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Abstract

For call intensive programs, function calls are major
bottlenecks during program execution since they usually
force register contents to be spilled into memory. Such
register to memory spills are much more pronounced in
presence of recursion. A function call is usually accom-
panied by the creation of its activation record at function
entry. In this paper, we will deviate from this usual prac-
tice; we create an activation record only when we find it
necessary. The result is that on many occasions we can ex-
ecute a function call without actually creating its activation
record. We call our strategy lazy activation record strategy
(LARS) and show how this strategy is particularly impor-
tant for call–intensive programs. The LARS subsumes many
traditional techniques like leaf-call optimization and tail-
recursion optimization, and in addition, it extends Chow’s
shrink-wrapping in terms of scope and granularity.

We also demonstrate how the LARS can be an effective
optimization strategy in case of battery operated embedded
systems, since not only it can reduce execution time but also
energy consumption.

Keywords. Register Utilization, Activation Records, Em-
bedded Systems, Low Power Optimization.

1 Introduction

During program execution, whenever a function is
called, the runtime environment usually creates an activa-
tion record (sometimes called function frames or activation
frames, or simply frames) in the system stack to store all
the entities in relation to the function activation; such enti-

ties include the return address, function arguments, function
result and some locations to store temporary computations.
Creation of a frame is a costly process, since it involves a
number of memory accesses. Therefore, for call–intensive
programs in general, and recursive programs in particular,
the problem of reducing memory accesses due to function
calls is of paramount importance. In this paper, we will re-
fer to functions and procedures interchangeably.

Recursion is an elegant technique to represent many
problems occurring in practice; to name a few, they are tree
traversal, sorting, Fast Fourier Transforms etc. Presence of
a recursive call prohibits efficient use of machine registers
since registers need to be spilled at call boundaries. Opti-
mization techniques like function unfolding or inlining aims
at reducing the overhead due to function calls. This is a
standard technique which is usually applied over some non-
recursive functions. In presence of recursion, inlining will
be of little help since it will increase the code size without
removing any call from the code. Therefore, inlining over
recursive calls are less often attempted [7].

Embedded systems that run on batteries need to consume
as less energy as possible. One way of achieving this is to
minimize memory references and if possible to use register
operations in their place. Usually the compilation strategies
for recursive programs do not achieve such an objective be-
cause of the associated complexity.

In this paper, we will discuss a compilation strategy
which will minimize memory references due to the creation
of activation records. The strategy is not to create activation
frames at call boundaries but to delay their creation as much
as possible; the result is that in many cases, we may avoid
creating them. We will call this strategy the lazy activation
record strategy (LARS). The LARS can be applied over all
kinds of programs, be they recursive or non-recursive; how-



ever, it is more effective for recursive programs. We will
demonstrate the efficacy of our strategy first through a run-
ning example and then through some benchmark programs.

The organization of the paper is as follows. Section 2
discusses the related work. In Section 3, we introduce the
basic idea behind the lazy activation records through a few
motivating examples. Section 4 discusses the code gener-
ation strategy. In Section 5, we present some benchmark
results. In section 6, we analyse and summarize the main
results of our paper. Section 7 concludes the paper.

2 Related Work

A tail-recursive call is often converted into iteration and
thereby the procedure call overhead associated with tail-
recursive calls can be avoided. A tail-call is a general case
of tail-recursion. A call from procedure f() to procedure
g() is a tail call if immediately after g() returns, f() also re-
turns; i.e. there is no other computation between the two
returns. In such a case, the tail call can be compiled so that
instead of making a call to the callee, a jump can be made
to the code segment of the callee, and furthermore, a single
return instruction will be sufficient for both the caller and
the callee.

A leaf-routine is a procedure which is a leaf in the call
graph of a program. Leaf-routine optimization tries to opti-
mize the procedure prologue and epilogue overhead which
are usually associated with non-leaf procedures. If it can be
statically estimated that a leaf-call can be fully computed
using available registers, then the stack frame may not be
created [14]. Smaller leaf-routines are often inlined.

