
add the value of 1 to 19 to obtain the pointer 20. 
Now see that this node represents a leaf node 
since the branching factor is 0. We now check to 
see if the string (101001) matches the prefix 
(101011). Since they don’t match we use the 
previous value of the output port from the register 
to route the packet. The Figure 3 represents the 
path taken during the search. 
 
Table 2. Array representation our approach 

In the LC-trie approach after we traverse through 
the trie we perform a check for the string match in 
the base vector, which uses hashing technique, 
consuming at least one memory fetch. If there is a 
mismatch a check is done again on the prefix 
table and this requires hashing to check for a 
prefix match, which again requires another 
memory fetch. Thus compared to the LC-trie we 
save atleast two memory cycles for every routing 
lookup performed. 
 
4.4. IPv6 Compatibility 
The algorithm can easily be extended to IPv6 and 
to allow a maximum of 237 entries. This ensures 
that the proposed data structure can support 
routing entries beyond 2005. This data structure 
also allows handling of a maximum of 1024 
interfaces. The data structure for each node is 
described in the Figure 4. 
 
 
 
 
 
 
 
 
 
5. Simulations & Experimental Setup 
 
To test and verify our approach with the LC-Trie 
approach we have modified the test bed used by 
the authors of [1]. The features of this modified 
test bed are as follows: 
1. It reads routing data from the routing table file, 
which is in a predefined format as discussed in 
the paper [1]. The routing file is an exhaustive list 

1     2       3            4                                    5   

  10bits 7bits 10bits     37 bits                      128 bits 

192 bits 

Figure 4. Proposed Data structure for node in 
                routing table (IPv6) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
branch skip pointer  branch skip pointer 

0 3 0 1 11 0 0 0 

1 1 0 9 12 0 0 0 

2 0 2 0 13 1 0 19 

3 0 0 0 14 1 0 20 

4 1 0 11 15 0 0 0 

5 0 0 0 16 0 0 0 

6 2 0 13 17 0 0 0 

7 0 0 12 18 0 0 0 

8 1 4 17 19 0 0 0 

9 0 0 0 20 0 0 0 

10 0 0 0     
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Thus we see that this approach doesn’t traverse 
the entire trie in case the string is not present. 
Also there is no separate storage for the prefixes 
as in case of LC-Trie. This approach checks for 
the match in the string at every step. However this 
is not computation intensive since the string to 
compare is already present in the cache and a xor 
on the bits could give us the result of comparison. 

of routing entries (65536 entries for 16-bit pointer 
value). 
2. The algorithm can be run over a number of 
times by specifying n as a command line 
argument. As the number of iterations increase, it 
gives a good estimate of the parameters under 
comparison. 
3. Quick sort algorithm is used to sort the routing 
table entries. 
4. We have also used two different approaches to 
compare the performance. One uses a function 
call to the search algorithm and the other is an 
inline function. However we have used the inline 
function results for our comparison. 
     In our implementation we have used routing 
tables similar to that provided by the Internet 
Performance Measurement and Analysis project 

Figure 3. Trie traversal for the string 101001 



 

 

[7]. In order to compare the modified technique 
with LC-Trie approach the traffic was simulated 
and we used a random permutation of all possible 
entries in the routing table. The time 
measurements have been performed on sequences 
of lookup operations, where each lookup includes 
fetching the address from the array, performing 
the routing table lookup, accessing the nexthop 
table and assigning the result to a volatile 
variable. Some of the entries in the routing tables 
contain multiple nexthops. In such cases we select 
the first one listed as the nexthop address for the 
routing table, since we only consider one nexthop 
address per entry in the routing table. However 
for entries that didn’t contain a nexthop address a 
special address that is different from the ones 
found in routing table was used. 
The following equations were used in the 
computation of average and standard deviation of 
the samples (ti). 
Average Time (avg) = ti/n  
Std Deviation (std) = (ti

2 – n*avg*avg)1/2 /(n-1) 
Parameters analyzed 
We have analyzed the effectiveness of our 
approach and compare our approach with the LC-
Trie approach with respect to timing, storage and 
power consumption. The parameters considered 
in each of the cases are described below. 
 
