
A Dynamic Slack Management Technique for
Real-Time Distributed Embedded Systems

Subrata Acharya, Member, IEEE, and Rabi N. Mahapatra, Senior Member, IEEE

Abstract—This work presents a novel slack management technique, the Service-Rate-Proportionate (SRP) Slack Distribution, for

real-time distributed embedded systems to reduce energy consumption. The proposed SRP-based Slack Distribution Technique has

been considered with EDF and Rate-Based scheduling schemes that are most commonly used with embedded systems. A fault-

tolerant mechanism has also been incorporated into the proposed technique in order to utilize the available dynamic slack to maintain

checkpoints and provide for rollbacks on faults. Results show that, in comparison to contemporary techniques, the proposed SRP

Slack Distribution Technique achieves about 29 percent more performance/overhead improvement benefits when validated with

random and real-world benchmarks.

Index Terms—Real time, slack, periodic service rate, energy efficient, fault tolerance.

Ç

1 INTRODUCTION

BY the turn of the century, embedded computing systems
had proliferated in almost all areas of technology and

applications. There has been phenomenal demand on small
factor devices during the past decade. Their application
spans stand-alone battery-operated devices (such as cellular
phones, digital cameras, MP3 players, Personal Digital
Assistances (PDAs), medical monitoring devices) to real-
time distributed systems used in sensor networks, remote
robotic clusters, avionics, and defense systems. Some of the
well-known issues in the implementation of real-time
distributed embedded systems are due to reduced power
consumption and reliable data processing. These issues turn
out to be significant challenges when the processing
elements are heterogeneous and the distributed system
handles time-varying workloads. The heterogeneity of
processing elements enables a tighter bound on the
flexibility of reschedules that are necessary for exploiting
runtime variations than homogeneous processing elements.
Although the consideration of time-varying workloads
creates a realistic dynamic task input into the distributed
system, it creates greater challenge for the system designers
in terms of exploiting runtime slack, making reschedule
decisions, and providing synchronization for reduced
energy consumption. Furthermore, as reliability and de-
pendability become important in such distributed em-
bedded systems, there is also an important consideration
to provide fault tolerance in the system. The incorporation
of fault tolerance leads to an overhead on the use of slack

for maintaining checkpoints and rollback in such distrib-
uted embedded systems.

Thus, the primary goal of today’s distributed embedded
system designers is to incorporate the above characteristics
in the system model and provide energy-efficient solutions.
In real-time system designs, Slack Management is increas-
ingly applied to reduce power consumption and optimize
the system with respect to its performance and time
overheads. This Slack Management Technique exploits the
idle time and slack time of the system schedule by frequency/
voltage scaling of the processing elements in order to
reduce energy consumption. The main challenge is to obtain
and distribute the available slack in order to achieve the
highest possible energy savings with minimum overhead.
There has been a lot of attention toward the design of such
an energy-efficient slack management technique, but most
of these do not address time-varying inputs. Only a few that
attempt to handle dynamic task inputs assume a homo-
geneous distributed embedded system. Also, fault tolerance
has not been combined with slack management in such
heterogeneous distributed embedded systems. Thus, the
aim of the proposed research is to consider the design of
such fault-tolerant heterogeneous distributed real-time
embedded systems, which take dynamic task set inputs
into account.

We propose a low-power dynamic task set input slack
distribution technique, that is, the Service-Rate-Proportionate
(SRP) Slack Distribution Technique, which fares better than
contemporary techniques in providing for energy effi-
ciency. Both the Dynamic and the Rate-Based scheduling
schemes have been examined with the proposed technique.
Furthermore, this work also demonstrates the impact of the
proposed slack distribution technique with the class of rate-
based sheduling schemes.

This paper has the following contributions:

. It introduces a dynamic slack management techni-
que for heterogeneous distributed embedded sys-
tems to reduce power consumption.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008 1

. S. Acharya is with the Department of Computer Science, University of
Pittsburgh, 6150 Sennott Square, 210 S. Bouquet Street, Pittsburgh, PA
15232. E-mail: sacharya@cs.pitt.edu.

. R. Mahapatra is with the Department of Computer Science, Texas A&M
University, College Station, TX 77843-3112. E-mail: rabi@cs.tamu.edu.

Manuscript received 24 Aug. 2004; revised 24 May 2005; accepted 17 Nov.
2005; published online 24 July 2007.
Recommended for acceptance by L. Welch.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0275-0804.
Digital Object Identifier no. 10.1109/TC.2007.70789.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

. It presents a static slack distribution heuristic to be
used for task admittance and demonstrates how task
criticality can be handled for hard real-time systems.

. It demonstrates the effectiveness of the SRP slack
distribution technique with the dynamic and rate-
based scheduling schemes.

. It proposes using the slack toward maintaining
checkpoints at nodes for handling faults while
saving energy.

. Using real-world examples and simulation, it esti-
mates the overheads and validates its functionalities.

Furthermore, simulation and experimentation were
made with contemporary techniques to provide for several
results. Results show that the SRP technique improves
performance/overhead by 29 percent compared to con-
temporary techniques.

This paper is organized as follows: Section 2 discusses
background and related work. The system model and the
SRP technique with the EDF scheduling scheme are
introduced in Section 3. Section 4 discusses the SRP
technique with the rate-based scheduling scheme. Fault
tolerance with the proposed technique is discussed in
Section 5. Section 6 presents the results and analysis of
simulation. The conclusions and future work are stated in
Section 7.

2 BACKGROUND AND RELATED WORK

Embedded systems are energy-sensitive devices with
specific implementations related to their applications. They
are employed in many critical applications, ranging from
sensor network systems, space exploration, and avionics.
Reducing power consumption has emerged as a primary
goal, in particular for these battery-powered embedded
systems. Low-power design techniques for digital compo-
nents have been intensely studied in the last decade [1], [2].
These techniques consider a single hardware component in
isolation or at most a set of homogeneous processors.
However, embedded systems are far more complex than
these: They consist of several interacting heterogeneous
components. Moreover, the input characteristics into these
systems are dynamic and not static tasks, as usually
assumed. This fact motivated us to design a more realistic
general-purpose model for such heterogeneous distributed
systems incorporating dynamic task sets.

The two most commonly used techniques that can be
used for energy minimization in such embedded systems
are Dynamic Voltage Scaling (DVS) [3] and Dynamic Power
Management (DPM) [4], [5]. The application of these
system-level energy management techniques can be
exploited to the maximum if we can take advantage of
almost all of the idle time and slack time in between
processor busy times. Hence, the major challenge is to
design an efficient slack distribution technique which can
exploit the slack time and idle time of processors in the
distributed heterogeneous systems to the maximum. Var-
ious energy-efficient slack management schemes have been
proposed for these real-time distributed systems. Zhu et al.
proposed energy-efficient scheduling algorithms using
slack reclamation for shared-memory homogeneous multi-
processors that allow task migration among processors [6].
In [7], Mishra et al. statically and dynamically manage slack
to slow down the scheduled tasks. The available slack on a

processor is given to the next incoming task running on that
processor and they assume the task graphs to have the same
deadline. Luo and Jha proposed static and dynamic
scheduling algorithms for periodic and aperiodic task
graphs [8]. The static scheduling algorithm uses critical-
path analysis and distributes the slack during the initial
schedule. The dynamic scheduling algorithm provides best
effort service to soft aperiodic tasks and reduces power
consumption by varying voltage and frequencies. Luo and
Jha [9] also propose increasing the battery life span by
reducing the system discharge power profile and distribute
the slack based on static scheduling. In [10], Luo and Jha
present power-profile and time-constraint driven slack
allocation algorithms for variable voltage processors to
reduce the power consumption in distributed real-time
embedded systems. Shang et al. proposed a runtime
distributed mechanism to monitor power dissipation on
interconnect links to maintain peak power constraints [11].