Davidson and Holler [7] have done extensive study on
subprogram inlining which is the technique of unfolding
function calls so that either they are eliminated or are re-
placed by larger pieces of straight-line code. Function
unfolding increases code size. And unfolding is usually
avoided in presence of recursion.

Chow’s shrink wrapping technique assumes that the
available register set is partitioned into caller–save and
callee–save register subsets [5]. His technique is usually
applied to callee-save registers of a procedure when they
need to be used inside the procedure body. Instead of stor-
ing callee-save registers at procedure entry and restoring
them at procedure exit, they are placed only along relevant
control paths inside the procedure body; i.e. control paths
which do not require to use them do not have to include
the save/restore operations. For optimal placement of the
register save/restore operations, Chow uses data-flow ana-
lysis technique similar to the one used my Morel and Ren-
voise [13] in the context of partial redundancy elimination.

Satpathy et al [15] have discussed a method of optimiz-
ing register spills in presence of recursion by keeping mul-
tiple versions of the same function. Since this approach in-
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Figure 1. Graph of the Fibonacci Function

creases code size, the number of versions are usually kept
small. It is to be noted that their strategy is defined in rela-
tion to functional programs which exhibit a large number of
function calls.

Chakrapani et al. [4] have developed a precise model of
a state-of-the-art embedded processor which they have used
in conjunction with a robust compiler to conduct experi-
ments on the impact of various compiler optimizations from
the viewpoint of power consumption. Based on this, they
have proposed a taxonomy of compiler optimizations which
classifies them into three classes. The Class A optimizations
benefit energy due to improvement in performance; i.e. due
to reduction in the number of machine cycles. Such op-
timizations include reductions in the number of loads and
stores, procedure cloning, loop transformations, procedure
inlining, partial redundancy eliminations etc. Class B op-
timizations are those which benefit energy but they don’t
have any impact on performance. They include instruction
scheduling, register pipelining etc. Class C optimizations
can have negative impacts both on performance and energy
consumption. The conclusion is that the highest impact
on energy consumption occurs from improving the perfor-
mance of the code. In this paper, our optimization strategy
falls into the Class A category.

EMSIM (Energy Simulation Framework for an Embed-
ded Operating System) [17] is a simulation framework for
analysing the energy consumption characteristics of an em-
bedded system featuring the embedded Linux Operating
System running on the StrongARM processor [2]. This will
be our framework for analysing energy consumption and
performance of our benchmark programs.

3 The Basic principle

We will illustrate the basic idea behind lazy activation
records (LAR) through a few motivating examples.



3.1 Example 1:

Figure 1 shows the graphical representation of the Fi-
bonacci example. When the predicate n ≤ 2 is true, the
function returns 1 as the result. Assume that when this in-
vocation was done, the return address and the lone argument
were in registers. Then the computation of n ≤ 2 could be
done in registers, and when the predicate of the if–statement
is true, we just need to return the result value of 1 in a reg-
ister. Thus we have managed to compute this invocation of
fib without creating its activation record. Of course if the
control took the else–branch, we would have no other option
but to create the activation record. Therefore, we can delay
the creation of the activation record till the program control
reaches the else–branch. In other words, whenever control
took the then–branch, i.e. for all terminating calls, we could
manage without creating activation records. A call to Fi-
bonacci function with argument n results in the creation of
fib(n) number of calls, which is exponential in relation to
n. Therefore, we have been able to eliminate dfib(n)/2e
number of activation frames.

It is worth mentioning that some customized compilers
for embedded systems like the C compiler for the ARM
processor [16, 2] do such an optimization in very few sim-
ple cases like the Fibonacci function where the terminat-
ing branch returns a constant; for example, it does no such
optimization if the terminating branch returns a variable as
the result. However, our strategy, as we will demonstrate,
is much more general and it avoids creation of activation
records in much more complex scenarios.