5.1. Timing 
5.1.1 Building. Time taken to Build Routing table 
(Bt): This is the time taken for the algorithm to 
retrieve all the data from the Routing table file, 
sort them and build them with appropriate entries 
for future referencing. 
Time taken to build nexthop table (Nt): This is the 
time taken to compute all the next hop addresses 
from the routing table data. 
5.1.2 Sorting. Time taken to Sort the entries (St): 
Based on a seed value the routing table entries are 
stored in a temporary data structure in a random 
fashion, which is then sorted for building the 
routing table. 
5.1.3 Searching.  
Function Search: Time taken to search the string 
(using call to a function) based on n iterations. 
Fmin: Minimum time taken to search the string 
using function call. 
Favg: Average time taken to search the string using 
function call. 
Fstd: Standard deviation of the times for searching 
a string using function call. 
Flps: Average number of lookups/second using 
function call. 
Inline Search: Time taken to search the string 
(using an inline function) based on n iterations. 

Imin: Minimum time taken to search the string 
using Inline function call. 
Iavg: Average time taken to search the string using 
Inline function call. 
Istd : Standard deviation of the times for searching 
a string using Inline function call. 
Ilps: Average number of lookups/second using 
inline function call. 
5.2 Memory Utilization 
Bm: Memory utilization in bytes for the base 
vector. 
Pm: Memory utilization in bytes for prefix vector. 
Nm: Memory utilization in bytes for nexthop 
vector. 
Trie (Tm): Memory utilization for Trie. 
 
6. Results 
 
Following are the results for the comparison of 
LC-Trie approach and proposed approach with a 
fill factor of 0.5 (this is a good value based on the 
experimental results considering future updates) 
and a fixed branch at root (16). We have run this 
algorithm 100 times to get a good estimate of the 
values. This was run on an Intel Pentium II 
processor, 400Mhz and 256 MB RAM. The 
programs were written in C and complied with 
gcc compiler using optimization level –04. 
From Table 3 we observe that time taken to build 
the trie is reduced by 0.14 seconds. This is mainly 
due to the fact that no additional computation is 
required to build the base and prefix vector. Also 
there is no overhead of building the nexthop table. 
The simulation results show that the proposed 
approach works 3.28 times better than LC-Trie 
approach when the prefix search is implemented 
as a function search and 4.11 times better when 
implemented as an inline function. Thus, for 
above mentioned system configuration we were 
able to achieve a lookup of approximately 6.6 
Mpps in the average case. From Table 4 we 
observe that the proposed approach avoids the 
storage for base, prefix and nexthop vector and 
hence occupies 2.38 times lesser storage. Though 
the reduction in storage for the nexthop vector is 
not significantly high, the storage for the base and 
prefix vector is greatly reduced. 
The processing power savings for the two 
approaches were compared using an 
implementation based on reconfigurable 
processor architecture from Tensilica (16/24 bit 
Xtensa ISA, 200Mhz, 0.18 um technology, 0.7 
mm2 core area, 0.8mW/MHz core power 
dissipation). The Routing table used in our power 
analysis is described in Table 1. The result 



 

 

obtained is an estimate of power for one iteration. 
The results show that proposed approach and the 
LC-Trie approach consumes 4.615mW and 
4.755mW for 20 lookups respectively (Table 5). 
This is a reduction of 0.14mW for 20 lookups. 
This is directly related to the fact that the time for 
lookup is less. The routing entries in our 
simulations are assumed to be stored in the 
DRAM and the storage power corresponding to 
that was computed for both the approaches. Since 
the storage requirements are reduced by factor of 
2.38, it is expected that power consumptions will 
be less by that amount.  
 
 

Parameters LC-Trie  Proposed  Savings(%) 

Bt 0.57 sec 0.43 sec  24 

Nt 0.05 sec      0 sec 100 

St 0.37 sec 0.36 sec  2.7 

Fmin 5.01 sec 1.53 sec 69.4 

Favg 5.02 sec 1.53625 sec 69.4 

Fstd 0.01 0.0074402    - 

Flps 1308104 4283399   - 

Imin 4.12 sec 1.0 sec 75.7 

Iavg 4.12 sec  1.005 sec 75.7 

Istd 0.01 0.0053452   - 

Ilps 1590680 6553600   - 

 
Table 4. Memory Utilization 
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Trie technique. This algorithm performs about 
four times better in terms of access time in the 
average case as compared to the LC-Trie 
approach.  
The proposed algorithm does approximately 6.6 
million lookups per second on a 32 bit, 200Mhtz 
processor without considering caching of packets. 
Since the packet have certain amount of locality 
in them, caching could lead to better performance. 
The search algorithm forms the bottleneck in the 
lookup process. Hence computation kernels can 
be obtained and optimized by implementing at the 
hardware level. One such method is by creating 
tie instructions (in Xtensa) for the set of 
instructions that are executed more frequently. 
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