
Hierarchical Simulation of a Multiprocessor Architecture�

Marius Pirvu, Laxmi Bhuyan and Rabi Mahapatra
Department of Computer Science

Texas A&M University
College Station, TX 77843

fpirvum, bhuyan, rabig@cs.tamu.edu

Abstract

When proposing new architectural enhancements, it is
also important to account for the hardware complexity. To
achieve this goal, we propose to model the new design in a
hardware description language (HDL), synthesize the HDL
code, and infer a realistic clock cycle which will be used
in subsequent simulations. For accurate results, we de-
velop a two-level hierarchical simulation technique, where
an execution driven simulator (RSIM) and an HDL simula-
tor (Verilog-XL) are coupled together to evaluate an entire
system. We detail the simulation process and show its im-
pact on the design of an interconnect switch architecture for
CC-NUMA multiprocessors.

1 Introduction

One of the problems with the research in the computer
architecture field is that most of the architecture simulators
overlook the hardware complexity issue and thus, their esti-
mates might be exaggerated. In this paper we demonstrate
that logic complexity can indeed affect the clock cycle of a
design and hence, the performance of the simulated system.
In our opinion, the effect of hardware complexity must be
reflected somehow in our simulation results. To achieve this
goal we advocate the use of hardware description languages
(HDL) together with synthesis. However, since usually we
are interested only in a subsystem, it is more advantageous
(from the simulation time point of view) to describe in HDL
only the targeted component, and let the rest of the system
be modeled in a high level programming language. Such a
strategy combines the simulation at the architectural level
(the C code) with simulation at the circuit level (the HDL
code) and hence, will be called a two-level hierarchical sim-
ulation.

The benefits of HDL simulation are many fold: First,
it shows that the system can be effectively built. This is
important because, sometimes, architectural improvements
that look good on paper are very difficult to be built in hard-
ware. HDL reveals what is feasible and what is not. Second,
it increases the confidence in the design and simulation re-
sults. Third, when comparing two designs we must always
take into account the effect of hardware complexity on clock
cycle. By synthesizing the HDL code we can have a fairly

�This research was supported by a grant from the Texas Advanced
Technology program

accurate idea of the clock cycle attainable by that hardware.
We can identify critical paths and modify the design as to
improve its frequency of operation. Moreover, while simu-
lation alone typically focuses only on performance, synthe-
sis directly allows us to consider other factors as well, such
as chip area and dissipated power. These factors are impor-
tant in estimating the design’s cost, price/performance ratio,
applicability, and marketability.

In this paper we show how a two-level hierarchical sim-
ulation can be used in the context of an execution driven
simulator. We detail the simulation process, analyze its
performance and pinpoint the factors that limit the simu-
lation speed. As case study we use the design of a su-
perpipelined switch for CC-NUMA multiprocessors. For
a thorough evaluation, the new design is implemented in
Verilog and synthesized. The inferred clock frequency is
fed back to our execution driven simulator (RSIM) to ana-
lyze the effect of the proposed design on execution time of
parallel applications. By incorporating this new switch ar-
chitecture we show substantial performance improvements
through RSIM, but obtain only modest improvements when
we synthesize the hardware. Thus, we demonstrate that, for
an accurate evaluation, synthesis is a required step, since it
effectively brings out the influence of hardware complexity
on clock cycle and implicitly on the design’s performance.

The research outlined in the paper is somewhat related to
papers in the areas of hardware/software co-simulation and
HW/SW codesign [7, 1, 6, 4] in the sense that new software
interfaces are developed to coordinate the simulation pro-
cess running on two different machines. However, it must
be emphasized that our aim is to design and improve a gen-
eral purpose computer architecture or a part of it, as opposed
to developing HW/SW architectures for some specific target
applications. Hence, the underlying evaluation tool in our
case is a basic execution driven simulator that can measure
the performance of many different applications.

The rest of the paper is organized as follows: Section 2
introduces our design methodology and details the hierar-
chical simulation approach. Section 3 describes the pro-
posed switch design. Section 4 evaluates the design and
demonstrates the importance of hierarchical simulation for
accurate simulation results. Finally, Section 5 concludes the
paper.

