

Interfacing Cores with On-chip Packet-Switched Networks

Praveen Bhojwani and Rabi Mahapatra

Department of Computer Science, Texas A&M University, College Station
{praveenb,rabi}@cs.tamu.edu

Abstract

With the emergence of the packet-switched networks as
a possible system-on-chip (SoC) communication
paradigm, the design of network-on-chips (NoC) has
provided a challenge to the designers. Meeting latency
requirements of communication among various cores is
one of the crucial objectives for system designers. The
core interface to the networking logic and the
communication network are the key contributors to
latency. With the goal of reducing this latency we
examine the packetization strategies in the NoC
communication. In this paper, three schemes of
implementations are analyzed, and the costs in terms of
latency, and area are projected through actual synthesis.

1. Introduction

Modern day solutions to design problems in the
domain of telecommunications, multimedia and consumer
electronics, hinge on the designers’ ability to formulate
these systems under strong time-to-market conditions. The
integration of system-on-chip (SoC) designs to provide
these solutions, rely on the utilization of these components
in a plug-and-play fashion. Designers face the challenge
of designing not only functionally correct systems, but
also guaranteeing reliable operation of the interacting
components. On-chip physical interconnections will
present a limiting factor for performance and possibly
energy consumption. The shared bus, which is today's
dominant interconnect template, will not meet the
performance requirements of tomorrow's systems. The on-
chip switching network is a technology that originates in
parallel computing, and is well suited for heterogeneous
communication among cores in an SoC environment. To
exploit task-level parallelism between processing IPs, the
aggregated interconnection throughputs to the order of 50
Gbits/s are needed [3]. Bus-based architectures will not
meet this requirement because a bus is inherently non-
scalable. The bandwidth of a bus is shared by all attached
devices and is simply not sufficient. A suitable
replacement that has been suggested by most researchers
in this field is that of a packet-switched interconnection

template. This template would address the performance
and the scalability requirements of the SoCs.

Researchers in this field have suggested the usage of
regular layouts for the cores in the system [4, 9]. The
communication architecture for such systems consists of
the basic building block, the tile. The tiles or clients are
connected to a network that routes packets between them.
Each tile may consist of one or more cores (processor
cores, memory cores, etc.). The tile would have routing
logic, which would be responsible for routing, forwarding
the packets, based on the routing policy of the network.
Before such a system can be deployed for on-chip
communication we need to address the latency issue. We
need to reduce this latency as much as possible, at every
stage of the data communication. The communication
comprises of three stages, the packet assembly, packet
transmission and the packet disassembly and delivery. We
examine the latency characteristics in the packet assembly
stage of the on-chip communication.

The different packetization strategies that have been
investigated in this paper are

· Software library based,
· On-core module based,
· Wrapper based.
The implementations vary depending on the

reconfigurability and programmability of the core in
question. Our research was to investigate the suitability of
these three methods and to determine the subsequent
performance differences between them. These results
provide crucial information to the system designer at the
time of core-network interface design.

The next section discusses the past work done in the
domain of networks-on-chip. Section 3 gives an overview
of the proposed work considered in our research. Section
4 provides a summary of the results obtained. Section 5
completes this paper with our conclusions.

2. Background Work

The concept of SoC (System-on-Chip) network
communication in the form of packet switched
communication was first discussed by Guerrier and
Greiner[3]. Their paper presented an architectural study of
a scalable system-level interconnect template. They
proposed a generic interconnection template that

addresses the performance and scalability requirements of
system-on-chip using integrated switching networks. They
accepted the limitation of their proposed architecture to be
the complexity of switching network concepts.

Micheli and Benini [1] proposed that on-chip micro-
networks, designed with layered methodology, will meet
the distinctive challenges of providing functionally
correct, reliable operation of interacting system-on-chip
components. This idea was also suggested by Sgroi et. al.
[5]. They suggested a formal approach to system-on-chip
design. Their approach considered communication
between components as important as the computations
they performed.

Benini and Micheli [2] discussed energy efficient and
reliable interconnect design for SoCs. They addressed the
distinguishing features of a design methodology that
aimed at achieving reliable designs under the limitations
of the interconnect technology. They specifically
considered energy consumption reduction, under
guaranteed quality of service (QoS), as a main objective
in system design.