Even though there has been lot of work for providing an
efficient slack management scheme, very little work caters to
heterogeneous distributed systems with dynamic task inputs.
Moreover, in [12], even if there is a technique that caters to
dynamic task sets, it assumes that the distributed system
consists of a set of homogeneous processors. There is a lack of
a generalized system model and slack distribution technique,
which provides for all of the above characteristics within a
performance cost-effective solution. This has essentially been
the driving force of the proposed research.

The preliminary studies have been performed for
canonical task sets with only static scheduling schemes
without a detailed optimality and cost performance study
[13]. Furthermore, a detailed design, a study, and an
analysis have been performed for a special class of
distributed embedded systems with a rate-based scheme.
A performance/overhead improved solution has been
proposed in comparison with a contemporary rate-based
stochastic method [14].

3 SYSTEM MODEL

The proposed model is composed of a set of processing
elements (nodes), known as embedded system nodes, that
will execute application(s) expressed in terms of task sets.
The task sets are specified with their incoming arrival
period, worst-case computation time at all the nodes
executing the task set, and end-to-end deadline. The details
of interaction between the processing elements in terms of
computation and communication are also specified.

Let “n” be the number of active task sets in a distributed
system represented by

Q
¼ ð
Q

1; . . . ;
Q

nÞ. Each task set
Q

i

is an acyclic graph input task which is processed by a set of
nodes in order to achieve specific functions. A group of
active task sets constitutes an operating mode or a
configuration of the system in an application. Fig. 1
demonstrates the mapping of applications onto the proces-
sing elements. An application consists of several functions.
In Fig. 1a, we have an application A consisting of five
functions, as shown in the box. In order to reduce the
communication overhead and to make the computation
time demand balance among task nodes, the task graph is
modified, as shown in Fig. 1b. The modified task graph is
then directly (one-to-one) mapped onto the processing

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

elements of distributed real-time embedded system, as
shown in Fig. 1c.

When multiple task sets are active in the distributed
system, each node may have to process tasks from different
task sets due to resource sharing. We use ð~Pi; ~Ci; ~Di; cÞ to
specify a task set. A task set is defined as a vector consisting
of a group of tasks with specifications such as the
periodicity at the source node, worst-case computation
time at various processing nodes in its path, the task set’s
end-to-end deadline, and the criticality level of the task set.
The network of nodes that are executing the task set

Q
i

communicates by exchanging tasks. The vector ~Pi repre-
sents the periodicity of tasks of a task set

Q
i . The

periodicity is defined for a task set at the source node only.
Due to variable delays in the distributed system, the
periodicity is lost at subsequent nodes. Any unspecified
quantity in this model is represented as ". The vector ~Ci �
ðCi1; . . . ; CinÞ represents the worst-case processing time of
task set

Q
i at various nodes. Since we consider a

heterogeneous distributed system, the tasks of the task set
have different computation times at the various nodes in its
path. The worst-case computation time also includes the
communication overhead due to task transfers among the
processing nodes that are proportional to the amount of
bytes transferred. The vector ~Di represents the deadline of
the tasks of task set

Q
i . The tasks may or may not have a

local deadline at the source and intermediate nodes.
However, they always have an end-to-end deadline, which
is at the destination or the last node serving the task set.
Thus, the deadlines at various nodes are represented as
ððDi1j"Þ; . . . ; DinÞ, where Din is the hard upper bound delay,
by which all of the tasks in a task set

Q
i on n nodes are to

be processed. The criticality value associated with a task set
is denoted as c. This value is specified for all of the periodic
and sporadic task sets and is a real number varying from
zero to one, which are both inclusive. Aperiodic task sets
have a criticality of zero. The criticality of sporadic task sets
and periodic task sets helps to determine the task set’s
admittance and its priority of processing at a given node.

We denote �iðIÞ as the maximum processing time
demand function for task set

Q
i in a given interval of

length I. This demand function quantifies the maximum

amount of processing time required for a given task set
Q

i

due to varying incoming tasks and outstanding tasks at a
node during an interval of length I. We define �jðIÞ as the
service rate at a particular node during the given interval I
by taking all of the active task sets in that interval into
account. The service rate defines the frequency of operation
at a processing element. It is directly proportional to the
computational time demand of various tasks at a given
node. In a given interval, the service rate is proportional to
the sum of the backlogged (incomplete) tasks carried
forward from previous intervals and the upcoming compu-
tational time demanded from new tasks that require
processing at the node in the given interval. The service
rate of a given processing element is set depending upon
these demands at the start of every interval. During a given
interval, there is no change in the service rate. Each
processing node in the network is assumed to be voltage/
frequency scalable and has a maximum service rate
specified by �max, which is determined from the peak
power constraint at a given node. The constraint is specified
at the design time and is a limiting factor on the number of
task sets that can be admitted into the system. Since we
have a heterogeneous distributed system under considera-
tion, we accommodate different maximum service rate
values for each of the processing nodes.

3.1 Busy Interval

An important parameter in designing energy-efficient
systems is the determination of busy intervals at a node in
the distributed system. The busy interval of the node is the
active interval of processing time, which is delimited by idle
intervals. These intervals help determine the time for the
application of Dynamic Voltage Scaling (DVS) or Dynamic
Power Management (DPM) at a given node. DVS is applied
in the busy intervals and DPM is applied during the idle
intervals. The busy interval is determined from the
specifications of application inputs, as given in [15].

3.2 Worst-Case Delay and Traffic Descriptor

The “worst-case delay” defines the upper bound on the
delays experienced at nodes in the path of a task set

Q
i . It is

represented as a vector for all of the nodes in the path of the
given task set. Since we consider heterogeneous processing

ACHARYA AND MAHAPATRA: A DYNAMIC SLACK MANAGEMENT TECHNIQUE FOR REAL-TIME DISTRIBUTED EMBEDDED SYSTEMS 3

Fig. 1. Application to the task set onto processing element mapping. (a) Application A’s five functions. (b) Task graph with computation/

communication optimized. (c) Distributed embedded system.

elements, the experienced worst-case delays are different
for the same task set at different nodes in the distributed
system. The instantaneous processing time demand func-
tion �it is the “traffic descriptor” at that node. The traffic
descriptor sets the maximum rate function or the service rate
at a given node and is dependent on the scheduling policy
at the given node. The maximum rate function is affected by
the outstanding and incoming task sets at a node in a given
interval. This demand function is unique for a given
processing node. The mathematical derivation for the
worst-case delay, traffic descriptor, and the details associated
with it at a particular node are discussed in [15]. The
proposed SRP Slack Distribution technique and its analysis
are based on those initial studies.

3.3 Periodic Service Rate Determination

The online slack management technique that takes advan-
tage of the runtime variations of the executing task sets
heavily depends on the service rate at a given node. The
service rate is evaluated at the start of every interval. Such a
“periodic service rate” (PSR) determination is an important
characteristic of the proposed SRP model. PSR determina-
tion is a dynamic mechanism which operates on feedback
information from the traffic descriptor of a given node for a
given interval. The key idea in determining the minimum
service rate at a node is to determine the extended
processing time within delay bounds. This technique
dynamically adapts the frequency/voltage scaling at the
processing node by taking advantage of runtime variations
in the execution time. Essentially, this new service rate will
guarantee the processing of the task sets that will arrive in
the upcoming interval and the task sets that arrived during
previous intervals and are awaiting processing in the queue
by their delay bounds. For peak service rate constrained
systems, the maximum service rate will be bounded by the
given peak rate. Since the service rate is a normalized
service rate, the maximum service rate is set to one. The PSR
determination will have different treatments, depending on
the scheduling policy at a given node. The conditions to be
met during new service rate determination at a given node
for an upcoming interval are given as follows:

. First, the new service rate should guarantee the
processing of the tasks in the upcoming interval by
their delay bounds.