2 Hierarchical Simulation Methodology

To obtain a better simulation accuracy and increase the
confidence in a proposed hardware enhancement we advo-



co
m

m
. l

ib
ra

ry

co
m

m
. l

ib
ra

ry

Process A Process B

sockets
Unix

PLIRSIM Verilog−XL

R
S

IM
 C

 c
od

e

(R
T

L 
de

sc
rip

tio
n)

(machine 2)(machine 1)

(e
xc

ep
t I

N
)

IN
 c

od
e

Figure 1. Interaction between RSIM and Verilog-XL

cate the following design process:

1. Implement the proposed architectural enhancements in
a high level language and use an execution driven sim-
ulator to quantify their impact on performance.

2. If the architectural modifications look promising, iso-
late the subsystem that contains them and describe it in
a hardware description language.

3. Synthesize the HDL code and derive a realistic clock
cycle for the design. Study the influence of hardware
complexity on clock cycle and, if possible, refine the
design as to improve the clock cycle.

4. Feed the obtained clock cycle back to the execution
driven simulator and re-evaluate the performance using
hierarchical simulation.

In the following we will show how the hierarchical simu-
lation can be carried out in the context of a execution driven
simulator. For exemplification we will use RSIM [9], even
though any other execution driven simulator could have
been used.

2.1 Combining RSIM with Verilog-XL Simulator

The first step to be accomplished in our simulation
methodology is to decouple the subsystem to be improved
from the original simulator. Because we want to test a new
switch design idea we chose the interconnection network
(IN) as the target for the HDL implementation. The entire
IN structure has been described in Verilog HDL and then
compiled and tested using Verilog-XL from Cadence De-
sign Systems, Inc. The next step is to define a communica-
tion protocol between the two major parts of our simulation
strategy: Verilog-XL, which simulates the IN, and RSIM,
which simulates the rest of the system. These parts must
be run as separate processes because it is not possible to
invoke a Verilog module from a C program. The two pro-
cesses, RSIM and Verilog-XL, can interact with each other
using any standard form of UNIX interprocess communica-
tion. We preferred to use UNIX sockets due to their ver-
satility: This solution gives us freedom on the machines to
use for simulation and creates the premises (at least the-
oretically) for speeding up the simulation process by exe-
cuting two processes in parallel on two different machines
(see Figure 1). The HDL code does not interact directly
with RSIM, but through a communication library written in
C. Calls to the communication routines are done using the
Programming Language Interface (PLI), a standard feature
in Verilog.

The communication and synchronization model of the
two processes is as follows: For each clock cycle only one

Processor+memory Interconnect
Case Comm. Simul. Comm. Simul.
Rsim - 1.26 - 0.08

Rsim+Verilog 4.60 1.26 1.16 4.70

Table 1. Time per simulation step for different simula-
tion strategies. All results are in ms.

pair of messages is sent. The Verilog module communi-
cates the status of all its input ports and informs RSIM about
the packets that reached their destinations. RSIM reads in
these data and informs the Verilog simulator about the new
packets that are waiting to enter the interconnect. Upon the
reception of this message, Verilog-XL applies the data to
the corresponding registers and generates a new clock cycle
which in turn will trigger the simulation for one time step.

Since socket communication can add a serious overhead
to the entire simulation process, we take some steps as to
reduce this communication overhead. For instance, we use
the UDP protocol instead of the heavyweight TCP. The dis-
advantage is that UDP does not provide reliable commu-
nication and therefore, to handle occasional network errors
(like packet dropping or duplication), we enhance our com-
munication library with a thin layer of error detection based
on sequence numbers attached to messages.

The exchanged messages are rather small (around 50
bytes), so the Ethernet bandwidth cannot be a concern. Nev-
ertheless, the latency of a message can seriously degrade the
speed of our distributed simulation process. Therefore, we
tried to minimize the number of messages as much as possi-
ble. To achieve this objective we employ three techniques.
First, we pack the information for/from all the switches in
the IN into one block of data, and send this structure over
the network using a single message. Second, we always pig-
gyback acknowledgments on other useful messages. Third,
we simulate the IN only when there is at least one packet in
it. If no packets are present, the network simulation step is
skipped.

