
SoC Integration of Reusable Baseband Bluetooth IP
Torbjörn Grahm

Ericsson Technology Licensing AB
Scheelevägen 15 , 223 70 Lund, Sweden

+46 46 193055
Torbjorn.grahm@ebt.ericsson.se

ABSTRACT
This presentation will give a list of design criteria an ASIC
Design house need to look in the process of deciding to take the
complex Bluetooth specification and implement everything from
scratch or to integrate reusable Intellectual Property for
integration into their SoC.
The presentation also include experience from a typical embedded
development project where reusable Bluetooth Baseband
Intellectual Property both for HW and SW is used with the
Bluetooth Technology from Ericsson as example. This pper is a
compressed summary.

1. INTRODUCTION
Bluetooth is a wireless short-link standard for 2.4 GHz twith
feature for both voice, data and ad hoc networking capabilities
that has hit the Electronics Industry development labs hard the last
2 years. The future will show that this complex piece of system on
a Chip will be a standard-peripheral in a all future SoC:s. There is
a lot of engineering effort put into various design-labs to
understand how to implement the specification or how to get hold
of the technology.

2. REUSABLE IP FOR BLUETOOTH
There are basically 2 choices to adopt new bluetooth technology
into SoC-designs:
1. Read 1500 pages Bluetooth specification, hire a significant

number of resources and implement both software and
hardware parts from scratch, add the test-resources needed
and insight in the qualification procedure and you might get
a solution in-house.

2. Reuse existing complex IP-blocks for the Bluetooth
functionality and evaluate the various solutions available.

This part is a summary of my experience in the ASIC-design
reusability field and a framework for the task of analyzing the
various parameters when selecting a solution for Bluetooth

2.1 Time Factors to evaluate
2.1.1 Time – Fast Learning Curve and availability
When integrating Bluetooth Technology it can be seen as done in

various phases. First to evaluate the technology by use of
Development Kits. Secondly integrate Compact Module with
Firmware for interface over HCI (USB or Uart) ready for use
together with a Host stack. Finally as reusable HW/SW Intellectual
Property for integration into your SoC:s. For high volume, low cost
devices the integration of Bluetooth IP in larger systems will
become more attractive. To enable reuse a good training program is
also required.

2.1.2 Time -Reuse defined HW/SW Interfaces
To enable an easy integration of Bluetooth IP it need to support
some standardized hardware interfaces as a reference. For the
software side well standardized and documented API:s give the
same purpose for enabling a smooth software integration.

2.1.3 Time - reuse Development Tools
To reduce time in development projects including Hardware and
Software development you need well proven, documented
development Tools to speed up the time to working products and
thereby have a stable Development environment to make your
integration in.

2.1.4 Time – Additional Functionality Specification
With industry standards like Bluetooth, USB, GSM etc there will
always be a roadmap of improved features within the specification
like new profiles etc and also improved optimized functional blocks.
The specification will be expanded over time and the solution
selected need to be available as a roadmap of technology for the
future needs.

2.2 Quality Factors to evaluate
When you make a design in-house you know at least the designers
names and their skills. For external IP you rely on external know-
how and the solutions can vary significantly in quality and
perfornance. Potential Bluetooth Baseband IP functions can be
divided into the below parts without closer defining if the function is
implemented in Hardware or Software.
• Control-part: Generate all timing and state-control for the

Blueototh control including Master Slave, Scatter Net support.

• Data-paths: Handle all the various data-packet types decode,
encode, re-transmit for both Receive and Transmit Data
packets.

• Voice-paths: Handle all the various voice-packet types decode,
code, CVSD-coding, buffering and voice-format conversion
for a certain number of simultaneous paths as defined in the
Bluetooth specification.

• Link Manager IF and other CPU-load reduction blocks : This
would be additional intelligence for reducing CPU-load and
arrange buffering for various links as well as other parts that
might be implementation specific to address certain system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

performance targets for the implementation such as low power,
low CPU-load or what even the criteria can be.