. Second, this service rate must guarantee the proces-
sing of the unprocessed tasks that were left in the
queue (and that arrived during the previous inter-
vals) by their worst-case delay bounds.

. Last, the new service rate must lie within the peak
service rate bound �max of that processing element.

The analytical treatment for static scheduling schemes has
been done in the previous work [13]. This work presents the
analytical treatment of dynamic scheduling schemes.

3.4 Dynamic Scheduling Scheme

As the task set inputs become dynamic during system
operation, employing static scheduling schemes cannot help
in obtaining the maximum runtime benefits in meeting task
criticality requirements and providing for optimal energy
savings. Hence, for a general-purpose model design, the
inclusion of dynamic scheduling schemes (for example, EDF
and RBS) is essential for design completeness. Between the

two, because EDF is the more efficient and widely used
dynamic scheduling scheme, this has been considered for the
analysis and experiments with our proposed technique. The
analytical derivation of PSR for EDF is presented in the
following:

In order to lay out an analytic study, we define the
following notations to represent various parameters and
inputs:

. nn: total number of incoming task sets at the node sij
for a given interval of length “II.”

. “II”: represents the length or duration of each
monitoring interval at a particular node. The value
of “II” is calculated by dividing the worst-case delay
at a given node by the number of monitoring
intervals “zz.”

. !!iiII : represents the fraction of the interval “II” during
which tasks from task set

Q
i will be processed.

. wcwc delaydelayinode: represents the worst-case delay suf-
fered by the tasks from input task set

Q
i at a given

node serving
Q

i .
. TT : gives the system start time. The queue content is

zero and there is no task that is being processed at
the processing elements or nodes at this time.

. ppit: represents the actual processing time demanded
by the tasks of graph input task set

Q
i that have

already arrived at the node before time instant “tt.”
. rribacklog;t: represents the processing time demanded

by the unprocessed tasks left in the queue by graph
input task set

Q
i , which arrived during the interval

modmodðtt� rIrI � ðtt� ðrr� 1ÞIIÞÞ at time instant “tt,”
where “rr” is the maximum number of task sets
entering a particular node.

. rrit: represents the required service rate at time
instant “tt” to guarantee the processing of the tasks
from graph input task set

Q
i in the queue, which

arrived during the interval modmodðtt� rIrI � ðtt� ðrr�
1ÞIIÞÞ by their worst-case delay bounds. This worst-
case delay bound corresponds to the processing
element running at the lowest possible service rate in
order to complete the task set at the deadline.

At the system start time, the service rate is given by

riT � �iT ðIÞ=!iwc delay: ð1Þ

This service rate guarantees the processing of the tasks ofQ
i that will arrive in the upcoming interval by their delay

bounds. This new service rate at the beginning of every

interval is determined according to the following:

rit ¼
Xu

r¼1

ribacklog;t þ �itðIÞ=!iwc delay;node: ð2Þ

The corresponding queue is determined according to

pit ¼
X@

i¼0

pibacklog;t; ð3Þ

where @ ¼ ðt�maxðT; ðt� ðz� 1Þ � IÞ=IÞÞ.
The service rate s rateir;t and the corresponding proces-

sing time demanded by the outstanding tasks that arrived

during the interval ðt� zI; t� ðz� 1ÞIÞ are given by

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

ribacklog;t � ðwc delayi � zIÞ � pibacklog;t; ð4Þ

pibacklog;t ¼ pit�zI � pit�ðz�1ÞI if cleared; ð5Þ

else

pibacklog;t ¼ pit�zI �
X@

z¼0

Xt�ðz�1Þi

t�zi
rit�zI þ pit�zI � pit�ðz�1ÞI : ð6Þ

Through the following theorems, we shall prove that the
proposed technique fulfills the three requirements specified
in the previous section.

Theorem 1. The service rate rit will guarantee the processing of
the tasks of a given input task set

Q
k by their worst-case delay

bounds.

Proof. To prove that rit is a valid service rate to guarantee
the end-to-end deadline of task in a given task set, the
above-mentioned cases have to be proven satisfactorily:

Case 1. The unprocessed tasks that arrived during any
outstanding previous interval ðt� zI; t� ðz� 1ÞIÞ will
have to be processed within the upper bound on their
delays by the service rate rit, that is,

rit � ðwc delayinode � zIÞ � pibacklog;t
) ðri1;t þþ riz;t þþ riu;tÞ � ðwc delayinode � zIÞ
� pibacklog;;t
) fðri1;t þ . . .þ riu;tÞ � ðwc delayinode � zIÞ þ ribacklog;tg
� ðwc delayinode � zIÞ � pibacklog;;t

ð7Þ

) ðri1;t þ . . .þ riu;tÞ � ðwc delayinode � zIÞ þ pir;t � pibacklog;;t:
ð8Þ

By substitution, from (4), which is valid, therefore
riu;t � ðd� zIÞ � 08u.

Case 2. The tasks that will arrive during the upcoming
interval and those that are in the queue will have to be
processed within their end-to-end deadlines by using
this new service rate. In other words,

rit � wc delayinode � �itðIÞ þ
Xnode�1

j¼1
pjt

) ðr1
t þ . . .þ rjt þþ rnode�1

t Þ � wc delayinode

�
Xnode�1

j¼1

pjt þ �itðIÞ

ð9Þ

) ð
Xn�1

g¼1

pit=ðwc delayi � gIÞÞ � wc delayinode þ �tðIÞ

�
Xnode�1

j¼1

pjt þ �itðIÞ;
ð10Þ

which is true, therefore gI � 08g.
Case 3. The third case to be considered is the

preemption that occurs due to the dynamic rescheduling
in the system model. The preemption should guarantee
the processing of the tasks of the given task set by their
worst-case delay bounds. The preemption performed

with this model was both at the queue and the node. Two
different treatments are discussed for queue and node
preemptions of tasks meeting their worst-case delay
bounds:

1. Queue. If there is preemption in the queue, we can
meet it as we have already admitted the task set
that takes its worst-case delay into account. This
implies that, in the worst case, the task can be
pushed to the end of the queue that corresponds
to its worst-case delay bound criterion.

2. Node. A task of a given task set is preempted at
the node if its deadline is greater than the task to
be served and, hence, the completion time is less
than the end-to-end deadline for the given task.
Thus, preempting the subtask still guarantees the
meeting of worst-case delay bounds. Moreover,
let � be the total processing time for a subtask and
let the time elapsed since its processing be ðt� sÞ.
Then, ð� � sÞ is the processing time left if
ðtþ sÞ � I. If this is true, ð� � sÞ is less than the
worst-case time for performing the preempted
task. On the contrary, if ðtþ sÞ > I, then fraction 1
of ð� � sÞ, that is, ð� � sÞ1, will be less than the
fraction of the worst-case time for performing
such a task and the other fraction ð� � sÞ2 will
be taken care of in the next interval with a
higher service rate. This is also within bounds
as the new task is admitted into the system that
meets its worst-case delay bounds. Thus, for
node task preemption, there should be an
incoming critical task, the interval length should
remain unchanged, and the queue should be
full. Moreover, the fraction of computation for
the new task should be bounded by tb, where
tb ¼ I � elapsed time in the interval. Since this is
a conservative bound, we are able to preempt
tasks and provide for dynamic scheduling while
meeting the worst-case delay bounds. tu

3.5 Criticality Consideration

A critical task usually occurs as a hard real-time sporadic
task in the system. Admittance of such prioritized tasks and
their processing by given deadlines is important to the
overall system performance. In our scheme, each processing
element has two queues at its input. One of them is the
critical queue, which serves the periodic tasks and the
dynamically occurring critical sporadic tasks. The other one
is a noncritical queue with no priority that enqueues the
aperiodic task sets. The critical queue is maintained based
on the criticality of tasks and their age. The noncritical
queue keeps the task sets in the insertion order. This
consideration helps provide improved response time to the
critical sporadic tasks while preventing the starvation of
task sets in these queues. Task preemptions and swapping
due to task criticality considerations at queues and during
task processing help improve the performance of the
distributed system. The scheduling at the nodes that take
task criticality into account is represented as FCFS_C,
WRR_C, and EDF_C for the FCFS, WRR, and EDF
scheduling policies, respectively. Experimental results
show much improved performance/overhead metrics with
this improved technique.