2.2 Performance of the Simulation Technique

In the following we analyze the timing of the hierarchi-
cal simulation method and compare it to the original RSIM.
Statistics regarding the simulation times for the two ap-
proaches are presented in Table 1. We show only average
time per simulation step because this factor is more rele-
vant and it directly translates into total simulation time by
multiplying it with the corresponding number of simula-
tion steps. The results are broken down into time needed
for communication and time needed for actual simulation.
All timings are given in milliseconds and were collected us-
ing the real time clock of UltraSPARC machines. Profiling
with gprof was not considered because it was not able to
capture the waiting time in a recv msg system call. The
machines used for experiments were equipped with Ultra-
SPARC II processors running at 300 MHz.

First, we can see that in the original RSIM the intercon-
nect simulation takes only 6% of the total simulation time:
0.08 ms compared to (1.26+0.08) ms. Thus, the main over-
head is the simulation of the processors and it is unrealistic
to hope that the overall simulation time can be improved by
simulating the interconnect on another machine.



The second line from Table 1 reveals that the Verilog
simulation of the IN is quite costly in terms of simulation
time: 4.7 ms. One reason is, of course, the level of de-
tail at which the simulation is performed. Another reason
is the age of our Verilog simulator. HDL simulators tend
to improve significantly from one version to another, 1 so
the IN simulation time could be much better. However, we
still have to pay a non-negligible communication overhead:
1.16 ms. We broke down this overhead and found that the
send msg operation takes 0.16 ms while the read msg
operation is responsible for 1 ms (this value includes the
time Verilog-XL is waiting for RSIM to respond). All in
all, the two-level hierarchical simulation increases the over-
all simulation time about five times.

Ideally, when RSIM issues the recv msg call, the mes-
sage from the IN simulator has already arrived at destina-
tion and waits in a system buffer to be retrieved. This se-
quence of actions would ensure that the communication and
IN simulation overhead were completely overlapped with
RSIM simulation overhead. However, due to large IN sim-
ulation and communication delays, when the message from
the HDL simulator reaches its destination, RSIM is already
waiting for it. After a minimal processing, RSIM responds
by sending another message and then resumes simulation.
Thus, the communication overhead for RSIM is composed
by two system calls plus the waiting time in the recv msg
routine. On the other hand, the overhead for the HDL sim-
ulator is composed of a round trip network delay plus two
operating system calls.

3 Case Study: Switch Design for CC-NUMA
Multiprocessors

In a CC-NUMA environment message latency is crucial
and hence, for good performance, our switch must have a
short fall-through latency. Fall-through latency is defined
as the time needed by a unit of data to traverse a switch in
the absence of contention. Contemporary switches like SGI
Spider [3] or the router used in the Mercury Interconnect
Architecture [8] have a fall-through latency of about 40 ns.
We will use a Spider-like switch as starting point and try to
improve it.

Typically, interconnect switches have a link width
smaller that the flit size, which is the unit of data at which
control flow is maintained and arbitration is performed.
Thus, a flit is transmitted over the wire as a burst of n phits.
The common approach in such circumstances is to start pro-
cessing the incoming data only after a whole flit has been
assembled at the input port. In Spider, the core is clocked at
100 MHz while the links operate at 400 MHz. The flow of
data is the following (see Figure 2(a)): First, four phits of 16
bits each are assembled in a receiving register. Once the 64
bit flit is synchronized with the core’s clock, it is read from
the receive buffer into the core. This task takes 17.5 ns on
average [3]. Next, arbitration is performed (10 ns) followed
by crossbar transmission (10 ns). Finally, the flit must be
serialized over the wire and thus, 2.5 ns are lost to transfer
the first phit from the core into a transmitting register. The
remaining three phits follow in a pipelined fashion. Hence,
the fall-through latency is 40 ns (see Figure 2(a)).