3.2 Example 2:

Ack(x,y) = if (x == 0) then return (y + 1)
else if (y == 0) then

return Ack(x − 1, 1)
else

return Ack(x − 1, Ack(x, y − 1))

This is the Ackermann function and we consider this exam-
ple because it illustrates many interesting scenarios of the
LARS. When a call to Ack(x, y) is made, assume the re-
turn address and the arguments are in registers. When con-
trol takes the terminating branch of the outer if–statement,
following the argument of the previous example, no activa-
tion record will be created for the above call to Ack. This
is because, the predicate (x == 0) and (y + 1) both could
be evaluated in registers. Further, when control takes the
then–branch of the inner if–statement, then notice that it is
a tail–recursive call. In such a case, using tail–recursion
optimization, we can manage without creating an activation
record for the original call to Ack. We will illustrate this
scenario in the next section. Activation record for the call

(b) after the call(a)  before the call

grow downwards
Memory addresses

Stack grows
upwards

A’s  FRAMEA’s  FRAME

B’s FRAME

FP

FP

Figure 2. The Stack Organization

to Ack would be created only if the control took the else–
branch of the inner–if.

4. The Compilation Strategy

4.1 Assumptions

1. There are special registers Ra1, Ra2, . . . , Rak for pass-
ing arguments. If the number of arguments exceed k,
then the additional arguments are passed via stack, and
in such a case, an activation record must be created.

2. A special register Rret stores the return address.

3. A special register Rres stores the result of a call.

4. The general purpose registers are labelled as
R1, R2, . . . , Rn

5. An activation record is pointed to by a special regis-
ter FP (for Frame Pointer). Within it, the return ad-
dress is stored in the very first location, in the next
few locations the arguments are kept, and in subse-
quent locations the temporary computations and other
items are stored. The Load and Store instructions ac-
cess a frame with FP as the base register. As shown
in figure 2, the memory addresses grow downwards,
whereas the stack grows upwards. fsize, the size of
an activation record, is determined statically.

Note that many of the RISC processors conform to the first
four assumptions; one such example is the ARM proces-
sor which is mostly used for embedded systems [16]. We
have taken the last assumption for generating and explain-
ing our code in this paper; otherwise, this assumption could
be modified to suit any architecture.



4.2 Special Instructions

Under the above assumptions, we will define the semantics
of the following three instructions as follows:

Call <fun-label>:
Move Rret,PC //store return address
Jump <fun-label> //jump to funct. label

Return1: Move PC,Rret // recover return address

Return2: Load Rret,FP // return address in Rret

Add FP, fsize // discard frame
Move PC,Rret // continue

What the above means is that the Call instruction just
stores the return address in Rret and makes a jump to the
function label; the activation record, if necessary, would be
created explicitly by separate instructions. There are now
two return instructions: Return1 and Return2. Return1 is ex-
ecuted when the activation record for the called function has
not been created, and the Return2 is executed when the ac-
tivation record has been created. The former only retrieves
the return address from Rret, and the latter does the same in
addition to discarding the activation record.

4.3 Code for Some Example Programs

Let us now generate code for the following program. The
meaning of the instructions other than the special instruc-
tions defined above should be obvious. In the following,
FP[i] means the i-th location in relation to the base address
FP.
fib(n) = if (n ≤ 2) then 1
else fib(n − 1) + fib (n − 2)
Main: fib 10

//The Generated Code:
Main: Move Ra1, 10 // Move 10 to argument register.

