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Abstract 
 

With the emergence of the packet-switched networks as 
a possible system-on-chip (SoC) communication 
paradigm, the design of network-on-chips (NoC) has 
provided a challenge to the designers. Meeting latency 
requirements of communication among various cores is 
one of the crucial objectives for system designers. The 
core interface to the networking logic and the 
communication network are the key contributors to 
latency. With the goal of reducing this latency we 
examine the packetization strategies in the NoC 
communication. In this paper, three schemes of 
implementations are analyzed, and the costs in terms of 
latency, and area are projected through actual synthesis. 
 
 
1. Introduction 
 

Modern day solutions to design problems in the 
domain of telecommunications, multimedia and consumer 
electronics, hinge on the designers’ ability to formulate 
these systems under strong time-to-market conditions. The 
integration of system-on-chip (SoC) designs to provide 
these solutions, rely on the utilization of these components 
in a plug-and-play fashion. Designers face the challenge 
of designing not only functionally correct systems, but 
also guaranteeing reliable operation of the interacting 
components. On-chip physical interconnections will 
present a limiting factor for performance and possibly 
energy consumption. The shared bus, which is today's 
dominant interconnect template, will not meet the 
performance requirements of tomorrow's systems. The on-
chip switching network is a technology that originates in 
parallel computing, and is well suited for heterogeneous 
communication among cores in an SoC environment. To 
exploit task-level parallelism between processing IPs, the 
aggregated interconnection throughputs to the order of 50 
Gbits/s are needed [3]. Bus-based architectures will not 
meet this requirement because a bus is inherently non-
scalable. The bandwidth of a bus is shared by all attached 
devices and is simply not sufficient. A suitable 
replacement that has been suggested by most researchers 
in this field is that of a packet-switched interconnection 

template. This template would address the performance 
and the scalability requirements of the SoCs. 

Researchers in this field have suggested the usage of 
regular layouts for the cores in the system [4, 9]. The 
communication architecture for such systems consists of 
the basic building block, the tile. The tiles or clients are 
connected to a network that routes packets between them. 
Each tile may consist of one or more cores (processor 
cores, memory cores, etc.). The tile would have routing 
logic, which would be responsible for routing, forwarding 
the packets, based on the routing policy of the network. 
Before such a system can be deployed for on-chip 
communication we need to address the latency issue. We 
need to reduce this latency as much as possible, at every 
stage of the data communication. The communication 
comprises of three stages, the packet assembly, packet 
transmission and the packet disassembly and delivery. We 
examine the latency characteristics in the packet assembly 
stage of the on-chip communication. 

The different packetization strategies that have been 
investigated in this paper are 

· Software library based, 
· On-core module based, 
· Wrapper based. 
The implementations vary depending on the 

reconfigurability and programmability of the core in 
question. Our research was to investigate the suitability of 
these three methods and to determine the subsequent 
performance differences between them. These results 
provide crucial information to the system designer at the 
time of core-network interface design. 

The next section discusses the past work done in the 
domain of networks-on-chip. Section 3 gives an overview 
of the proposed work considered in our research. Section 
4 provides a summary of the results obtained. Section 5 
completes this paper with our conclusions. 
 
2. Background Work 
 

The concept of SoC (System-on-Chip) network 
communication in the form of packet switched 
communication was first discussed by Guerrier and 
Greiner[3]. Their paper presented an architectural study of 
a scalable system-level interconnect template. They 
proposed a generic interconnection template that 



 

 

addresses the performance and scalability requirements of 
system-on-chip using integrated switching networks. They 
accepted the limitation of their proposed architecture to be 
the complexity of switching network concepts.  

Micheli and Benini [1] proposed that on-chip micro-
networks, designed with layered methodology, will meet 
the distinctive challenges of providing functionally 
correct, reliable operation of interacting system-on-chip 
components. This idea was also suggested by Sgroi et. al. 
[5]. They suggested a formal approach to system-on-chip 
design. Their approach considered communication 
between components as important as the computations 
they performed. 

Benini and Micheli [2] discussed energy efficient and 
reliable interconnect design for SoCs. They addressed the 
distinguishing features of a design methodology that 
aimed at achieving reliable designs under the limitations 
of the interconnect technology. They specifically 
considered energy consumption reduction, under 
guaranteed quality of service (QoS), as a main objective 
in system design. 