Dally and Towles [4] also discussed the usage of on-
chip packet switched interconnection networks, against
ad-hoc global wiring structures on a chip. With their
approach, system modules communicate by sending
packets to one another over the network. The authors
claimed that the structured network wiring would give
well-controlled electrical parameters that would eliminate
timing iterations and enable the use of high-performance
circuits to reduce latency and increase bandwidth. The
area overhead required to implement the on-chip network
logic was estimated to be 6.6%. The authors also
suggested the usage of regular layouts for the cores in the
SoC. The tiles are connected to the networks through
switching logic that are responsible for the routing of the
packets over the network. Similar layouts were also
suggested by the authors in [9]. Figure 1 illustrates the
generic network on chip architecture.

Figure 1 – (a) Generic Network-on-Chip
Architecture (b) Tile Structure

The authors in [6] provide a communication
architecture synthesis tool-set, shown in Figure 2, that can
aid the designer in predicting the various cost parameters
and configuring the network-on-chip architecture for
optimal performance. They analyzed the issues involved
in the synthesis of the on-chip networks and proposed a
methodology that will help arrive at an optimal network
on chip design. They considered issues, such as the
quality of service (QoS) requirements of the
communicating cores, in terms of the latency and data
rate, utilization of the network resources and
implementation cost in terms of area, power and wiring
latency. Their tool-set comprised of an IP clustering
engine and a simulator to aid in the synthesis. The tools
used for the synthesis for the communication architecture,
were annotated with the design parameters obtained from
gate-level synthesis.

None of the above works address the interfacing issues
among the cores and the network interfaces of the tiles in
a NoC communication scenario. Our research results here
provide the network simulation part of the toolkit with
useful information regarding the consequences of the
selection between the different schemes of packetization.
This additional information will provide more accurate
results when we develop systems that use NoC as their
interconnect template. Figure 2 demonstrates the
relevance of the Core-Network Logic Interface results
(dotted block), when integrated with the Synthesis and
Verification methodology of On-chip networks discussed
in [6].

Figure 2 – Relevance of Core-Network Logic

Interface results in the Synthesis and Verification
methodology of On-chip networks in [6]

Network Tiles

Interconnection fabric

Core

Network Logic

(a) (b)

To
Interconnect

Fabric

Clustering
based

Estimation

Network
Creation

File

Communication
Description File

Network
Simulation

Analysis of
Performance

and
Utilization

Network
Behavioral
Model in
SystemC

Cosimulation
Traces

Interface
Behavioral
Model in
SystemC Design

Input

Synthesis Verification

Core-
Network

Logic
Interface
Results

Table 1 – Comparison between packetization schemes

Since research in the field of packet-switched on-chip
interconnection networks is still in its infancy, no
published research is as yet available on the complexities
and intricacies of this stage of the communication.

3. Proposed Work

In this work, we address the core-network logic
interface issues. One component of this issue is the
packetization of the core requests. The preparation of the
packets is one of the key stages in the communication on
the network on-chip. The transportation of the packet over
the network is expected to have a large latency, as the
packet will have to complete a number of hops (assuming
a mesh architecture) to reach its destination. Though the
packetization does not depend on the tile-layout, it would
be counterproductive to add further latency in the
preparation stage of the packet.

Another important issue that arises here is of whether
the core should be aware of the network or not. The pros
for a network-aware core are:

· Reduced latency, because the core directly provides
the packet, once it is informed of the packet format.

· Reduced complexity of the network interface of the
core.

The cons of a network-aware core are:
· Specification of packet parameters to the core.
· Core requires a certain degree of programmability.
· Need to modify existing cores to make them

network-aware.
The trade-offs here would be of latency, area,

complexity and flexibility. Table 1 provides a tabular
representation of these features in the three possible
implementations.

With the onset of packet-switched networks being a
possible mode of communication on SoCs, various aspects
of the communication need to be evaluated and optimized
to provide the required quality of service (QoS). In order
to reduce the packet-switched network on-chip

communication latency, several schemes are possible,
starting at the compiler-level where the compiler will
place instructions - requiring communication medium
usage - earlier in the sequence of execution, to have the
controllers such as those of memory pre-fetching and
transmitting data to the consumers to reduce latency. But
these can only be addressed once such a network is
deployed.

We address the packet communication process as a
target for the reduction of latency. The packet
communication process has essentially three stages -
packet preparation, packet transmission and packet
handling at receiver. Primarily we look at the packet
preparation stage of the communication over the network.
This is the period from where the processor knows that it
has to communicate with an external component (w.r.t. to
its tile), to the time it delivers the packet to the network
logic of that tile, which eventually delivers it to the
destination component. Since this stage could be a
possible bottleneck, apart from the latency of the
communication channel, we try to reduce the latency
exhibited by the system at the beginning of the
communication process. These results can also be used for
analyzing the system for the final stage of communication
too, the packet handling stage. Since these stages are
essentially complementary, they will exhibit similar
tendencies.

