

Modified LC-Trie Based Efficient Routing Lookup

Ravikumar V.C Rabi Mahapatra J.C. Liu
Department of Computer Science, Texas A & M University

{vcr,rabi,jcliu}@cs.tamu.edu

Abstract

IP address lookup at the router is a complex
problem. This has been primarily due to the
increasing table sizes, growth in traffic rate and
high link capacities. In this work we have
proposed an algorithm for fast routing lookup
with reduced memory utilization and access time.
This approach shows significant performance
improvement in the average case and optimizes
the overall time taken for packet routing. Since
storage requirement, processing time and number
of lookups performed are reduced, power
consumption by the router is also reduced. Our
simulation result indicates that the proposed
technique works approximately 4.11 times better
than the standard LC Trie approach in the
average case.

1. Introduction

 Due to the technology advancement, the
packet transmission rate is ever growing. With
increasing number of hosts and sessions in the
Internet, the processing of packets at the routers
has become a major concern. While the current
technology supports fast switching, packet
forwarding is still a bottleneck. This is either due
to a high processing cost or large memory
requirement [9].
 The routing tables implemented in most
routers today generally follow the software-based
approach, as they are more flexible and adaptive
to any changes in the protocol. The hardware
solutions are also not scalable and hence with the
emergence of the IPv6, these approaches are
nearly impractical. The software approaches
expect to gain speed as the processing rate is
doubled every 18 months (Moore’s law).
 From early 90’s to late 90’s, the number of
entries in the lookup table has changed from
linear to super linear. In 2002, the backbone
router contains approximately 100,000 prefixes

and is constantly growing [9]. A lookup engine
deployed in the year 2002 should be able to
support approximately 400,000-512,000 prefixes
in order to be useful for atleast another 3 years.
Thus the lookup algorithms must be able to
accommodate future growth.
 Apart from the lookup entries the speed of the
links are doubling every year. The links running
on OC768c (approximately 40Gbps) require the
router to process 125 million packets per second
(Mpps) (assuming minimum sized 40 byte
TCP/IP packets) [9]. For applications that do not
require quality of service, a lookup or
classification algorithm that performs well in the
average case is desirable. This is so because the
average lookup performance can be much higher
than the worst-case performance. For such
applications the algorithm needs to process
packets at the rate of 14.1 Mpps for OC768clinks,
assuming an average Internet packet size of
approximately 354 bytes [9].

2. Research Objectives

The main motivation behind our approach is as
follows:
1) Reducing the lookup time: Many of the trie-
based approaches like [1] [2] take 6-7 memory
references for lookup, while hash technique
combined with Tries in [3] takes 5 memory
references. Our goal is to modify the trie-based
approach to reduce the number of memory
references for each lookup.
2) Reduce routing table storage: Implementing
the routing table using trie [4] could be an
expensive process. In this work our aim is to
reduce the storage requirements by eliminating
unnecessary and redundant data especially when
the number of nodes are large.
3) Ability to handle large routing tables: Most
of algorithms support routing table sizes for the
current needs. However an algorithm needs to be
scalable so that it supports the routing table
storage requirements for atleast the next 3 years.

3. Previous work on lookup algorithms

We have classified the existing approaches into
Trie and Non-Trie based approaches. We briefly
analyze the different approaches with respect to
lookup time and memory utilization.

a modification of a regular trie. The difference is that it
has no one-degree nodes. Each branch is compressed to
a single node in a Patricia tree. Thus, the traversal
algorithm may not necessarily inspect all bits of the
address consecutively, skipping bits that formed part of
the label of some previous trie branch. Patricia tree
loses information while compressing chains; the
bit-string represented by the other branches of the
 Table 1. Binary Strings to be stored in a Trie

3.1. Non-Trie based approaches
Linear search is simplest data-structure with the
linked list of all prefixes in the forwarding table.
Storage and time complexity is O (N). With the
emergence of IPv6 this approach is almost impractical
to continue. Binary search algorithms include the
classical methods like the hashing and tree based
approaches. These techniques cannot distinguish
matches based on prefix length. However [3] takes care
of this constraint and proposes a modified binary search
technique that uses log2 (2N), where N is the number of
routing table entries. These algorithms are also
computation intensive and require a large storage
especially as the lookup table grows. Caching is a
better technique than other memory reference
techniques, as it is faster [10] [6]. A fully associative
memory, or content-addressable memory (CAM) [8]
[9], can be used to perform an exact match search
operation in hardware in a single clock cycle. CAM
implementation is a costly mechanism and is not
feasible. Thus the storage requirements for these
become a limiting factor. Also CAM based approaches
are for fixed length prefixes. A better solution is to use
a ternary-CAM (TCAM), a more flexible type of CAM
that enables comparisons of the input key with variable
length elements.