Dally and Towles [4] also discussed the usage of on-
chip packet switched interconnection networks, against 
ad-hoc global wiring structures on a chip. With their 
approach, system modules communicate by sending 
packets to one another over the network. The authors 
claimed that the structured network wiring would give 
well-controlled electrical parameters that would eliminate 
timing iterations and enable the use of high-performance 
circuits to reduce latency and increase bandwidth. The 
area overhead required to implement the on-chip network 
logic was estimated to be 6.6%. The authors also 
suggested the usage of regular layouts for the cores in the 
SoC. The tiles are connected to the networks through 
switching logic that are responsible for the routing of the 
packets over the network. Similar layouts were also 
suggested by the authors in [9]. Figure 1 illustrates the 
generic network on chip architecture. 

Figure 1 – (a) Generic Network-on-Chip 
Architecture (b) Tile Structure 

 

The authors in [6] provide a communication 
architecture synthesis tool-set, shown in Figure 2, that can 
aid the designer in predicting the various cost parameters 
and configuring the network-on-chip architecture for 
optimal performance.  They analyzed the issues involved 
in the synthesis of the on-chip networks and proposed a 
methodology that will help arrive at an optimal network 
on chip design. They considered issues, such as the 
quality of service (QoS) requirements of the 
communicating cores, in terms of the latency and data 
rate, utilization of the network resources and 
implementation cost in terms of area, power and wiring 
latency. Their tool-set comprised of an IP clustering 
engine and a simulator to aid in the synthesis.  The tools 
used for the synthesis for the communication architecture, 
were annotated with the design parameters obtained from 
gate-level synthesis.  

None of the above works address the interfacing issues 
among the cores and the network interfaces of the tiles in 
a NoC communication scenario. Our research results here 
provide the network simulation part of the toolkit with 
useful information regarding the consequences of the 
selection between the different schemes of packetization. 
This additional information will provide more accurate 
results when we develop systems that use NoC as their 
interconnect template. Figure 2 demonstrates the 
relevance of the Core-Network Logic Interface results 
(dotted block), when integrated with the Synthesis and 
Verification methodology of On-chip networks discussed 
in [6]. 

 
Figure 2 – Relevance of Core-Network Logic 

Interface results in the Synthesis and Verification 
methodology of On-chip networks in [6] 
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Table 1 – Comparison between packetization schemes 

Since research in the field of packet-switched on-chip 
interconnection networks is still in its infancy, no 
published research is as yet available on the complexities 
and intricacies of this stage of the communication. 

 
3. Proposed Work 
 

In this work, we address the core-network logic 
interface issues. One component of this issue is the 
packetization of the core requests. The preparation of the 
packets is one of the key stages in the communication on 
the network on-chip. The transportation of the packet over 
the network is expected to have a large latency, as the 
packet will have to complete a number of hops (assuming 
a mesh architecture) to reach its destination. Though the 
packetization does not depend on the tile-layout, it would 
be counterproductive to add further latency in the 
preparation stage of the packet. 

Another important issue that arises here is of whether 
the core should be aware of the network or not. The pros 
for a network-aware core are: 

· Reduced latency, because the core directly provides 
the packet, once it is informed of the packet format. 

· Reduced complexity of the network interface of the 
core.  

The cons of a network-aware core are: 
· Specification of packet parameters to the core. 
· Core requires a certain degree of programmability. 
· Need to modify existing cores to make them 

network-aware. 
The trade-offs here would be of latency, area, 

complexity and flexibility. Table 1 provides a tabular 
representation of these features in the three possible 
implementations. 

With the onset of packet-switched networks being a 
possible mode of communication on SoCs, various aspects 
of the communication need to be evaluated and optimized 
to provide the required quality of service (QoS). In order 
to reduce the packet-switched network on-chip 

communication latency, several schemes are possible, 
starting at the compiler-level where the compiler will 
place instructions - requiring communication medium 
usage - earlier in the sequence of execution, to have the 
controllers such as those of memory pre-fetching and 
transmitting data to the consumers to reduce latency. But 
these can only be addressed once such a network is 
deployed. 