The experimental scenario considered for our research,
was of a simple distributed memory environment. The
system consists of a core that can access separate memory
cores spread through the on-chip network. To the software
executing on the processor core, the memory is one
contiguous block present at a single location. The
processor core is aware of the distributed nature of the
memory space. When the software attempts to access a
memory location, the destination core has to be identified
and accessed. We shall demonstrate how this is
implemented in the three different schemes. Before we
examine the packet preparation steps and methods, we

Type of
Implementation Area Latency

(Expected) Complexity Flexibility

Software Library
(on-core)

Low on HW area, but
increases code size

(increased instructions to
packetize).

High Increased code size.

Requires programmable
cores.

RTL (HW)
implementation

(on-core)
Additional register and logic

to packetize Low
Additional registers and logic
and an increase in instruction

set.

Requires programmable
cores or development of

modified cores.

Wrapper RTL (HW)
Implementation

(off-core)

Additional control, registers
and logic to packetize. Low

Additional control, registers
and logic.

Ability to understand core
operation

Can use existing cores.
Modify wrappers for plug-

and-play into different
networks.

take a look at the generic structure of the packets. The
structure of the packet can be tuned for a particular
network, so as to reduce the overhead of packetizing the
data. A packet essentially consists of 3 parts, the packet
header, the packet data and the packet tail.

Figure 3 – Packet Structure
The packet header contains the necessary routing and

network control information. These will be the destination
and source addresses. When source routing is used, the
destination address will be ignored. It is replaced with a
route field that will specify the route to the destination. A
disadvantage of source routing is the added overhead of
including the route field in the packet header. But the
inclusion of such a field reduces the complexity of the
routing logic on the cores on the network. It simplifies
their routing decisions and their task will be to just look at
the route field and route the packet over the specified
output port.

The packet data consists of essentially two types of
information. The first is the control information that will
indicate to the receiving memory core about the type of
memory request being made. The second will be the
actual data, i.e. the memory address being accessed. The
packet tail contains error-checking code and error-
correcting code. But this part of the packet is optional.
The inclusion of this information will depend on the error
probability of the underlying network.

The packet structure utilized for this research was
tuned to the corresponding implementation strategy. The
structures are further described in the following sections.
With the simple distributed memory environment scenario
in mind, we identified the generic operational steps that
need to be performed when an address at a memory core
needs to be addressed. Figure 4 illustrates these steps.

The set of operations stated above are executed at
different locations, depending on the type of packetization
strategy. The location will be incumbent on the
configurability and programmability characteristic of the
core in question.

Figur
S

As mentioned in Section 1, the main focus of this
research has been the analysis of the alternative packet
preparation methods available to the system designer. For
our research, we used the Xtensa Processor Core from
Tensilica [7]. This configurable, extensible and
synthesizable processor core was designed specifically to
address Embedded System-on-Chip (SoC) applications.
This processor can be molded by the system designer to
suit the application. The designer can also describe
additional data-types, instructions and execution units
using the Tensilica Instruction Extension (TIE) language.
Using this core, it is possible to develop an application
specific core for packetization. In the following sections
we shall discuss three implementations of the packetizing
modules.

3.1. Software Library for packetization

The software implementation of the packet preparation

provides the user with a library of instructions that can be
used to access a memory address in a distributed memory
space. The library requires three configuration files. These
files provide important network associated properties.
Figure 5 provides an overview of the configuration file
structure.

The socnet.conf configuration file specifies the address
of the host. It also provides the route information to the
network elements. The packet structure used is specified
in packet.conf and this specifies the fields in the packet
and their corresponding size in terms of bits.
mem_alloc.conf contains the memory allocation
information, i.e. the address space of the memory cores in
the environment. When the user issues a memory access
instruction, the corresponding packet is prepared
according to the steps highlighted in the figure 4.

The sample code to test the library was executed on
the basic Xtensa Processor Core. The core was configured
with a 128-bit processor interface. The cycle count for the
execution of the packetization instruction was determined
by using the profiling tool - xt-gprof - included in the
Xtensa toolset. The area results for this strategy are the
size of the software library code.