3.2. Trie based approaches
Trie [4] is a general-purpose data structure for storing
strings. Each string (prefix) in the routing table is
represented by a leaf node in the trie. The longest
prefix search operation on a given destination address
starts from the root node of the trie [9]. Patricia trie is

uncompressed chain is lost. This is overcome by a
path compression technique that records by
maintaining a skip value at each node that
indicates how many bits have been skipped in the
path [5]. The statistical property of this trie
(Patricia trie) indicates that it gives an asymptotic
reduction of the average depth for a large class
distribution [11]. However when the trie is
densely distributed this approach fails in terms of
storage and processing for lookup. Level
compressed trie (LC-trie) [1] is a modification to
this scheme for densely populated tries. An LC-
trie is created by path compressing a binary trie
and expanding every node rooted at a complete
sub-trie of maximum depth to create a 2k-degree
node [9]. This expansion is done recursively on
each subtrie of the trie. It replaces the i highest
complete levels of the binary trie with a single
node of degree 2i. All the internal nodes
represented in this trie contain no information but
pointers to the first child. Hence a separate vector
is needed to store all possible prefix in a prefix
vector in case of a failure in search. Also since
each node is traversed again by backtracking in
case of failure this is an inefficient method both in
terms of processing time and storage. Thus all the
variants of the trie-based approach are not storage
efficient and require a lot of processing.

4. Modified LC-Trie

In this section we describe a scalable time
efficient level compression technique. The
approach presented here is motivated to minimize
the access time and memory utilization during
routing table lookup, to transfer packets to the
appropriate Ethernet port. A few approaches like
[1] have been proposed to better storage and time
complexity. Our approach is based on the LC-trie
approach for compressing the trie. We use the
same compression technique as in LC-trie.
However we try to avoid additional storage (LC-
Trie uses additional data structures like base,
prefix and nexthop vector to store prefixes) and
processing (like backtracking), which are the
major flaws of LC-Trie approach. Figure 1
represents the tree corresponding to Table 1 for
the proposed approach. From the Figure 1 we see

Nbr String Nbr String

1 000 11 0110

2 00101 12 0111

3 010 13 10100

4 011 14 10101

5 100 15 10110

6 101 16 10111

7 110 17 11101000

8 1110100 18 11101001

9 0000 19 101000

10 0001 20 101010

that unlike the LC-trie approach our approach
stores all the prefixes either in the internal nodes
or leaf nodes.
 The algorithm first converts the routing table
entries into a binary trie. Then path compression
is done on this trie to reduce its depth. This path-
compressed trie is now level compressed by
storing the sub strings at the internal nodes and
the strings at the leaves. When the routing table is
built we use a FILL FACTOR (this represents the
maximum number of branches that each node can
have during the build) to help make the future
updates easier.

[11101001]

1

2 3
4 5 6 7

9 10

11 12 13
14

1

[00101] [010]

[0110] [0111]

[100]

[101000]

[10101][10110][10111]

[110]
[11101000]

Skip 2

[0001]

Skip 4

[0000]

19

15 16

17 18

20

[000]

[011] [101]

[10100]

[1110100]

8

[101010]

4.1 Storage data structure

Each node of our trie is represented as in Figure
2. Following is a brief description of the
significance of each of the fields in the data
structure.

Branching factor [0:3]: This indicates the number
of descendents of a node. This is a 4-bit value and
a maximum of 16 branches to a single node can
be represented.
Skip value [4:10]: This indicates the number of
bits that can be skipped in an operation. This is a
7-bit value and a maximum of 128-bit skip can be
represented.
Port [11:15]: This represents the output port for
the current node in case of a match. This is a 5-bit
value and this field can represent a maximum of
32 output ports.
Pointer [16:31]: This is a pointer to the leftmost
child in case of an internal node and NULL in

case of a leaf node. This is a 16 bit value and can
represent a maximum of 65536 prefixes. The
current implementation assumes the number of
routing table entries to be less than 65536.
However a scalable solution to consider more
than 5,000,000 prefixes is discussed later.
String [32:63]: This represents the actual value of
the prefix the node represents. The current
implementation assumes a 32-bit value (IPv4)
though it can be extended to 128-bit value (IPv6).