ACHARYA AND MAHAPATRA: A DYNAMIC SLACK MANAGEMENT TECHNIQUE FOR REAL-TIME DISTRIBUTED EMBEDDED SYSTEMS 5

3.6 Algorithmic Design

This section presents the algorithms for the design of the
proposed SRP model. The algorithmic explanations are
discussed based on the scheduling schemes associated with
the node under consideration. When input tasks are
processed in the node, there are two basic steps in which
they can be handled. First, when the inputs arrive at a node,
they are queued for processing. Second, the PSR determina-
tion thread takes tasks from the queues and processes them
at the desired nodes.

The scheduling schemes under consideration here are
two static schemes of First Come, First Served (FCFS) and
Weighted Round-Robin (WRR), and a dynamic scheme of
EDF. Later, the RBS scheme is applied to the model for the
study of the specialized class of Rate-Based Models. In all of
these scheduling schemes, the common fact is that each of
them has a special queue, called the “background queue,” for
the background noncritical tasks. The critical periodic and
sporadic task sets are placed in a queue called the “critical
queue.” Background queue processing at a node is done only
when there are no tasks to be processed in the critical
queue. For all of the scheduling schemes, the “enqueue_task”
states the inclusion of task sets into the queues and is given
as follows:

Algorithm 1.

1 ifðtsk:criticality ¼ 0Þ {

2 // add to the background queue

3 backgroundQ.add(tsk);

4 } else {

5 // the tasks get added to this queue

6 // depending on the scheduling method

7 insert (queue, tsk);

8 }

After the task enqueue process, the processing of the task
sets in the queue starts and the corresponding algorithm is
described as follows:

Algorithm 2.

1 if(queue.isEmpty) {

2 process(backgroundQ);

3 } else {
4 process(queue);

5 }

6

The background queue is processed in an FCFS manner.
If the task does not have the criticality zero, it is processed
based on the scheduling scheme at the node under
consideration.

3.6.1 FCFS Scheduling Scheme

In the FCFS method, the task sets are inserted into the
queue using the FCFS method. However, special care is
taken to handle the criticality of task sets. If a task set has a
higher level of criticality, then it is scheduled prior to the
one that has lower criticality. However, this would lead to
starvation of low-criticality task sets. Hence, an aging
scheme is introduced during the design of the system
model. With the aging scheme, a task with higher age is also
given due weight and this weight is taken into considera-
tion while inserting tasks into the queue. The algorithm for
insertion into a queue is given as follows:

Algorithm 3.
1 // insert tsk into the fcfs queue.

2 insert(queue, tsk) {

3 // find the criticality of the task.

4 criticality ¼ tsk:criticality

5

6 // process each task such that.

7 foreach tsk in queue {

8 // if there is another one with less

criticality

9 priority ¼ ðcriticalityþ ðageðtskÞ=
avg ageðqueueÞÞÞ=2

10 if ðcriticality > priorityÞ {

11 // insert it there.

12 queue_insert(queue, tsk);

13 }

14 }
15

16 // if the task is not inserted

17 if (not inserted) {

18 // add to the end of the queue

19 queue_append(queue, tsk);

20 }

21 } // done insert (queue, tsk)

Once a task set is enqueued, the “processQueue” is used to

process it in the order in which it appears in the queue. The

following procedure describes the processing of the task sets:

Algorithm 4.

1 // process the fcfs queue

2 processQueue(queue) {

3 // if there is some time left in interval.

4 whileðintervalTimeLeft > 0Þ {

5 // take the first task.

6 tsk ¼ queue:firstTaskðÞ;
7
8 // if all of the first task can be

processed

9 ifðtsk:extime < intervalTimeLeftÞ {

10

11 // remove the first one from the queue.

12 queue.removeFirst ();

13

14 // update the time left in interval.
15 intervalTimeLeft ¼ intervalTimeLeft �

tsk:exttime;

16

17 // if this node is not the last one send to

the next.

18 if(not lastNode) {

19 send(tsk, node.nextNode);

20 }
21 } else {

22 // else get some work done from the task.

23 tsk:extime ¼ tsk:extime� intervalTimeLeft;

24 intervalTimeLeft ¼ 0;

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

25 }
26 }

27 }

Hence, the task sets are processed in the order of the
insertion into the queue and, if its total execution time is
satisfied, it is sent to the next node in its path.

3.6.2 WRR Scheduling Scheme

The WRR scheme also employs the two basic procedures of
“enqueue_task” and “processQueue.” The major difference in
the “enqueue_task” process for WRR is that the task sets are
enqueued based on their weights and similar weighted task
sets form weighted queues. This implies that if there are w
different weights of input task sets, there will be w critical
queues for each weight. For the sake of simplicity and
considering that, most of the time, all of the task sets have
different weights, we create a different queue for each task set.
Thus, the total number of queues is nþ 1 (n for weighted
critical queues and one for the noncritical background
queue). The criticality and aging considerations still hold
here. The pseudocode for the “enqueue_task” is given as
follows:

Algorithm 5.

1 // find the queue that has the task set id

2 // for current incoming message

3 wrr sub queue ¼ find queue

ðwrr queue; tsk:identifierÞ
4
5 // append the current message to be processed

6 // onto the sub queue.

7 append_entry(wrr_sub_queue, tsk);

The processing of the task sets for each weighted queue
follows the same method as discussed for the FCFS scheme,
and all queues are given the processing element time based
on their proportionate weights. These weighted queues are
read from beginning to end and, if the task can be satisfied,
it is processed and sent to the next node; else, it is executed
for the remaining interval time and kept in the queue for
processing in upcoming intervals.

3.6.3 EDF Scheduling Scheme

The EDF scheme includes laying out a schedule based on
the deadline of task sets and allows dynamic rescheduling
and preemption in the queues and processing nodes. In this
method, the task sets are kept in the queue in the order of
their approaching deadlines. This implies that a task set
with an earlier deadline will be processed prior to others.
The pseudocode for inserting task sets in EDF is given as
follows:

Algorithm 6

1 // insert the task tsk into the queue

2 insert(queue, tsk) {

3 // for each task in the queue

4 foreach tsk1 in queue{
5 //if the deadline is less than queue

member’s deadline

6 ifðtsk:deadline < tsk1:deadlineÞ {

7 // insert it at that location.

8 queue_insert(queue, tsk);

9 }
10 }

11 // if the task is still not inserted.

12 if(not inserted) {

13 // add it to the end of the queue

14 queue_append(queue, tsk);

15 }

16 }

The processing of the tasks after the enqueue procedure
follows the same method as discussed for the FCFS scheme.
The queue is read from the beginning to end and, if the task
set can be satisfied, it is processed and sent to the next node;
else, it is executed for the remaining interval time and kept
in the queue for processing in upcoming intervals.

4 RATE-BASED SCHEDULING SCHEMES

The RBS scheme has gained popularity when dealing with
task sets in a network flow environment. For example, in an
application in which services packets arrive over a network,
the packets’ arrival may be highly flow dependent. Their
arrival rate dynamically varies throughout the operation of
the system. This characteristic intuitively matches the
proposed service-rate-based technique presented in this
work. However, this requires a separate treatment as the
inputs are based on the rates of incoming task sets and are
not similar to the previously mentioned real-time specifica-
tions. We have also compared the proposed SRP Slack
Distribution Technique with a contemporary Slack Manage-
ment System model used for RBS [14].