We address the packet communication process as a 
target for the reduction of latency. The packet 
communication process has essentially three stages - 
packet preparation, packet transmission and packet 
handling at receiver. Primarily we look at the packet 
preparation stage of the communication over the network. 
This is the period from where the processor knows that it 
has to communicate with an external component (w.r.t. to 
its tile), to the time it delivers the packet to the network 
logic of that tile, which eventually delivers it to the 
destination component. Since this stage could be a 
possible bottleneck, apart from the latency of the 
communication channel, we try to reduce the latency 
exhibited by the system at the beginning of the 
communication process. These results can also be used for 
analyzing the system for the final stage of communication 
too, the packet handling stage. Since these stages are 
essentially complementary, they will exhibit similar 
tendencies. 

The experimental scenario considered for our research, 
was of a simple distributed memory environment. The 
system consists of a core that can access separate memory 
cores spread through the on-chip network. To the software 
executing on the processor core, the memory is one 
contiguous block present at a single location. The 
processor core is aware of the distributed nature of the 
memory space. When the software attempts to access a 
memory location, the destination core has to be identified 
and accessed. We shall demonstrate how this is 
implemented in the three different schemes. Before we 
examine the packet preparation steps and methods, we 

Type of 
Implementation Area Latency 

(Expected) Complexity Flexibility 

Software Library 
(on-core) 

Low on HW area, but 
increases code size 

(increased instructions to 
packetize). 

High Increased code size. 
 

Requires programmable 
cores. 

RTL (HW) 
implementation 

(on-core) 
Additional register and logic 

to packetize Low 
Additional registers and  logic 
and an increase in instruction 

set. 

Requires programmable 
cores or development of 

modified cores. 

Wrapper RTL (HW) 
Implementation    

(off-core) 

Additional control, registers 
and logic to packetize. Low 

Additional control, registers 
and logic. 

Ability to understand core 
operation 

Can use existing cores. 
Modify wrappers for plug-

and-play into different 
networks. 



 

 

take a look at the generic structure of the packets. The 
structure of the packet can be tuned for a particular 
network, so as to reduce the overhead of packetizing the 
data. A packet essentially consists of 3 parts, the packet 
header, the packet data and the packet tail.  

Figure 3 – Packet Structure 
The packet header contains the necessary routing and 

network control information. These will be the destination 
and source addresses. When source routing is used, the 
destination address will be ignored. It is replaced with a 
route field that will specify the route to the destination. A 
disadvantage of source routing is the added overhead of 
including the route field in the packet header. But the 
inclusion of such a field reduces the complexity of the 
routing logic on the cores on the network. It simplifies 
their routing decisions and their task will be to just look at 
the route field and route the packet over the specified 
output port.  

The packet data consists of essentially two types of 
information. The first is the control information that will 
indicate to the receiving memory core about the type of 
memory request being made. The second will be the 
actual data, i.e. the memory address being accessed. The 
packet tail contains error-checking code and error-
correcting code. But this part of the packet is optional. 
The inclusion of this information will depend on the error 
probability of the underlying network. 

The packet structure utilized for this research was 
tuned to the corresponding implementation strategy. The 
structures are further described in the following sections. 
With the simple distributed memory environment scenario 
in mind, we identified the generic operational steps that 
need to be performed when an address at a memory core 
needs to be addressed. Figure 4 illustrates these steps. 

The set of operations stated above are executed at 
different locations, depending on the type of packetization 
strategy. The location will be incumbent on the 
configurability and programmability characteristic of the 
core in question. 

Figur
S

As mentioned in Section 1, the main focus of this 
research has been the analysis of the alternative packet 
preparation methods available to the system designer. For 
our research, we used the Xtensa Processor Core from 
Tensilica [7]. This configurable, extensible and 
synthesizable processor core was designed specifically to 
address Embedded System-on-Chip (SoC) applications. 
This processor can be molded by the system designer to 
suit the application. The designer can also describe 
additional data-types, instructions and execution units 
using the Tensilica Instruction Extension (TIE) language. 
Using this core, it is possible to develop an application 
specific core for packetization. In the following sections 
we shall discuss three implementations of the packetizing 
modules. 

 
3.1. Software Library for packetization 

 
The software implementation of the packet preparation 

provides the user with a library of instructions that can be 
used to access a memory address in a distributed memory 
space. The library requires three configuration files. These 
files provide important network associated properties. 
Figure 5 provides an overview of the configuration file 
structure.  