4.2 Algorithm

The search algorithm forms the bottleneck of the
entire routing process and hence this needs to be
designed very efficiently. Algorithm discussed
above is used to search a string s in the routing
table. EXTRACT (p,b,s) is used to search s in the
routing table, where b is the number of bits
starting at position p. Let the array representing
the tree be T. The root is stored in T[0].
Each entry in Table 2 represents a node in the
proposed approach, for routing table described in
Table 1, with the corresponding branch, skip and
pointer values. In addition to these three fields
each node also has a 32-bit (IPv4) prefix
represented by the node, which is not indicated in
the table.

4.3 Working of the algorithm
The working of this algorithm is illustrated with
an example. Consider the input string 101001. We
start from root node number 0. We see that the
branching factor is 3 and skip value is 0 and
hence extract 1st 3 bits from the search string.
These 3 bits represent a value of 5, which is
added to the pointer, leading to position 6 in the

Figure 1. Scalable Time Efficient Level Compression

1 2 3 4 5

4bits 7bits 5bits 16 bits 32 bits

64 bits
Figure 2. Proposed Data structure for node in routing
 table (IPv4)

node = T[0]; s = testdata[k]; node = table->trie[0];
pos = GETSKIP(node); branch = GETBRANCH(node);
adr = GETADR(node);
prefix=0; result=-1; /* stored in Register */
while(branch != 0) /* Not leaf node */
 { node = table->trie[adr + EXTRACT(pos,branch,s)];
 if(pos)
 prefix<<pos; /* skip ‘pos’ bits of the prefix */
 if (branch > n)
 prefix= prefix << (m+1)| branch;

/* n=2m-1, m is the number of bits
representing the branch */

 if(GETSTRING(node)^prefix)
 break; /* Previous node contains largest prefix and
interface stored in result */

 else
 { pos = pos + branch + GETSKIP(node);
 branch = GETBRANCH(node);
 adr = GETADR(node);
 result = GETPORT(node);}
}

array. At this node the branching value is 2 and
the skip value is 0 and hence we extract the next 2
bits. They have the value 0. However we check if
the string (101) matches the prefix (101). Since it
matches the search continues further. We now add
the value of 0 to the pointer and arrive at position
13. At this node the branching factor is 1 and
skip value is 0. They have a value of 1. We again
compute to see if the string (10100) is same the
prefix (10100). Since it matches we continue and
add the value of 1 to 19 to obtain the pointer 20.
Now see that this node represents a leaf node
since the branching factor is 0. We now check to
see if the string (101001) matches the prefix
(101011). Since they don’t match we use the
previous value of the output port from the register
to route the packet. The Figure 3 represents the
path taken during the search.

Table 2. Array representation our approach

In the LC-trie approach after we traverse through
the trie we perform a check for the string match in
the base vector, which uses hashing technique,
consuming at least one memory fetch. If there is a
mismatch a check is done again on the prefix
table and this requires hashing to check for a
prefix match, which again requires another
memory fetch. Thus compared to the LC-trie we
save atleast two memory cycles for every routing
lookup performed.

4.4. IPv6 Compatibility
The algorithm can easily be extended to IPv6 and
to allow a maximum of 237 entries. This ensures
that the proposed data structure can support
routing entries beyond 2005. This data structure
also allows handling of a maximum of 1024
interfaces. The data structure for each node is
described in the Figure 4.

5. Simulations & Experimental Setup

To test and verify our approach with the LC-Trie
approach we have modified the test bed used by
the authors of [1]. The features of this modified
test bed are as follows:
1. It reads routing data from the routing table file,
which is in a predefined format as discussed in
the paper [1]. The routing file is an exhaustive list

1 2 3 4 5

 10bits 7bits 10bits 37 bits 128 bits

192 bits

Figure 4. Proposed Data structure for node in
 routing table (IPv6)

branch skip pointer branch skip pointer

0 3 0 1 11 0 0 0

1 1 0 9 12 0 0 0

2 0 2 0 13 1 0 19

3 0 0 0 14 1 0 20

4 1 0 11 15 0 0 0

5 0 0 0 16 0 0 0

6 2 0 13 17 0 0 0

7 0 0 12 18 0 0 0

8 1 4 17 19 0 0 0

9 0 0 0 20 0 0 0

10 0 0 0

[11101001]

1

2 3
4 5 6 7

9 10

11 12 13
14

1

[00101] [010]

[0110] [0111]

[100]

[101000]

[10101][10110][10111]

[110]
[11101000]

Skip 2

[0001]

Skip 4

[0000]

19

15 16

17 18

20

[000]

[011] [101]

[10100]

[1110100]

8

[101010]