3.2. On-core module for packetizing

In this implementation we utilized the Xtensa
Processor Core’s configurability and its TIE language to
define instructions for preparing the packets. This
program. The Xtensa toolset has tools that allow the
profiling of the executed instructions. From the profile
one can obtain the required results such as the cycle-count
for the executed instructions The TIE compiler also

Step 1:

Step 2:

Step 3:

Step 4:
Step 5:

Step 6:

Packet Data Packet Header Packet Tail
Translate address by determining which memory
core needs to be accessed, and determine the
effective address at that memory core.
Prepare packet header by setting the source
address and the route to the destination.
Examine program instruction requiring memory
access, and set control flags in the packet data.
Set effective address in packet data.
If using error-checking codes and error-
correcting codes, calculate the values and set
them in the packet tail.
Assemble packet and deliver to the network logic
of the core.
e 4 – Generic packetizing process for a
imple Distributed Memory Model

generates the required Verilog/VHDL files that are then
analyzed using Synopsys Design Analyzer, to obtain the

Figure 5 – Configuration File Structures

timing and area costs.
The TIE definition used for our research, included the

specification of the stages listed in Figure 4, in terms of
the TIE language. The TIE code was successfully
compiled with the TIE compiler and the execution of the
custom instruction was tested on the Xtensa processor.
The packet structure used in this implementation is
equivalent to the one shown in Figure 6. The cycle count
for this implementation was obtained using the Instruction
Set Simulator (ISS), provided with the Xtensa tool set.
The ISS provides detailed information on the contents of
the registers in use and the output available at the
processor interface.

3.3. Wrapper logic for packetizing

For cores that are neither programmable nor
reconfigurable, the only option for interfacing with the
networking logic of the tile is to utilize a wrapper, which
would have the responsibility of packetizing and de-
packetizing the cores requests and responses. The
wrappers have the responsibility of (i) receiving the
contents from the core interface, preparing the packets and
dispatching them to the network logic of the tile and (ii)
receiving the packets from the networking logic and
presenting the contents to the core interface.

For our experiment, we designed the packetizer
module of the wrapper, which was compliant with VSI
Alliance’s Virtual Component Interface (VCI) Standard
Version 2 [8]. This standard defines the basic
characteristics of the Virtual Component Interface (VCI).
It provides detailed information on the different
complexity interfaces, the Peripheral VCI (PVCI), the
Basic VCI (BVCI) and the Advanced VCI (AVCI). We
developed the wrapper that would be compliant with the
BVCI standard. The implementation details are not
provided here due to the restrictive nature of the standards

document. The VSIA vision is to dramatically improve the
productivity of SoC development by specifying open
standards and specifications that facilitate the integration
of software and hardware VCs from multiple sources. This
was the reason we chose to develop a wrapper compliant
with the VCI standard because we believe that most future
cores will have well-defined interfaces similar to or be
VCI standard compliant.

The packetizing module attempts to optimize the
packets being generated for the on-chip network. The
packet structure in this implementation was dependent on
the signals used in the BVCI interface (details cannot be
provided due to non-disclosure agreement). The
packetizer module maintains the address translation
information, i.e. the mapping of memory addresses to
destination core addresses. It analyses the content of the
core request and tries to optimize on the amount of data
being sent over the on-chip network, by filtering the
redundant information from the packets. The timing, and
area analysis for this implementation was obtained using
the Synopsys’ Design Analyzer.

4. Results

The results obtained for the analysis carried out
evaluates the performance of the packetization schemes in
terms of latency, and area. Table 2 provides a summary of
the results that were obtained for the latencies
experienced. The latency in the case of the software
library, was determined using the cycle count obtained
from the Instruction Set Simulator (ISS) and the clock
frequency. This result will vary with different processors
and implementations of the packetization library. In the
case of the on-core packetization, the latency was
determined in a similar way. However, the clock
frequency was obtained through synthesis of the TIE
specification. It should be noted here that, these two

packet.conf
(b)

HOST_ADDRESS=<address value>

<num of routes in route table>
<destination> :: <route to destination1>
<destination> :: <route to destination2>
<destination> :: <route to destination3>
…
…

PACKET_HEADR <num of fields>
<header field 1> = <size of field 1>
<header field 2> = <size of field 2>
<header field 3> = <size of field 3>
…
PACKET_DATA <num of fields>
<data field 1> = <size of field 1>
<data field 2> = <size of field 2>
<data field 3> = <size of field 3>
…
PACKET_TAIL <num of fields>
<tail field 1> = <size of field 1>
<tail field 2> = <size of field 2>
<tail field 3> = <size of field 3>
…