The socnet.conf configuration file specifies the address 
of the host. It also provides the route information to the 
network elements. The packet structure used is specified 
in packet.conf and this specifies the fields in the packet 
and their corresponding size in terms of bits. 
mem_alloc.conf contains the memory allocation 
information, i.e. the address space of the memory cores in 
the environment. When the user issues a memory access 
instruction, the corresponding packet is prepared 
according to the steps highlighted in the figure 4. 

The sample code to test the library was executed on 
the basic Xtensa Processor Core. The core was configured 
with a 128-bit processor interface. The cycle count for the 
execution of the packetization instruction was determined 
by using the profiling tool - xt-gprof - included in the 
Xtensa toolset. The area results for this strategy are the 
size of the software library code. 
 
3.2. On-core module for packetizing 
 

In this implementation we utilized the Xtensa 
Processor Core’s configurability and its TIE language to 
define instructions for preparing the packets. This 
program. The Xtensa toolset has tools that allow the 
profiling of the executed instructions. From the profile 
one can obtain the required results such as the cycle-count 
for the executed instructions The TIE compiler also 

Step 1: 

Step 2: 

Step 3: 

Step 4: 
Step 5: 

Step 6: 

Packet Data Packet Header Packet Tail 
Translate address by determining which memory 
core needs to be accessed, and determine the 
effective address at that memory core. 
Prepare packet header by setting the source 
address and the route to the destination. 
Examine program instruction requiring memory 
access, and set control flags in the packet data. 
Set effective address in packet data. 
If using error-checking codes and error-
correcting codes, calculate the values and set 
them in the packet tail. 
Assemble packet and deliver to the network logic 
of the core. 
e 4 – Generic packetizing process for a 
imple Distributed Memory Model 

generates the required Verilog/VHDL files that are then 
analyzed using Synopsys Design Analyzer, to obtain the



 

 

Figure 5 – Configuration File Structures 
 

timing and area costs. 
The TIE definition used for our research, included the 

specification of the stages listed in Figure 4, in terms of 
the TIE language. The TIE code was successfully 
compiled with the TIE compiler and the execution of the 
custom instruction was tested on the Xtensa processor. 
The packet structure used in this implementation is 
equivalent to the one shown in Figure 6. The cycle count 
for this implementation was obtained using the Instruction 
Set Simulator (ISS), provided with the Xtensa tool set. 
The ISS provides detailed information on the contents of 
the registers in use and the output available at the 
processor interface.  

 
3.3. Wrapper logic for packetizing 
 

For cores that are neither programmable nor 
reconfigurable, the only option for interfacing with the 
networking logic of the tile is to utilize a wrapper, which 
would have the responsibility of packetizing and de-
packetizing the cores requests and responses. The 
wrappers have the responsibility of (i) receiving the 
contents from the core interface, preparing the packets and 
dispatching them to the network logic of the tile and (ii) 
receiving the packets from the networking logic and 
presenting the contents to the core interface. 

For our experiment, we designed the packetizer 
module of the wrapper, which was compliant with VSI 
Alliance’s Virtual Component Interface (VCI) Standard 
Version 2 [8]. This standard defines the basic 
characteristics of the Virtual Component Interface (VCI). 
It provides detailed information on the different 
complexity interfaces, the Peripheral VCI (PVCI), the 
Basic VCI (BVCI) and the Advanced VCI (AVCI). We 
developed the wrapper that would be compliant with the 
BVCI standard. The implementation details are not 
provided here due to the restrictive nature of the standards 

document. The VSIA vision is to dramatically improve the 
productivity of SoC development by specifying open 
standards and specifications that facilitate the integration 
of software and hardware VCs from multiple sources. This 
was the reason we chose to develop a wrapper compliant 
with the VCI standard because we believe that most future 
cores will have well-defined interfaces similar to or be 
VCI standard compliant.  

The packetizing module attempts to optimize the 
packets being generated for the on-chip network. The 
packet structure in this implementation was dependent on 
the signals used in the BVCI interface (details cannot be 
provided due to non-disclosure agreement). The 
packetizer module maintains the address translation 
information, i.e. the mapping of memory addresses to 
destination core addresses. It analyses the content of the 
core request and tries to optimize on the amount of data 
being sent over the on-chip network, by filtering the 
redundant information from the packets. The timing, and 
area analysis for this implementation was obtained using 
the Synopsys’ Design Analyzer. 