Thus we see that this approach doesn’t traverse
the entire trie in case the string is not present.
Also there is no separate storage for the prefixes
as in case of LC-Trie. This approach checks for
the match in the string at every step. However this
is not computation intensive since the string to
compare is already present in the cache and a xor
on the bits could give us the result of comparison.

of routing entries (65536 entries for 16-bit pointer
value).
2. The algorithm can be run over a number of
times by specifying n as a command line
argument. As the number of iterations increase, it
gives a good estimate of the parameters under
comparison.
3. Quick sort algorithm is used to sort the routing
table entries.
4. We have also used two different approaches to
compare the performance. One uses a function
call to the search algorithm and the other is an
inline function. However we have used the inline
function results for our comparison.
 In our implementation we have used routing
tables similar to that provided by the Internet
Performance Measurement and Analysis project

Figure 3. Trie traversal for the string 101001

[7]. In order to compare the modified technique
with LC-Trie approach the traffic was simulated
and we used a random permutation of all possible
entries in the routing table. The time
measurements have been performed on sequences
of lookup operations, where each lookup includes
fetching the address from the array, performing
the routing table lookup, accessing the nexthop
table and assigning the result to a volatile
variable. Some of the entries in the routing tables
contain multiple nexthops. In such cases we select
the first one listed as the nexthop address for the
routing table, since we only consider one nexthop
address per entry in the routing table. However
for entries that didn’t contain a nexthop address a
special address that is different from the ones
found in routing table was used.
The following equations were used in the
computation of average and standard deviation of
the samples (ti).
Average Time (avg) = ti/n
Std Deviation (std) = (ti

2 – n*avg*avg)1/2 /(n-1)
Parameters analyzed
We have analyzed the effectiveness of our
approach and compare our approach with the LC-
Trie approach with respect to timing, storage and
power consumption. The parameters considered
in each of the cases are described below.

5.1. Timing
5.1.1 Building. Time taken to Build Routing table
(Bt): This is the time taken for the algorithm to
retrieve all the data from the Routing table file,
sort them and build them with appropriate entries
for future referencing.
Time taken to build nexthop table (Nt): This is the
time taken to compute all the next hop addresses
from the routing table data.
5.1.2 Sorting. Time taken to Sort the entries (St):
Based on a seed value the routing table entries are
stored in a temporary data structure in a random
fashion, which is then sorted for building the
routing table.
5.1.3 Searching.
Function Search: Time taken to search the string
(using call to a function) based on n iterations.
Fmin: Minimum time taken to search the string
using function call.
Favg: Average time taken to search the string using
function call.
Fstd: Standard deviation of the times for searching
a string using function call.
Flps: Average number of lookups/second using
function call.
Inline Search: Time taken to search the string
(using an inline function) based on n iterations.

Imin: Minimum time taken to search the string
using Inline function call.
Iavg: Average time taken to search the string using
Inline function call.
Istd : Standard deviation of the times for searching
a string using Inline function call.
Ilps: Average number of lookups/second using
inline function call.
5.2 Memory Utilization
Bm: Memory utilization in bytes for the base
vector.
Pm: Memory utilization in bytes for prefix vector.
Nm: Memory utilization in bytes for nexthop
vector.
Trie (Tm): Memory utilization for Trie.

6. Results

Following are the results for the comparison of
LC-Trie approach and proposed approach with a
fill factor of 0.5 (this is a good value based on the
experimental results considering future updates)
and a fixed branch at root (16). We have run this
algorithm 100 times to get a good estimate of the
values. This was run on an Intel Pentium II
processor, 400Mhz and 256 MB RAM. The
programs were written in C and complied with
gcc compiler using optimization level –04.
From Table 3 we observe that time taken to build
the trie is reduced by 0.14 seconds. This is mainly
due to the fact that no additional computation is
required to build the base and prefix vector. Also
there is no overhead of building the nexthop table.
The simulation results show that the proposed
approach works 3.28 times better than LC-Trie
approach when the prefix search is implemented
as a function search and 4.11 times better when
implemented as an inline function. Thus, for
above mentioned system configuration we were
able to achieve a lookup of approximately 6.6
Mpps in the average case. From Table 4 we
observe that the proposed approach avoids the
storage for base, prefix and nexthop vector and
hence occupies 2.38 times lesser storage. Though
the reduction in storage for the nexthop vector is
not significantly high, the storage for the base and
prefix vector is greatly reduced.
The processing power savings for the two
approaches were compared using an
implementation based on reconfigurable
processor architecture from Tensilica (16/24 bit
Xtensa ISA, 200Mhz, 0.18 um technology, 0.7
mm2 core area, 0.8mW/MHz core power
dissipation). The Routing table used in our power
analysis is described in Table 1. The result