4.1 Service Rate-Based Slack Distribution with
Rate-Based Scheduling

In the rate-based scheme, the arrival rate of an input task set
is the criteria for task processing. At a node, tasks that arrive
with higher rates will get a larger slice of runtime in a
particular interval. In other words, the processing time is
proportional to the rates of operation.

The insert procedure for this method is as shown as
follows:

Algorithm 7

1 insert(queue, tsk) {

2 queue_append(queue, tsk);

3 }

In the processQueue procedure, the total rate of tasks is
calculated every time and the processing time is divided
among all of the task sets in the queue. Once the execution
time of the task is satisfied, it is removed from the queue
and sent to the next node for processing. The modified
procedure for RBS is given as follows:

Algorithm 8

1 processQueue(queue) {

2 TotalRate ¼ sum of ratesðqueueÞ;
3 foreach tsk in queue {
4 // give the task time proportional to its

rate.

5 tskExtime ¼ tsk:rate � intervalTimeLeft=

totalRate;

6

ACHARYA AND MAHAPATRA: A DYNAMIC SLACK MANAGEMENT TECHNIQUE FOR REAL-TIME DISTRIBUTED EMBEDDED SYSTEMS 7

7 ifðtskExTime > tsk:extimeÞ {
8 // remove the task.

9 queue.removeTsk(tsk);

10 // get the remaining time in the interval.

11 intervalTimeLeft ¼ intervalTimeLeft�
tsk:exttime;

12 // send it to the next node since it’s done

for this node

13 if(not lastNode) {
14 send(tsk, node.nextNode);

15 }

16 // since the queue has changed, adjust

the total rate.

17 totalRate ¼ sum of ratesðqueueÞ;
18 } else {

19 // record the time which the current task

ran.
20 tsk:extime ¼ tsk:extime� tskExTime;

21 // adjust time left in the interval.

22 intervalTimeLeft� ¼ tsk:extime;

23 }

24 }

25 }

4.2 Stochastic System Model with the Rate-Based
Scheme

This stochastic technique proposes a three-step approach
for providing an energy-efficient solution [14]. The first step
is the probabilistic method for determining the bounds on
the task frequency of operation, the second step is an offline
method for static slack management, and the third is an
online mechanism for the distribution of the available slack
at runtime. The model has been implemented with all ofits
potentials and compared with the proposed model, taking
one of the real-world benchmarks.

4.3 Parameters for Analysis

Rate-based schemes are mostly applied to control jitter and
reduce miss ratio and, hence, these two parameters are
compared with both models for our analysis. Jitter control is
important as it gives a notion of the power or service rate
variations in the distributed embedded system. The model
helps in providing feedback to the designers on this
parameter and, hence, it helps in reducing unnecessary
power spikes in the system design and providing for an
energy-efficient solution. Similarly, the miss ratio or drop rate
of task sets is another important area of study when
considering rate-based system designs. Detailed analysis
and results on these parameters are provided in Section 6.

5 FAULT TOLERANCE

With technology enhancement, there has been rapid
proliferation of distributed embedded systems. As these
systems evolve from very specific cases to everyday
commonplace use, ensuring their reliable operation is an
important criterion to be considered for the dependability
of these distributed embedded systems. Many distributed
embedded systems, especially those employed in safety-
critical environments, should exhibit dependable operation,

even in the presence of software faults. These faults are
mostly transient in nature and are caused by exceptions at a
node in the distributed embedded system. Monitoring the
transient errors and initiating the appropriate corrective
action are an important way to tolerate faults. We adopt the
well-known Checkpointing scheme [2] for handling these
software faults. Detecting a software fault in a distributed
computation requires finding a (consistent) global state that
violates safety properties. For synchronization, failure
recovery involves rolling back the program to a previously
known and safe state, followed by a reexecution of the
program. We propose utilizing the available slack to
maintain checkpoints and rollbacks at various nodes, in
addition to reducing energy consumption.

5.1 Fault Tolerance with the Proposed Technique

The following notations describe some of the fault-tolerant
attributes that have been used in the proposed dynamic
slack distribution model:

. cpcpworstcase;node ¼ worst-case computational time over-
head for maintaining checkpoint at a given node
(maintaining status information).

. cpcpactual;node ¼ actual computational time overhead
for maintaining checkpoint at a given node.

. cpcpw;node ¼ computational time overhead for check-
point write.

. cpcpr;node ¼ computational time overhead for check-
point read.

. cpcpI;node ¼ interval length of the checkpoint at that
node (the frequency at which checkpoints are saved).

. kk ¼ maximum number of faults that the system can
tolerate.

. vv ¼ number of times that the checkpoint has to be
performed at a given node. (This parameter is
necessary to control the number of checkpoints
required to mark the checkpoint frequency at a
node. It can either be specified by the user input for
a nonadaptive scheme or determined based on an
adaptive scheme by looking at the fault history at
the node.)

. FF ¼ feasibility condition bit (0/1) that represents
the status of the distributed system whether “kk”
faults can be handled or not).

. ftft ¼ status bit that states whether there was a fault
in the previous checkpoint interval.

. wcwc delaydelay faultfault ¼ worst-case delay of a task set at a
node (in the task set’s path), with the maximum
number of faults occurring at that node.

. wcwc delaydelayinode ¼ worst-case delay bound of a task set
at a node in its path.

. faultfault delaydelayinode ¼ delay due to the occurrence of
“kk” faults at a given node.

. CPCP ðcpcpI;node; cpcpworst case;node; cpcpI;node ¼ a checkpoint
which is defined as a sporadic task with the period
ðcpI;nodeÞ and deadline ðcpI;nodeÞ equal to the length of
the checkpoint interval. (The checkpoint overhead
ðcpworst�case;nodeÞ gives the worst-case computational
time/execution time of the given check point.)

For the heterogeneous distributed system under con-
sideration, with a given task set input, the worst-case

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

execution delay with fault tolerance depends on the task set
input specification, the checkpoint specifications, and the
maximum number of faults that the distributed system can
handle. Out of the several possible scenarios, two possible
cases are considered here: first, when all of the “k” faults
randomly occur at a node and, second, when all of the
“k” faults are distributed across multiple nodes.

When faults are randomly distributed over multiple
nodes for a given task set, their worst-case behavior would
occur when they occur simultaneously. If such a fault
occurs, the rollback will take place at all of the nodes in the
task set path, which, in the worst case, would be the same as
the rollback with the maximum level of faults occurring at
the source node. Hence, the second case is a subset of the
first case. If we can guarantee the processing of task sets
admitted into the system for the first case, it would
guarantee both of the cases under consideration. In order
to guarantee fault tolerance, the task set’s admittance has to
be checked for the worst-case delay bounds, considering the
maximum number of faults. Only if the task set meets these
worst-case delay bounds can it be admitted into the
distributed system. Based on the system under consideration,
the following gives the various worst-case delay bounds:

wc delay fault ¼ wc delayinode þ fault delayinode: ð11Þ

The delay due to the occurrence of faults only
“fault delayinode” is composed of two types of overheads:
the actual checkpoint time overhead and the rollback with
the maximum number of faults. The following represents
the fault delay at a node of a given task set as a summation
of these two time overheads:

fault delayinode ¼ rb overheadþ cpactual;node: ð12Þ

The worst-case rollback overhead is determined with the
maximum number of faults occurring at a node for the
given task set. This rollback is determined as a function of
the checkpoint interval cpI;node, the overhead for reading a
checkpoint cpr;node, the overhead for writing a checkpoint
cpw;node, and the maximum number of fault at that node.
Equation (13) gives the worst-case rollback overhead:

rb overhead ¼ k� ðcpI;node þ cpw;node þ cpr;nodeÞ; ð13Þ

where rb overhead represents the time overhead on the
rollback with k faults occurring at that node.