Call fib // Make call to fib
Stop

fib: Cmp Ra1,2 //Compare
Jgt Else //Jump if greater than
Move Rres,1
Return1

Else: Sub FP, fsize // Create frame
Store FP, Rret // Store return address
Store FP[1], Ra1 //Store argument
Sub Ra1,1
Call fib
Store FP[2], Rres //Store temporary result
Load Ra1,FP[1]
Sub Ra1,2
Call fib

Load R1,FP[2]
Add Rres,R1 //Result in Rres

Return2

In the code above, if the control took the then–branch,
then no activation frame would be created; all computation
would be done in registers. On the other hand, if control
took the else–branch, then an activation record would be
created. Note that we make a conservative decision about
creating frames; i.e. we avoid the creation of a frame along
a control path if we are sure that it will not be needed; and in
absence of such information we create a frame. Creation of
a frame may be followed by transfer of the return address,
the parameters or other register contents to the frame. The
code for the Ackermann Function, which has been shown
below, illustrates an interesting scenario in which the the
LAR strategy gets combined with the tail recursion opti-
mization.

//Code for Ackermann Function
//Before the call, arguments are in Ra1 and R2.
Ack: Cmp Ra1, 0

Jne Else1 // Jump if not equal
Move Rres, Ra2

Add Rres, 1
Return1

Else1: Cmp Ra2,0
Jne Else2

Sub Ra1,1
Move Ra2,1
Jump Ack //tail recursion; hence jump

Else2 Sub FP, fsize //Create frame
Store FP, Rret // return address in frame
Store FP[1], Ra1//argument in frame
Sub Ra2,1
Call Ack
Load Ra1, FP[1]
Sub Ra1, 1
Move Ra2, Rres

Call Ack
Return2

In the code above, there is a tail recursive call in the
Else1 branch and it has been replaced by a jump. Fur-
thermore, notice that the second call to Ack in the Else2 is
also a tail recursive call; therefore, using the knowledge of
the architecture, this call also can be replaced by a Jump
instruction.

4.4 Formalization of the Strategy

The LARS is based on the fact that we can manage to
compute a function (or a control path within the function)
without creating the frame of the function. In this context,
the following issues need to be addressed:



1. How to know that a control path can be computed with-
out creating the activation record?

2. If an activation record has to be created where the in-
struction for creating the record would be placed?

3. There may be many control paths which require ref-
erences to activation records. Should we place frame
creation operations along all the paths?

The formalization of our LARS will be done over the con-
trol flow graph (CFG) of the function. Analysis over the
control flow graph would answer the questions that we have
raised above.

Figure 3 shows the control flow graph of the Ackermann
function. We have selected this function because it is
simple and it presents most of the interesting scenarios of
the LARS. The correspondence between the code of the
Ackermann function in Section 4.3 and the present CFG
should be obvious. The dashed edges in the CFG signifies
that the last instruction of the source basic block (source
of the dashed edge) is a function call and control flows to
the destination basic block after the function in the source
basic block returns. The back edge in the CFG has resulted
because of tail-recursion in the then–branch of the inner
if–statement (refer to the program in Section 3.2) has been
converted to an iterative loop. Note that a CFG has some
special basic blocks called entry and exit; a CFG has
exactly one entry basic block but it may have more than
one exit basic blocks. A control path in the graph of a
function definition is defined as a path from the Entry
basic block to the Exit basic block that the computation
can take in relation to the CFG of the function because of
control flow. We will now present some definitions.

Minimal Control Path (MCP): In a CFG, remove the back
edges. Then starting from the exit node(s), traverse along
the opposite direction of the edges towards the entry basic
block. The control paths when seen in the reverse order
of the above traversals are defined as the Minimal Control
Paths (MCPs). Figure 3 has two MCPs, shown in dashed
lines.
Minimally Independent Control path (MICP): If two
MCPs form a diamond between them, i.e. they share two
basic blocks and in between the shared blocks there is a
non-shared basic block, then both such MCPs belong to the
same MICP. However, the descendant basic block in the di-
amond should not be an exit basic block because, in such
a case it could be viewed as two MICPs. In Figure 5 (a),
the two MCPs are in the same MICP, whereas in (b) the two
MCPs are in different MICPs.
Maximally Independent Control Region (MICR): The
region of the maximum number of basic blocks within a
MICP such that it does not overlap with any other MICP.