 
4. Results 
 

The results obtained for the analysis carried out 
evaluates the performance of the packetization schemes in 
terms of latency, and area. Table 2 provides a summary of 
the results that were obtained for the latencies 
experienced. The latency in the case of the software 
library, was determined using the cycle count obtained 
from the Instruction Set Simulator (ISS) and the clock 
frequency. This result will vary with different processors 
and implementations of the packetization library. In the 
case of the on-core packetization, the latency was 
determined in a similar way. However, the clock 
frequency was obtained through synthesis of the TIE 
specification. It should be noted here that, these two 

packet.conf 
(b) 

HOST_ADDRESS=<address value> 
 
<num of routes in route table> 
<destination> :: <route to destination1> 
<destination> :: <route to destination2> 
<destination> :: <route to destination3> 
… 
… 
 
 

PACKET_HEADR <num of fields> 
<header field 1> = <size of field 1> 
<header field 2> = <size of field 2> 
<header field 3> = <size of field 3> 
… 
PACKET_DATA <num of fields> 
<data field 1> = <size of field 1> 
<data field 2> = <size of field 2> 
<data field 3> = <size of field 3> 
… 
PACKET_TAIL <num of fields> 
<tail field 1> = <size of field 1> 
<tail field 2> = <size of field 2> 
<tail field 3> = <size of field 3> 
… 
 

<num of mem cores> 
<start addr1>::<end addr1> <core addr> 
<start addr2>::<end addr2> <core addr> 
<start addr3>::<end addr3> <core addr> 
… 
 

socnet.conf 
(a) 

mem_alloc.conf 
(c) 



 

 

schemes were implemented on the Xtensa Processor Core. 
The lower clock frequency is due to the slow-down caused 
by the TIE logic that was incorporated into the processor 
core. This is an acceptable trade-off, in light of the 
performance improvement. This conservative result was 
obtained by using the TSMC 0.18micron and slow 
libraries. With a little more effort and better libraries it is 
possible to have the Xtensa processor operate at its 
normal clock frequency of 200MHz and will further 
reduce the latency. The result for the wrapper 
implementation is obtained using the 0.35micron 
technology library. With better technology, there will be a 
further reduction in the latency. The latency result in this 
case provides the developer with the time taken through 
the longest path in the wrapper, and will enable him to 
decide on the clocking rate for the interface. 

 
Table 2 – Latency Results 

Packetization 
Strategy 

Cycle 
Count 

Clock 
Frequency Latency 

Software Library 47 193MHz 243.5ns 
On-core packetization 2 185Mhz 10.8ns 
Wrapper packetization - - 3.02ns 

 
Table 3 – Area Results 

Packetization 
Strategy Area Remark 

Software Library 118 KB Code size 

On-core packetization 13K Gate count using 
0.18micron technology 

Wrapper packetization 4K Gate count using 
0.35micron technology 

 
Table 3, provides the area costs of the three schemes that 
were implemented. The area cost of the three 
implementations cannot be compared quantitatively. The 
results provide a measure of the cost that the system 
designer would experience using a particular strategy. The 
area for the software implementation was determined in 
terms of the code size of the software library. To 
determine the area of the TIE logic, for the on-core 
packetization, the TIE specifications were synthesized 
following the regular steps (i.e. compilation of the TIE 
specification and synthesis of the compiler output). The 
13K gate count is an overly conservative estimate. The 
silicon area appeared to be under 0.2 square mm. The area 
for the wrapper was determined using Synopsys’ Design 
Analyzer. It cannot be directly compared to the one 
obtained for the Xtensa Core, as the technologies used in 
both are considerably different. 
 
5. Conclusions 

 

In this paper, we proposed three different packetization 
schemes to analyze their overhead in core-network logic 
interface in a SoC with a packet-switched network. The 
results provided by this research are conservative and give 
us an insight into the complexities and the intricacies that 
are involved when cores or their corresponding wrappers 
are developed for SoCs that use packet-switched network 
on-chip communication. Design decisions will be 
incumbent upon the latencies and the area overhead 
factors that have been analyzed in this research. Since 
communication is a major factor in hardware-software 
partitioning, an accurate communication cost model will 
aid in robust system design. This network-aware 
partitioning is another area of research that needs to be 
researched into. 
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