<num of mem cores>
<start addr1>::<end addr1> <core addr>
<start addr2>::<end addr2> <core addr>
<start addr3>::<end addr3> <core addr>
…

socnet.conf
(a)

mem_alloc.conf
(c)

schemes were implemented on the Xtensa Processor Core.
The lower clock frequency is due to the slow-down caused
by the TIE logic that was incorporated into the processor
core. This is an acceptable trade-off, in light of the
performance improvement. This conservative result was
obtained by using the TSMC 0.18micron and slow
libraries. With a little more effort and better libraries it is
possible to have the Xtensa processor operate at its
normal clock frequency of 200MHz and will further
reduce the latency. The result for the wrapper
implementation is obtained using the 0.35micron
technology library. With better technology, there will be a
further reduction in the latency. The latency result in this
case provides the developer with the time taken through
the longest path in the wrapper, and will enable him to
decide on the clocking rate for the interface.

Table 2 – Latency Results

Packetization
Strategy

Cycle
Count

Clock
Frequency Latency

Software Library 47 193MHz 243.5ns
On-core packetization 2 185Mhz 10.8ns
Wrapper packetization - - 3.02ns

Table 3 – Area Results

Packetization
Strategy Area Remark

Software Library 118 KB Code size

On-core packetization 13K Gate count using
0.18micron technology

Wrapper packetization 4K Gate count using
0.35micron technology

Table 3, provides the area costs of the three schemes that
were implemented. The area cost of the three
implementations cannot be compared quantitatively. The
results provide a measure of the cost that the system
designer would experience using a particular strategy. The
area for the software implementation was determined in
terms of the code size of the software library. To
determine the area of the TIE logic, for the on-core
packetization, the TIE specifications were synthesized
following the regular steps (i.e. compilation of the TIE
specification and synthesis of the compiler output). The
13K gate count is an overly conservative estimate. The
silicon area appeared to be under 0.2 square mm. The area
for the wrapper was determined using Synopsys’ Design
Analyzer. It cannot be directly compared to the one
obtained for the Xtensa Core, as the technologies used in
both are considerably different.

5. Conclusions

In this paper, we proposed three different packetization
schemes to analyze their overhead in core-network logic
interface in a SoC with a packet-switched network. The
results provided by this research are conservative and give
us an insight into the complexities and the intricacies that
are involved when cores or their corresponding wrappers
are developed for SoCs that use packet-switched network
on-chip communication. Design decisions will be
incumbent upon the latencies and the area overhead
factors that have been analyzed in this research. Since
communication is a major factor in hardware-software
partitioning, an accurate communication cost model will
aid in robust system design. This network-aware
partitioning is another area of research that needs to be
researched into.

6. Acknowledgements

We would like to thank Tensilica Corp. for their
Xtensa Toolset and synthesis results for our TIE
specifications. We also thank the VSI Alliance for access
to their standards and specifications.

7. References

[1] G. De Micheli and L. Benini, "Networks on Chip: A
New SOC Paradigm", IEEE Computer, Vol. 35 Issue: 1,
Jan 2002, pp. 70 -78
[2] L. Benini and G. De Micheli, "Powering Networks on
Chips", System Synthesis, 2001. Proceedings, The 14th
International Symposium on, 2001, pp. 33 -38.
[3] P. Guerrier and A. Greiner, "A generic architecture
for on-chip packet-switched interconnections", Design,
Automation and Test in Europe Conference and
Exhibition 2000. Proceedings, 2000, pp. 250 -256.
[4] W. J. Dally and B. Towles, "Route Packets, Not
Wires: On-Chip Interconnection Networks", Design
Automation Conference, 2001. Proceedings, 2001, pp.
684 -689.
[5] Sgroi, M., et. al., "Addressing the system-on-a-chip
interconnect woes through communication-based design",
Design Automation Conference, 2001. Proceedings, 2001,
pp. 667 - 672.
[6] N. Swaminathan, “Communication Synthesis for On-
Chip Networks”, Masters Thesis, Texas A&M University,
2002.
[7] Tensilica Xtensa Core, www.tensilica.com
[8] VSI Alliance, Virtual Component Interface Standard
Version 2 (OCB 2 2.0), April 2001. www.vsi.org
[Document is only available to members]
[9] Kumar S., et. al., “ A Network on Chip Architecture
and Design Methodology”, Proceedings of IEEE
Computer Society Annual Symposium on VLSI, April
2002.

	Interfacing Cores with On-chip Packet-Switched Networks
	Table 1 – Comparison between packetization schemes
	Figure 3 – Packet Structure
	
	Table 2 – Latency Results

	Table 3 – Area Results