For the purpose of finding MICRs, it is assumed that if a
MICP includes a basic block of a loop then the whole loop
is a part of the MICP. In the figure 3, the only loop is a part
of both the MICPs. The two MICRs of the same figure are
shown in Figure 4 as the regions in dashed lines.

We will classify the MICPs into the following categories:

• Type 1: The MICP neither has any function call in it,
not it is associated with any loop.

• Type 2: The MICP has one or more loops but it does
not have any function call (MICP 1 in Figure 3).

• Type 3: The MICP has more than one function calls
but it ends with a tail call (like the MICP 2 in in Figure
3). If there was only one call and it was in tail position
then it would have already been replaced by a jump, as
in case of the Jump Ack instruction in the only loop in
the same figure.

• Type 4: The MICP has function calls but none in tail
position.

Exit

Entry

Exit Exit

Entry

==>

Exit

(a)

(b)

Entry

B1

B2 B3

B4

B1

B2 B3

B1

B2 B3

Figure 5. (a) Two MCPs within the same MICP,
(b) Two MCPs in different MICPs

With the above definitions, we will formalize our strat-
egy. For each MICP, we will find out if the whole MICP can
be computed by registers alone without any reference to the
activation record. If so, we will not create a frame for the
MICP; otherwise, a frame will be created.

We will assume that our algorithm, which decides
whether an activation record would be created in a MICP,
is performed after global register allocation. Presently, we
will assume that the coloring algorithm by Chow and Hen-
nessy [6] is used for this purpose though any other standard
algorithm could be used. By the end of register allocation,
code has already been more or less generated. Our algo-
rithm makes one more pass over the CFG to decide whether
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Figure 3. Control Flow Graph of the Ackermann Function

a MICP needs an activation record. Furthermore, our strat-
egy does some engineering at this stage so that a MICP
requiring an activation record, in some cases, can be con-
verted into one not requiring such a record, an issue we will
discuss later.

One issue that needs to be sorted out is the placement of
instructions for creating activation records in the code. We
will place such instructions, in relation to each MICP, at the
point where control enters into the MICR. Therefore, in the
following we will concentrate on the code fragment of the
MICR of a MICP.

We will also assume that, for each MICP, the basic
blocks in the region (MICP - MICR) can be computed in
registers; i.e. there are no memory references. If not, then it
is trivial to see that the MICP requires a frame, and we need
not make any more analysis on this MICP.

Algorithm: CodeForLazyActivationRecords.
Input: CFG of the procedure F .
Output: Code for the MICRs.

Step 1: Find all MICPs and MICR for each MICP.
Step 2: for each MICP do.

{
Based on MICP type generate code as:

Case MICP of type
Type 1: /* no frame */
If MICR requires no memory reference
< code for the MICR>

Return1

Type 2: /* no frame */
If MICR requires no memory reference
< code for the MICR>

Return1

Type 3: /*frame necessary */
< code for creating activation record>

.
< code for the non–tail call>

.
<code after tail call optimization>
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Figure 4. MICRs in the CFG

<code for tail-call optimization>
Jmp <function–label>

Type 4: /* frame necessary */
< code for creating activation record>

.
Return2

}
Step 3: for each MICR of Types 1 and 2, if

it cannot be executed with available
registers, generate code as:

< code for creating activation record>
< code for the MICR>

Return2

Step 4: Stop

4.5 Computing a MICP with available registers

We have talked about generating code for a MICP using
the available registers. In the present context, by available
registers we mean the registers that are available for code
generation within the current function. Such registers are
dependent on the machine architecture. In general terms,
they mostly constitute:

• the argument registers

• the scratch pad registers if they are available

• caller save registers

As we have discussed earlier, our analysis is performed af-
ter the global register allocation phase. So, if at this point in
time, the basic blocks in the MICP have no memory refer-
ences and there are no function calls, then our job is done;
we will not create the activation for the MICP. However, if



there were still a few memory references, then we could still
assign some registers to them as in the following case.