In order that the model provides for the guaranteed level
of fault tolerance, these worst-case delays have to be met at
task admittance and maintained at runtime.

For the fault-tolerant slack distributed technique, the
following procedures are presented:

1. The feasibility heuristic of the admittance of task sets
with faults.

Algorithm 9.

1 forði ¼ 1; i � ðset of all subtasks of the given

task setÞ; iþþÞ {
2 forðj ¼ 1; j � k; jþþÞ {

3 ifðwc delayinode þ fault delayinode � Di;nodeÞ {

4 //task set admitted into model with “k”

5 //number of faults tolerance.

6 F ¼ 1;
7 else

8 //task set not admitted into model with

“k”

9 //number of fault tolerance.

10 F ¼ 0;

11 }

12 }

13 }

2. The heuristic for the rollback technique at runtime

Algorithm 10.

1 for ði ¼ cpI;node; i � v ðcpI;nodeÞ; i ¼ iþ cpI;nodeÞ;
2 } if ðft ¼¼ 1Þ {
3 fault delayinode ¼ rb overheadþ cpactual;node {

4 else {

5 fault delayinode ¼ cpactual;node;

6 }

7 }

These time constraints are provided for guaranteed fault

tolerance in the proposed slack distribution model. The next

section demonstrates the simulation and analysis of the

results of various studies performed on such a model.

6 EXPERIMENTS AND RESULTS

This section is organized into three parts. The first part

presents the results for the FCFS, WRR, EDF, and RBS

schemes using the proposed Service-Rate-Based Dynamic

Slack Distribution Technique. Results due to fault tolerance

with the proposed technique are presented in the second part.

The third part gives the performance and overhead details.
The simulation was run on a dual Pentium IV hyper-

threaded processor with 2 Gbyte memory running the

Linux 2.6 operating system. A driver script was used to

automate the simulation run for different task sets with

their specifications (periodicity, worst-case computation

time, and end-to-end deadline). In order to find the actual

PSR overhead on a target embedded processor (Intel

PXA250 Xscale Processor), a cosimulation strategy was

employed, with one of the nodes being the XSacle processor

and the other nodes simulated on the Pentium IV processor.

There were four power levels considered in the XScale

processor. Although, for heterogeneous systems, these

levels will be different, for simplicity, the other simulated

nodes also had four power levels.
Table 1 gives the characteristics of the benchmarks used

in validating the proposed technique. The two types of

benchmarks used here are the standard TGFF [16] random

benchmarks (TGFF I and TGFF II) and the real-world

Integrated Multimedia (IM) benchmarks (IM I and IM II).
Fig. 2 shows the task graph of the three applications for

the IM I benchmark. Table 2 shows the individual task sets

of each of the applications (MPEG, MP3, and ADPCM) of

IM I. It can be observed that there are nine, seven, and two

task sets for MPEG, MP3, and ADPCM, respectively. The

total number of task sets for the IM I benchmark is the sum

of all three applications, that is, 18 ð9þ 7þ 2Þ.

ACHARYA AND MAHAPATRA: A DYNAMIC SLACK MANAGEMENT TECHNIQUE FOR REAL-TIME DISTRIBUTED EMBEDDED SYSTEMS 9

6.1 Results and Analysis

6.1.1 Study of System Energy Savings at Different

Normalized Peak Service Rates

Fig. 3 shows the comparison of energy savings with three

scheduling schemes of FCFS, WRR, and EDF, where the

peak service rate is scaled from 1 to 0.7. This study implies

the impact of Dynamic Slack Management when applied to

various processing elements executing IM I. There is a

similar trend for the IM II benchmark. It may be observed

that the EDF scheduling scheme outperforms other con-

ventional schemes, as expected. Although it would be

expected that WRR performs better than the FCFS schedul-

ing scheme, our results show that WRR and FCFS have

comparable energy savings. This is due to the fact that the

improvement in energy savings due to the incorporation of

a smarter scheme is masked by the increase in the queue

overhead of WRR with respect to FCFS ðnþ 1 : 2Þ. It is also

noteworthy that Dynamic Slack Management is highly

effective with a dynamic scheduling scheme rather than

with static schemes.

6.1.2 Study of Task Set Drop Rate at Different

Normalized Peak Service Rates

When DVS is applied at a processing node to limit the peak

service rate, it comes with a drop in the task admittance. In

Fig. 4, the Task Set Drop Rate (in percent) is shown, with

variations in the Normalized Peak Service Rate. The study

has been performed on four benchmarks for three schedul-

ing schemes. Our results show that the drop rate is higher

for more service rate constrained systems. A comparison of

the three schemes shows that EDF is the best scheme for

handling task acceptance rate in comparison to static

scheduling schemes. The random benchmarks of TGFF I

and TGFF II show a smooth decent and the IM benchmarks

show sharp drops. This is attributed to the fact that the

random benchmarks have no regularized traffic and are less

interdependent in comparison to the real-world ones.

6.1.3 Comparison of Different Slack Distribution

Techniques with Different Scheduling Schemes

It is an important study to compare the performance of the

proposed service rate-based slack distribution technique

against other existing slack distribution techniques. For our

study, we have considered the most commonly used slack

management schemes of “Worst-Case Execution Time,”

“Equal Execution Time,” and “Greedy Slack Management,” as

shown in Fig. 5. Results show significant energy savings (up

to 70 percent) with the proposed technique in comparison

with three prevalent techniques. It is noteworthy that EDF

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

TABLE 1
Characteristics of Benchmarks

Fig. 2. Integrate Multimedia I, TN ¼ Task Node.

TABLE 2
Task Set for Integrated Multimedia I

demonstrates most energy savings when coupled with the

service-rate-based dynamic slack management technique.

6.1.4 Study of Finding the Optimal Value of Monitoring

Interval

The benefits of the SRP Dynamic Slack Distribution

Technique lie in exploiting the dynamic slack available at

runtime. This depends on timely monitoring of these slacks

and setting of the service rate. Thus, MI plays a key role in

maximizing this benefit. A higher MI value indicates

frequent monitoring and, hence, frequent adaptation of

the runtime slacks. However, it leads to higher overheads.

A lower MI value leads to the loss of available slack in a

given interval to be used by the system. Thus, for a given

application, a suitable MI value should be determined for

maximizing the service rate that will yield higher slack.

Fig. 6 demonstrates the variation in the normalized service

rate for different MI values for IM I and IM II.
Our results show that there is a single optimal value of

MI for a given benchmark which is best suited for each

scheduling scheme. Analysis has been done for all four

benchmarks and all three scheduling schemes. Due to space

constraints, only the two real-world cases of MI I and MI II

are included. An important observation is that the WRR

scheme has a lower service rate than the FCFS and EDF

schemes for a given MI value since WRR has multiple

queues and the workload gets divided into each of the

queues based upon their weights. Thus, inputs of different

ACHARYA AND MAHAPATRA: A DYNAMIC SLACK MANAGEMENT TECHNIQUE FOR REAL-TIME DISTRIBUTED EMBEDDED SYSTEMS 11

Fig. 3. Energy Savings for (a) Integrated Multimedia I and (b) Integrated Multimedia II.

Fig. 4. Drop rate versus service rate. (a) EDF. (b) WRR. (c) FCFS.

Fig. 5. Comparison of slack distribution techniques for energy savings. (a) EDF. (b) WRR. (c) FCFS.

weights do not interfere with each other’s scheduling and
processing.

6.1.5 Study of Task Criticality

This study shows the impact of the proposed SRP Dynamic
Slack Management Technique in handling critical task sets.
The two important studies undertaken with this system
specification are that of task criticality consideration at task
set admittance and at system runtime. Fig 7a shows the
improvement in the admittance of critical task sets with and
without task set criticality consideration at task set admis-
sion in the proposed technique. This is important at task
admittance as, for a power-constrained system, criticality
plays a major role in deciding task admittance. For example,
in IM I, we have three applications: MPEG, MP3, and
ADPCM. If the system is power constrained, the criticality
consideration can drop a less important application for the
user and consider a more important application to serve in
the system. Without criticality consideration in the system
model design, all tasks have equal criticality. Hence, an
important task having higher priority could be dropped
due to the presence of less critical tasks ahead of it in the
queue. An increase in the critical task set admittance is seen
when task criticality is considered here.