1For instance, according to Cadence, their improved simulator, NC-
Verilog, is at least eight times faster than the latest version of Verilog-XL

2.5ns~17.5ns 10 ns10 ns

fall−through latency = 40 ns

fall−through latency = 17.5 ns

Crossbar txSynchronize & move to core

Synch
&

move
Arbitration

first phit
arrives

first phit
arrives

Arbitration

Crossbar & link
tx (pipelined)

tx

a)

b)

Figure 2. Comparison between the timing for a Spider-
like switch (a), and a superpipelined switch design (b)

As described above, Spider implements a flit switching
technique: it waits for a whole flit to arrive before taking
any actions. We believe that this is the main impediment
to achieving a lower fall-through latency. By increasing
the core frequency four times and starting data processing
as soon as the first phit enters the switch we can reduce
the synchronization period and begin the arbitration pro-
cess sooner. We can also improve fall-through latency by
overlapping the transmission over the outgoing link with the
transmission through the crossbar. To compensate for the
higher core frequency, all the data paths inside our switch
are four times narrower. For fairness, we also assume that
arbitration cannot be sped-up, thus requiring four core cy-
cles. Figure 2(b) shows that by implementing this super-
pipelining we can almost halve the fall-through latency of
the switch, provided that the link frequency is not affected.

4 Experimental Results

4.1 Experimental Test-Bed

The architecture we simulate is a CC-NUMA multipro-
cessor with 16 nodes connected by a 4�4 mesh. Each node
is composed of a processor, two levels of cache, a mem-
ory module, a network interface and a switch. Given that
the cell library used for the switch synthesis corresponds
to an older process technology (0.38 �m), for fairness, we
scaled down the frequency of our processor to 250 MHz.
Other than this, the CPU is 4-way superscalar and employs
branch prediction, out-of-order speculative execution, non-
blocking reads and a release consistency shared memory
model.

Both L1 and L2 caches are write back, write allocate,
with a line size of 64 bytes. The L1 data cache is 16 KB, two
way set-associative and has an access time of one processor
cycle. The L2 cache is 128 KB, four way set-associative,
and fully pipelined with an access time of 8 processor cy-
cles. The latency to read an entire cache line from DRAM
memory is 24 processor cycles (96 ns). The bus connect-
ing the various components is a split transaction bus with a
width of 128 bits and clocked at 83 MHz.

We use five benchmark applications: FWA, GS, TC,
EM3D and NBF. FWA implements the Floyd-Warshall al-
gorithm that computes the shortest path between any two
nodes in a directed graph. GS (Gramm-Schmidt) computes
an orthonormal basis for a set of N-dimensional vectors. TC
computes the transitive closure of a directed graph using



0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

FWA GS TC EM3D NBF

N
o

rm
al

iz
ed

ex
ec

u
ti

o
n

ti
m

e

Basic-400

SP-400

Basic-333

SP-285

Figure 3. Switch performance comparison

Warshall’s algorithm. EM3D [2] models the propagation of
electromagnetic waves through objects in three dimension.
NBF (the Non-Bonded-Force kernel) is a molecular dynam-
ics simulation taken from the GROMOS benchmark [5].

4.2 Synthesis Insight

To derive the clock cycle for our designs we synthesized
the HDL code using Synopsys Design Compiler. The cell
library used for synthesis was LCA500K from LSI Logic,
library which corresponds to a 0.38 �m process technology.
The entire synthesis process was performed automatically
by the compiler. The synthesis of the basic switch indicates
that the attainable core frequency is about 85 MHz which
corresponds to a 340 MHz link frequency. Previously, we
assumed that our superpipelined switch design will not de-
grade the link frequency. However, the synthesis reveals
that the clock cycle is 3.5 ns long, yielding a 285 MHz link
frequency.

Figure 3 compares the performance of four switch vari-
ations. The first two represent designs where we ignore the
hardware complexity. Basic-400 is the Spider-like de-
sign which, like Spider, runs at 400 MHz link frequency.
SP-400 is our proposed superpipelined design assumed to
work at 400 MHz as well. For the last two configurations we
used feedback from synthesis: Basic-333 is the Spider-
like design which runs now at only 333 MHz link frequency
as indicated by the synthesis tool, while SP-285 represents
our improved superpipelined design running at 285 MHz.