The priority-based graph coloring approach by Chow
and Hennessy [6] in the context of RISC architectures re-
serves a few registers (4 integer and 4 floating point regis-
ters) for use in evaluating expressions that involve variables.
This is cited as a drawback of the priority-based approach
because the strategy without knowing in advance how many
registers should be reserved for this purpose, it reserves the
maximum number of registers that may be needed [14]. In
reality all may have not been used. Therefore such regis-
ters, and any other, if available could be allocated to elimi-
nate the remaining memory references in a MICP and then
it may not need the activation record.

In short, if we could manage to execute a control path by
means of the above register set, then we would not generate
activation records for the concerned control path; otherwise,
we will.

4.6 Placement of frame creation instructions

Let us call a MICP that does not require an activation
record is called a good MICP; otherwise, we will call it a
bad MICP. It may so happen that there may be a number
of bad MICPs in a CFG; in such a case, if we place frame
creation instructions along each individual path then then it
may unnecessarily increase the code size. To alleviate this
problem, if two MICPs are bad, then we will try to place
a single instruction in a common ancestor block such that
no good MICP falls within their scope. For finding a com-
mon ancestor, we have to traverse along the corresponding
MCPs of both the MICPs in reverse direction. However, if
we encounter a good MICP in between, then we may have
to introduce multiple frame creation instructions, a scenario
illustrated in Figure 6.

In the figure, MICP 1 is good whereas MICP 2 and 3
are bad. If the instruction for creating a frame was placed
in block B2, then it would be the common instruction for
both the MICPs, 2 and 3. However, MICP 1 is good; there-
fore, the instruction cannot be placed in B2. That is is why
we require two separate instructions for creating activation
records, one for MICP 2 and the other for MICP 3, and they
may be placed at their entry points. Since blocks B5 and
B7 are within loops, we place such instructions by creating
new blocks at points shown by shaded circles in the figure.

5 Experimental Results

Table 1 shows some benchmark programs which we have
considered to measure the efficacy of LARS. Fibonacci,
Ackerman and the Tak are the standard benchmark recur-
sive programs which are highly call-intensive. FFT is the
Fast Fourier Transform program which uses the recursive
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Figure 6. Placement of Frame Creation In-
structions

Decimation in Time algorithm. Sierpinski and Fractal-Sq
are two recursive functions which are used for fractal gen-
eration. Merge sort is one of the standard recursive algo-
rithms for sorting. LD is a recursive program due to Ladner
and Fischer which is used for parallel prefix computation
[10].

We have run all the above example programs over the
EMSIM simulator [17]. To be specific, we have used the
EMSIM version 2.0 which simulates Linux-2.4.18 running
over the Intel StrongARM-110 processor. The baseline of
our benchmark studies is the code performance in relation to
gcc 2.95.2 (GNU/Linux) cross compiler for the ARM pro-
cessor, with optimization flags all ON. The EMSIM simula-
tor captures both the system and the user call overheads. In
this sense, it is a complete embedded system simulator. We
have considered two parameters to compare the programs
when they have been subjected to the LARS and when they
have not. The two parameters are the the total number of cy-
cles to execute the programs and the energy consumed (in
milli Joules) by the processor to run the programs. Table 1
shows all such comparisons.

Observe from the table that for the call-intensive pro-
grams, especially in the case when the run time call tree
rapidly grows, the energy consumption and performance



both improve from 26% upto 47%. This phenomena we
see in case of Fibonacci, Ackerman, Tak, Sierpinski and
Fractal-Squire functions. In the case of FFT, we observe 7%
improvement both in performance and energy consumption.
In case of Merge sort and LD function, such improvements
are only around 2%. The reason is that such functions are
not call-intensive and further, the computations inside the
body of the functions dominate the cost of creating activa-
tion records.