Fig. 7b shows the improvement in the admittance of
critical task sets with and without the task set criticality

consideration at runtime in the proposed technique. It is

noteworthy that the proposed SRP Slack Distribution

Technique aids greater critical task admittance at runtime.

6.1.6 Study of Jitter Control

The next two studies are for the class of the RBS Scheme

incorporated into the proposed Slack Distribution Techni-

que. Since jitter is the cause of voltage fluctuations and,

hence, unwanted power variations, jitter control is an

important criterion for study during the design of such

system models. Fig. 8 shows the effect of SRP Slack

Distribution on jitter control and compares the results

without the slack management for RBS. An important

observation based on Fig. 8b is that the proposed technique

with RBS is not suited to random workloads but is well

suited to real-world multimedia applications.
We also studied the jitter control behavior of our

proposed Service Rate-Based Slack Distribution Technique

and compare this with a contemporary rate-based scheme,

that is, the Stochastic Model [14] used in the RBS scheme.

The results in Fig. 9 show that the proposed Service Rate-

Based Slack Distribution Technique provides for a reduced

service rate compared to the stochastic model [14] while

providing comparable jitter control. This indicates that the

proposed scheme is suitable for low-power consumption

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

Fig. 6. Optimal monitoring interval: (a) IM I and (b) IM II.

Fig. 7. Critical task set admittance enhancements. (a) At task set admittance. (b) At runtime.

for the same level of jitter control. The benchmark under

consideration for this study was IM I.

6.1.7 Study of Miss Ratio/Drop Rate

For Rate-Based Schemes, we also compare the Miss Ratio or

Drop Rate in our analysis. Drop Rate gives the number of

task sets that are rejected from the total number of task sets

requested for service in the distributed system.
Fig. 10 shows the drop rate for the proposed SRP Slack

Distribution Technique with and without the rate-based

scheme. The results are obtained for the four benchmarks

under consideration. It is seen that the drop rate is reduced

when the proposed scheme is applied to RBS.
The drop rate comparison has also been performed with

the proposed technique and the Stochastic Model [14].

Results show that both techniques have comparable drop

rates, about 26.6 percent for the IM I benchmark.

6.2 Fault-Tolerant Results

This section studies the effects of including fault tolerance

in the proposed technique. The study has been made by

taking the critical task admittance and the overhead due to

fault tolerance (service rate calculation, checkpoint deter-

mination, and the rollback overhead) into account.

6.2.1 Study of Critical Task Admittance

This study analyzes the paid price for the critical task

admittance in the presence of handling faults. This study

has been done with maximum faults at one node and also

for faults distributed in multiple nodes in the task set. The

faults are introduced in a random manner within the busy

interval of operation at a given node. For our studies, we

have considered a group of random input task sets

(generated from TGFF [16]) consisting of 25 input task sets

employing the EDF scheduling policy, with the peak

normalized service rate set to 1.0.
Our results show that the critical task set acceptance

drops with the presence of fault tolerance into the model.

There is also a higher drop of task sets with the increase in

the maximum fault-tolerant level. The results are dependent

on the benchmark taken into consideration. This type of

study helps the designers in predicting, in advance, the

maximum fault level that they can provide with a required

amount of critical task acceptance. Fig. 11a represents the

number of tasks admitted with a given maximum fault-

tolerant value at a node in the task set path of the

distributed system. Fig. 11b represents the same study

when the fault is distributed among multiple nodes (three

nodes) in the path of the task set.

ACHARYA AND MAHAPATRA: A DYNAMIC SLACK MANAGEMENT TECHNIQUE FOR REAL-TIME DISTRIBUTED EMBEDDED SYSTEMS 13

Fig. 8. Jitter Control: (a) IM I and (b) TGFF II.

Fig. 9. Jitter control: Stochastic and Service Rate models. Fig. 10. Drop rate with/without RBS.

6.2.2 Study of Normalized Service Rate Variation with

Fault Tolerance

The next study is on the variation of the service rate with

the fault tolerance into the proposed technique. The service

rate will be higher compared to the model without fault

tolerance as there is a requirement of a higher rate due to

the checkpoint interval and the rollback overhead.
Figs. 12a and 12b represent this service rate variation

with fault tolerance in the proposed technique employing

the EDF scheduling policy, with the normalized peak

service rate set to 1.0. The input taken for consideration is

the random test case with 25 input task sets (TGFF) and the

IM test case with 10 graph input task sets, respectively. The

random test case has been modified to consider uniform

traffic throughout in order to display the effect of service

rate with an increase in the number of faults in a distributed

system, keeping the traffic demand uniform. It is note-

worthy that, after three faults, the service rate is limited by

the peak service rate and, hence, there is a decrease in

performance and a drop in the admission of task sets into

the system. For the IM I application, this service rate

reduces even with the increase in the fault levels as the

demand on the node is reduced. A fault level of 0 represents

that there is only checkpointing, but there is no occurrence

of any faults and, hence, there is no rollback overhead.

6.2.3 Study of Determining Optimal Checkpoint Interval

Finding the optimal value of checkpoint is important for the

development of a performance/overhead improved dis-
tributed embedded design. The checkpoint interval deter-
mines the frequency of monitoring for faults and is also
proportional to the rollback distance. The checkpoint

interval should be determined by taking three important
aspects into account. These are the number of occurrences
of faults in a given interval, the maximum number of faults,
and the maximum rollback overheads in the distributed

system under design. The performance/overhead gives the
fault tolerance provided with the desired performance per
overhead. This value is normalized for the sake of analysis.

The proposed fault-tolerant slack distribution technique
can provide information to the designers that would
determine a priori the optimal checkpoint interval for a
given application. Fig. 13 gives the variation of the normal-
ized service rate for different checkpoint interval values for
the IM I and IM II benchmarks. The results show that a
checkpoint interval value between 10 and 12 is best suited
for IM I. This value is between 12 and 15 for IM II. These
bounds provide designers with prior information about the
optimal design for a given benchmark under consideration.
The curve seems to rise after the optimal point due the fact
that there is a greater rollback overhead encountered on
faults due to the larger checkpoint interval length.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

Fig. 11. Critical task admittance (in percent) with variation in the number of faults. (a) Faults at one node. (b) Faults distributed at multiple nodes.

Fig. 12. Service rate variation with/without fault tolerance. (a) TGFF I. (b) IM I.

6.3 Cost Performance Study

6.3.1 Slack Management Technique Study

Cost performance study is of paramount importance to any

model development. This is more relevant to low power

systems. A valid study can be done if our model is

compared to a similar model for such target systems. For

our study, we have considered the slack management

technique AND/OR Model given in [12]. The performance

in terms of net system energy savings and the overhead in

terms of space and time are determined for the IM I

benchmark for both techniques. The performance/overhead

metric was calculated as the net energy savings/overhead

for both techniques along the interval and is given in

Fig. 14. The results show higher performance/overhead by

using the proposed technique.

6.3.2 Rate-Based Scheme Study

The performance/overhead study for rate-based schemes

using the proposed model and the Stochastic Model [14] is

examined here. This study helps us validate the quality of the

proposed model in contrast to a contemporary technique [12].

The performance, that is, net system energy savings, and the

cost, that is, the overhead in time and space, are calculated for

both techniques and the energy savings/overhead is deter-

mined for analysis. The results demonstrate the efficiency of

the proposed technique (Fig. 15).