The main conclusion that can be drawn from Figure 3 is
that the feedback from synthesis cannot be neglected: The
results collected prior to synthesis indicate that the super-
pipelined design improves execution time on average by
12%. However, when we consider the clock frequency lim-
itations imposed by the hardware complexity, the average
improvement drops to only 6% (SP-285 vs. Basic-333).
The explanation for such a behavior is simple: Basic-
333 design offers a superior bandwidth due to its higher
link frequency. When the network is lightly loaded pin-to-
pin latency is the predominant factor, but when the network
is congested bandwidth plays a key role. Applications usu-
ally alternate phases of light network load with phases of
high traffic and therefore it is important to improve both the
bandwidth and the latency.

Another important observation is that applications that
do not stress the interconnect too much are more likely to
benefit from the superpipelining approach. A case in point
is NBF for which the relative improvement from Basic-
400 to SP-400 is larger than in any other application. The
reason is that other applications exhibit a significant block-
ing time for the IN packets, and blocking time cannot be
directly reduced by superpipelining.

5 Conclusion

In this paper we proposed a two-level hierarchical simu-
lation method meant at improving the simulation accuracy
of execution driven simulators. The technique calls for the
subsystem of interest to be implemented in a hardware de-
scription language and simulated using an appropriate tool
(in our case Verilog-XL). The rest of the system is imple-
mented in a high level language and simulated using an
execution driven simulator (in our case RSIM). After in-
corporating the timing feedback from a synthesis tool, the
two simulators are coupled using UNIX sockets, and run
together. We found that the simulation time increases con-
siderably, but the new technique is able to expose the effects
of hardware complexity on performance.

As case study we compare two switch designs: a basic
one, and a superpipelined design which reduces the fall-
through latency of a switch. Without taking the hardware
complexity into account, the new design exhibits impor-
tant reductions in execution time of parallel applications.
However, the synthesis showed that such modifications ad-
versely affect the clock cycle and implicitly the link band-
width. Consequently, the hierarchical simulation revealed
that RSIM overestimated the benefits provided by super-
pipelining. Thus, we demonstrated that synthesis and the
two-level hierarchical simulation are invaluable tools that
allow a more accurate evaluation of a design.

References

[1] S. L. Coumeri and D. E. Thomas. A simulation environment
for hardware-software codesign. In International Confer-
ence on Computer Design, pages 58–63, Oct. 1995.

[2] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy,
S. Lumetta, T. Eicken, and K. Yelick. Parrallel programming
in Split-C. In Proceedings of Supercomputing ’93, pages
262–273, Nov. 1993.

[3] M. Galles. Spider: A high-speed network interconnect.
IEEE Micro, pages 34–39, January/Febrary 1997.

[4] T. Givargis and F. Vahid. Incorporating cores into system-
level specification. In International Symposium on System
Synthesis (ISSS), pages 43–48, December 1998.

[5] W. Gunsteren and H. Berendsen. GROMOS: GROningen
MOlecular Simulation software. Technical report, Labora-
tory of Physical Chemistry, University of Groningen, 1988.

[6] T. Hopes. Hardware/software co-verification, an IP vendors
viewpoint. In Proceedings of the International Conference
on Computer Design, pages 242–246, October 1998.

[7] K. Keutzer. Hardware-software co-design and ESDA. In
Proceedings of the 31st Conference on Design Automation,
pages 435–436, June 1994.

[8] A. Mu, B. Chia, S. Kondapalli, C. Koo, J. Larson,
L. Nguyen, R. Sastry, Y. Satsukawa, H.-C. Shih, T. Wicki,
C. Wu, K. Yu, and X. Zhang. A 285 MHz 6-port ple-
siochronous router chip with non-blocking cross-bar switch.
In 1996 Symposium on VLSI Circuits: Digest of Technical
Papers, pages 136–137, 1996.

[9] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM: An
Execution-Driven Simulator for ILP-Based Shared-Memory
Multiprocessors and Uniprocessors. In Proceedings of
the Third Workshop on Computer Architecture Education,
February 1997.