We have also performed experiments over some bench-
mark programs for embedded systems; however their num-
ber is few and we are in the process of applying the LARS
over a wide class of programs for embedded systems. For
these experiments, we have used the LART system [11],
which is a StrongARM based embedded computer system
running Linux operating system. Table 2 shows the per-
formance results for three programs from the PowerStone
benchmark suite [12]. The program jpeg.c is used for
video data compression. The g3fax.c is a FAX data en-
coder/decoder program. The program pocsag.c is used for
error correction in digital communication. Observe the 40%
benefit in case of jpeg.c in terms of energy consumption
and running time. The reason is that this program makes
a total number of 21000 calls out of which around 19000
calls are made to a single routine and this routine has been
subjected to our LARS strategy. We even get better per-
formance for the g3fax.c program. The program pocsag.c
does not make a large number of calls to the routines which
have been subjected to LARS; therefore the amount of sav-
ing is not much.

6 Discussion

6.1 LARS vs. related optimization strategies

The LARS is similar in spirit to Chow’s shrink wrapping;
however, there are significant differences. The Chow’s
strategy assumes that the available register set is partitioned
into the subsets of caller-save and callee-save registers, and
it is applied to optimize the placement of save/restore op-
erations for the callee-save registers. The LARS does not
assume any such division of the available register set. Even
if there is a partition, the LARS extends the Chow’s strategy
in terms of scope and granularity; it tries to eliminate many
memory references and it places the code of creating frames
along control paths where they are needed.

The shrink-wrapping method is an intra-procedural ap-
proach, whereas the LARS can be viewed as an inter-
procedural method, inter-procedural in the sense that the
interface between two procedures is short-circuited. If A
calls B, and a MICP in B does not require a frame, it may
seem as if the MICP of B is executed in the environment of
A.

The LARS also generalizes leaf-call optimization. The
latter is applied to leaf level routines in the call graph of
the program, whereas the former is applied to the leaf-level
calls in the run time call tree (RTCT). As discussed in [14],
an activation record is either not created (for some leaf-
routines) or it is created in the procedure entry. Upgrading
this mechanism, i.e. moving the creation of frames, to the
individual MICPs is the novelty of the LARS. Furthermore,
it should be obvious to see that the LARS subsumes the tail
call optimization.

6.2 Significance of the LARS

1. Function calls are major bottlenecks for efficient reg-
ister usage. They are more so in presence of recur-
sion. Assuming that most of the interior nodes of a run
time call tree have at least two children, which often is
the case, LARS can remove the creation of activation
records in 50% of the cases. As pointed out in the Ack-
erman Function example, LARS in combination with
the tail–recursion optimization can be a powerful op-
timization strategy. Figure 7 shows the regions in the
run time call tree (RTCT) for which activation records
will not be created. The figure represents a RTCT in
which region 1 shows the calls which are leaf-calls
(functions which make no further calls in their defi-
nitions), and region 2 shows the calls which are non-
leaf calls (functions which have calls in their defini-
tions) but do not make calls in the particular run of
the program. LARS avoids creation of frames for the
calls within regions 1 and 2. There may be leaf-level
calls in RTCT which may not be computed in registers
alone (i.e. they require memory accesses) and there-
fore would require their frames. Region 3 shows such
calls. RISC architectures in general, and RISC pro-
cessors used for embedded systems in particular, usu-
ally have reasonably large number of registers [9]; they
could be efficiently utilized to eliminate the creation of
activation records for leaf–level calls in the RTCT.

2. LARS is an effective strategy in case of call-intensive
programs, be they recursive or non-recursive. LARS
can be an effective strategy for embedded systems
from the viewpoint of energy consumption. It is true
that recursion is not frequently used in programs for
embedded systems. However, as we have observed in
cases of jpeg.c and g3fax.c, a program can be call-
intensive without being recursive, and hence can be
optimized though LARS. Embedded programs can be
subjected to LARS in the following scenarios.