6.3.3 Study of the Overhead of Fault Tolerance in the

Proposed Technique

The overhead incurred with the proposed fault tolerance
into the model is an important study for design of the
system. For our study, we have considered the IM I
application in Fig. 16. The overhead increases with the
increase in the maximum fault-tolerant level of the system.
The trend shows that the curve seems to saturate around a
fault level of 4 or 5. It should also be noted that the
overhead incurred is nearly 1.5 ms with the maximum
number of faults as 5. This indicates that, instead of a
dynamic fault-tolerant scheme as proposed, a prediction-
based offline fault detection scheme can be used to reduce
these high overheads. This estimate helps the designer in
making a conscious decision to balance the maximum fault-
tolerant level with the maximum possible sustainable
overhead for a given system under study.

6.3.4 Study of Periodic Service Rate Overhead

One of the most important overheads of the proposed
technique is the determination of periodic service rate. The
periodic service rate overhead has been determined during
simulation. The overhead can be aptly determined if a
cosimulation strategy is employed, with one of the nodes
being an embedded processor. The Intel Xscale processor was
considered for our simulation. This embedded processor
emulated one node in the distributed framework, while the
rest of the nodes ran on the same 2 GHz Linux platform. The
graph in Fig. 17 demonstrates the PSR overhead, with an
increase in the number of task set demands at a node (Xscale

ACHARYA AND MAHAPATRA: A DYNAMIC SLACK MANAGEMENT TECHNIQUE FOR REAL-TIME DISTRIBUTED EMBEDDED SYSTEMS 15

Fig. 13. Optimal value of the checkpoint interval for a given benchmark.

Fig. 14. Performance/overhead curve.

Fig. 15. Performance/overhead curve.

Fig. 16. Service rate variation with/without fault tolerance.

processor) for a maximum of 20 task sets. The overhead has
been determined for four cases: the normal case without any
fault tolerance, the PSR with the checkpoint overhead and no
faults, PSR with the checkpoint overhead and one fault in the
system, and PSR with the checkpoint overhead and two faults
in the system. It is noteworthy that an online fault-tolerant
scheme is a costly affair.

7 CONCLUSIONS AND FUTURE WORK

This work has introduced an improved dynamic service
rate-based slack management technique for providing a
power-aware energy-efficient solution for real-time distrib-
uted embedded systems. The major contribution of this
work is the development of a unique slack management
technique based on service rate and change in intervals for
static and dynamic scheduling schemes. The results show
almost 29 percent improvement in the performance over-
head (time and space) over contemporary dynamic slack
management techniques for such real-time distributed
embedded systems. A model and simulation environment
considering the heterogeneity of such real-time distributed
embedded systems has been developed. Further, a class of
rate-based schemes has been incorporated into the model
and slack management technique. Another important
contribution is the incorporation of a fault-tolerant scheme
into the proposed technique for the design of a reliable
stimulatory model. The results show that the fault-tolerant
design inclusion helps in controlling a considerable number
of faults at the cost of increased energy consumption and
lowering of task admittance. Also, the optimality study on
MI and checkpoint interval values helps designers in
making early conscious decisions on the design of such
embedded systems. For future work, there can be more
work on dependability and increased reliability studies and
modeling with the proposed technique. Also, security
issues can be considered for such real-time distributed
systems. One important future work is implementing such a
technique in a real-world distributed framework, that is,
sensor network applications.

REFERENCES

[1] M. Pedram, “Power Minimization in IC Design: Principles and
Applications,” ACM Trans. Design Automation of Electronic Systems,
vol. 1, no. 1, pp. 3-56, 1996.

[2] G. Cao and M. Singhal, “On Coordinated Checkpointing in
Distributed Systems,” IEEE Trans. Parallel and Distributed Systems,
vol. 9, no. 12, pp. 1213-1225, Dec. 1998.

[3] L. Benini, A. Bogliolo, and G. De Micheli, “A Survey of Design
Techniques for System-Level Dynamic Power Management,”
IEEE Trans. VLSI Systems, pp. 299-316, 2000.

[4] T. Ishihara and H. Yasuura, “Voltage Scheduling Problem for
Dynamically Variable Voltage Processors,” Proc. Int’l Symp. Low
Power Electronics and Design, pp. 197-202, 1998.

[5] M. Weiser, B. Welsh, A. Demers, and S. Shenker, “Scheduling for
Reducing CPU Energy,” Proc. First Usenix Symp. Operating Systems
Design and Implementation, pp. 13-23, 1994.

[6] D. Zhu, R. Melham, and B. Childers, “Scheduling with Dynamic
Voltage/Speed Adjustments Using Slack Reclamation in Multi-
Processor Real-Time Systems,” Proc. 22nd IEEE Real-Time Systems
Symp., pp. 84-94, Dec. 2001.

[7] R. Mishra, N. Rastogi, D. Zhu, D. Mosse, and R. Melham, “Energy-
Aware Scheduling for Distributed Real-Time Systems,” Proc. 17th
Int’l Parallel and Distributed Processing Symp., 2003.

[8] J. Luo and N.K. Jha, “Static and Dynamic Variable Voltage
Scheduling Algorithms for Real-Time Heterogeneous Distributed
Embedded Systems,” Proc. Seventh Asia and South Pacific Design
Automation Conf./15th Int’l Conf. VLSI Design, p. 719, 2002.

[9] J. Luo and N.K. Jha, “Battery-Aware Static Scheduling for
Distributed Real-Time Embedded Systems,” Proc. 38th Design
Automation Conf., pp. 444-449, 2001.

[10] J. Luo and N.K. Jha, “Power-Profile Driven Variable Voltage
Sealing for Heterogeneous Distributed Real-Time Embedded
Systems,” Proc. 16th Int’l Conf. VLSI Design, p. 369, 2003.

[11] L. Shang, L.-S. Peh, and N.K. Jha, “Powerherd: Dynamic
Satisfaction of Peak Power Constraints in Interconnection Net-
works,” Proc. 17th Ann. Int’l Conf. Supercomputing, pp. 98-108,
2003.

[12] D. Zhu, D. Mosse, and R. Melham, “Power-Aware Scheduling for
AND/OR Graphs in Real-Time Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 15, no. 9, pp. 849-864, Sept. 2004.

[13] R.B. Prathipati, “Energy Efficient Scheduling Techniques for Real-
Time Embedded Systems ,” master’s thesis, Texas A&M Univ.,
Dec. 2003.

[14] F. Gruian, “Hard Real-Time Scheduling for Low-Energy Using
Stochastic Data and DVS Processors,” Proc. Int’l Symp. Low-Power
Electronics and Design, pp. 46-51, 2001.

[15] A. Raha, S. Kamat, and W. Zhao, “Admission Control for Hard
Real-Time Connections in ATM LANs,” Proc. IEEE INFOCOM ’01,
2001.

[16] R. Dick, “Task Graph for Free,” http://helsinki.ee.princeton.edu/
~dickrp/tgff, 2004.

Subrata Acharya received the MS degree in
computer science from Texas A&M University in
December 2004. She is currently working toward
the PhD degree at the University of Pittsburgh.
Her research interests include security, network-
ing, and embedded systems. She is a member
of the IEEE.

Rabi N. Mahapatra received the PhD degree in
computer engineering from the Indian Institute of
Technology (IIT), Kharagpur, India, in 1992. He
was an assistant professor in the Electronics
and Communication Engineering Department,
IIT, Kharagpur, until 1995. He is currently an
associate professor with the Department of
Computer Science and the director of the
Embedded Systems Research at Texas A&M
University. His current research interests include

embedded systems codesign, system-on-chip, VLSI design, and
computer architectures. He has published more than 85 papers in
reputable journals and conference proceedings. His recent publications
can be found at http://faculty.cs.tamu.edu/rabi/. He is a senior member
of the IEEE and a member of the IEEE Computer Socety.

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

Fig. 17. Periodic service rate overhead.