obtained is an estimate of power for one iteration.
The results show that proposed approach and the
LC-Trie approach consumes 4.615mW and
4.755mW for 20 lookups respectively (Table 5).
This is a reduction of 0.14mW for 20 lookups.
This is directly related to the fact that the time for
lookup is less. The routing entries in our
simulations are assumed to be stored in the
DRAM and the storage power corresponding to
that was computed for both the approaches. Since
the storage requirements are reduced by factor of
2.38, it is expected that power consumptions will
be less by that amount.

Parameters LC-Trie Proposed Savings(%)

Bt 0.57 sec 0.43 sec 24

Nt 0.05 sec 0 sec 100

St 0.37 sec 0.36 sec 2.7

Fmin 5.01 sec 1.53 sec 69.4

Favg 5.02 sec 1.53625 sec 69.4

Fstd 0.01 0.0074402 -

Flps 1308104 4283399 -

Imin 4.12 sec 1.0 sec 75.7

Iavg 4.12 sec 1.005 sec 75.7

Istd 0.01 0.0053452 -

Ilps 1590680 6553600 -

Table 4. Memory Utilization

7
W
a

Trie technique. This algorithm performs about
four times better in terms of access time in the
average case as compared to the LC-Trie
approach.
The proposed algorithm does approximately 6.6
million lookups per second on a 32 bit, 200Mhtz
processor without considering caching of packets.
Since the packet have certain amount of locality
in them, caching could lead to better performance.
The search algorithm forms the bottleneck in the
lookup process. Hence computation kernels can
be obtained and optimized by implementing at the
hardware level. One such method is by creating
tie instructions (in Xtensa) for the set of
instructions that are executed more frequently.

8. References
[1] S. Nilsson and G. Karlsson, Fast Address Look-Up
for Internet Routers, Proceedings of IEEE Broadband
Communications 98, (April 1998), 9-18
[2] Venkatachary Srinivasan and George Varghese,
Faster {IP} Lookups Using Controlled Prefix
Expansion, Measurement and Modeling of Computer
Systems, (1998), 1-10.
[3] Marcel Waldvogel, George Varghese and Jon
Turner and Bernhard Plattner, Scalable High Speed
{IP} Routing Lookups Proceedings of SIGCOMM '97,
(1997), 25-36.
[4] Edward Fredkin. Trie memory. Communications of
the ACM, (1960), 490-500.
[5] W Szpankowski, Patricia Tries again revisited,
Journal Of the ACM ‘90, (Oct 1990 Vol.37, No. 4),
691-711.
[6] Tzi-Cker Chiueh and Prashant Pradhan, "Cache
Memory Design for Network Processors", HPCA,
(2000), 409-418.
http://ipdps.eece.unm.edu/2000/raw/18000884.pdf/
 [7] “Intenet Performance Measurement Analysis
Project”, University of Michigan and Merit Network,
[Online]: http://www.merit.
 [8] Tzi-Cker Chiueh and Prashant Pradhan, High-
Performance IP Routing Table Lookup Using CPU
Caching, INFOCOM ‘99, (1999), 1421-1428.
[9] Pankaj Gupta “Algorithms for routing lookups and
packet classification”, A dissertation submitted to the
department of computer science and the committee on
graduate studies of Stanford university, Dec

A

L

P

Table 3. Timing
Parameters LC-Trie Proposed

Bm 32769*16 0

Pm 32767*14 0

Nm 4*16 0

Tm 65537*4 65537*8
. Conclusion & Future work
e have proposed a scalable and efficient

lgorithm for fast lookup based on modified LC-

2000,[Online]:
http://klamath.stanford.edu/~pankaj/thesis/thesis_2side
d.pdf
[10] Tzi-cker Chiueh and Prashant Pradhan, Suez: A
Cluster-Based Scalable Real-Time Packet Router,
International Conference on Distributed Computing
Systems, (2000), 136-143.
[11] P.Newman, G.Minshall, T.Lyon, and L.Huston,
IP switching and gigabit routers. IEEE
Communications Magazine, 35(1): (January 1997), 64-
69.

pproach No cycles Proc. Config Power/20lookup

C Trie 5944854 0.8mW/Mhz 4.755 mW

roposed 5769630 0.8mW/Mhz 4.615 mW

Table 5. Power consumed

	Table 2. Array representation our approach
	Parameters analyzed