• Most of the library calls, if not unfolded, can
be subjected to LARS. Such library calls may
not be leaf-level calls in the static call-graph, but



Benchmark Clock Clock saving in Energy Energy % saving in
Programs cycles (×106) Cycles (×106) clock Cons (in mJ) Cons (in mJ) energy

(Unopt) (Opt) cycles (Unopt) (Opt)

Fib(30) 1831.51 1322.95 27.7% 3199.35 2246.07 29.7%
Ack(3,6) 204.73 151.30 26% 359.08 260.258 27%

Tak(10,2,10) 16.76 8.82 47.4% 29.5 14.86 43%
FFT .753 0.699 7.2% 1.34 1.24 7.6%

(128 samples)
Sierpinski 11.66 7.8 33% 20.21 13.19 34.7%
(gen = 9)

Fractal-Square 48.11 35.08 27% 82.3 60.11 27%
Merge Sort 5.25 5.13 2.2% 9.01 8.79 2.5%

LD fun 3.56 3.47 2% 7.85 7.67 2.7%
(Prefix Sum)

Table 1. Results of some recursive benchmark programs

Benchmark Energy Energy benefit running running benefit
Programs Consumed Consumed time time

(in Joules) (in Joules) (mili sec.) (mili sec.)
(Unopt) (Opt) (Unopt) (Opt)

jpeg.c 4.24 2.55 39.9% 1570.4 980.8 37.5%
g3fax.c 1.78 0.92 48.3% 741.7 340.7 54%

pocsag.c 0.64 0.60 6.25% 246.2 230.8 6.26%

Table 2. Results for some benchmark programs for Embedded Systems

they may have MICPs without involving function
calls; i.e. such calls become leaf-level calls in
the RTCT. And all such calls, in addition to the
leaf-level calls in the call-graph, may possibly be
executed without using activation records.

• In programs for embedded systems, function
calls usually check a number of constraints, and
when they do not hold, the functions exit. All
such cases will give rise to MICPs which are
likely to be executed without memory references,
and hence activation records can be avoided.

3. Function unfolding is an effective strategy for elimi-
nating function calls, and further they help in better
register utilization [7]; however, they do increase the
code size. Function unfolding is usually performed
over leaf–routines. The LARS, wherever applicable,
gives most of the benefits of function unfolding with-
out actually unfolding the functions.

4. LARS is of particular importance to functional lan-
guages. Functional programs involve mostly function
calls and the functions are usually small in size; there-
fore, the LARS can eliminate a sizable quantity of ac-
tivation records.

5. The LARS is a static analysis technique. It can be per-

formed after global register allocation and it does not
require any additional infrastructure. Assuming that
the CFG has been built and the global register alloca-
tion has been done, the LARS requires (a) to find the
MICPs, and (b) serches over the basic blocks associ-
ated with the MICPs. And the complexity of both such
tasks are linear in the number of instructions.
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Activation Record Elimination
for leaf−−level calls Leaf−−calls which can not be

executed due to shortage of
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elimination due to non−leaf calls

which make no further calls

Figure 7. Subgraphs in the RTCT identified by
categories



7 Conclusion

In this paper, we have discussed LARS, a new optimiza-
tion strategy, which can eliminate the creation of activation
records for recursive and non–recursive calls occurring at
the bottom level(s) of the run time call tree. This strategy
could be applied with ease to any kind of programs though
its impact will be much more pronounced in case of func-
tional programs. LARS tries to minimize memory accesses,
and therefore it can be an effective strategy for lowering
the power consumption for battery operated embedded sys-
tems. Though we have examined a small number of bench-
mark programs for embedded systems, the results indicate
that LARS can be an effective strategy for embedded pro-
grams. We are now in the process of applying LARS to a
wide spectrum of benchmark programs for embedded sys-
tem. In addition, we intend to develop strategies so that
LARS can be applicable to a wider variety of scenarios.
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