2.2.1 Quality - CPU load-Interrupt , architecture
For various implementation the CPU-load can vary. Solutions in
the Bluetooth industry vary between 1 MIP(s) up to more than 20
MIPS for a Bluetooth solution. First of all this will give a hit
directly in the current-consumption parameter, but also it will give
an indication if you can allow an embedded integration and using
spare capacity of the CPU for applications with some real-time
requirements.
There could also be solutions where more of the basic scheduling
has hardware support and the interrupt issue is not that extreme. A
basic parameter to bear in mind is that frame rate for Bluetooth
link is 1.25ms for 1.0b specification, but for higher data-rates in
2.0-specification this might be a even faster rate to take care of.
Software based solutions that should be low power also could
have a problem with this. Blluetooth industry include solutions
with a range of average interrupt rate of 1 per frame up to as less
as 1 per 10 frames.

2.2.2 Quality – Voice, architecture
If you plan to include voice support in your Bluetooth solutions
you should be aware of the following items. For very low power
headsets with reasonable standby times the CPU-activity need to
be low to get good performance. The various format conversions
and CVSD-coding and additional potential digital filtering for
being fit to integration into existing voice-links needs to be part of
the solution.

2.2.3 Quality – Modularity -architecture
Bluetooth is a very complex and capable specification and not all
applications will need the maximum performance that the
specification allows. If the architecture is done scalable and
modular this could be a bonus for your integration project to save
silicon cost and RAM-memory area. The various tentative
parameters to look into could be:

• Number of Voice Links

• Number of Supported Slaves

• Number of Supported Pico Nets.

• Type of Packets supported.

2.2.4 Quality – Solution Maturity and Test Methods
Bluetooth is a very young industry standard (1.0b specification
released in 1999, SIG-group started in 1997). When analyzing this
it should be known that Bluetooth is more complex than USB and
in some areas even worse than GSM being only a point to point
solution with fixed Base / Mobile.
All vendors will define that they have a fully proven system and
passed un-plug fests etc, but it should be known that the only
thing that is valid to enable putting a Bluetooth logo on the
system is if the solution has passed the Qualification Rules
defined by the SIG.
Internal development testing and methodology for that is key for
the cases where some modifications to the IP are requested for
integration purposes and a re-verification of the modifications
planned.

2.3 Cost Factors to evaluate
Current consumption is seen as a Cost-factor in applications
where Bluetooth Technology is used. When you make an
assessment of the Current consumption figures you can use the
below as one example to recalculate from:

2.3.1 Cost - Current , Active Connection Data
An example for a data-connection with 10% duty cycle, a Radio-
part active at 30 mA and Baseband active 4 mA will give a total
average current consumption for this scenario of about 8mA and
can be recalculated for your intended duty cycle and if other
figures are used for radio and Baseband figures for various
implementation. The range of solutions seen in the Bluetooth
industry range for RF-parts between 30- 60mA and Baseband
between 4 – 40 mA

2.3.2 Cost - Current , Standby Modes Scan
An example showing a Scan-scenario where a unit wake up once
every 1.28 seconds to make a 11.25 ms scan activity. RF-part
when active is about 30mA. Baseband core when running the
Scan-procedure about 1mA. This scenario will then give an
average RF+BB of 300uA and from that you can define the
Standby time of your system when requiring the Scan-function
switched on in your device.

2.3.3 Cost – Integration Choice

23

Low Cost = High Yield SolutionLow Cost = High Yield Solution

BluetoothBluetooth

Host
BB

with
EBCP

RF1.

BB with
EBCP

RF2. Host

BB with
EBCP3. Host
RF

? Yield?

Conclusion: Low cost = small silicon area and high yield
 High RF-yield requires mature solutions

LM+ EBC

L2CAP

RFCOM

Application
SDP

There are various integration options available when deciding
how to Bluetooth enable your products.
1st case shows an add-on RF + separate Baseband interfacing
over HCI to existing Host. This is a 2-CPU solution and can be
done by existing components with the Ericsson IP included.
2nd case shows a case were the Baseband part (Baseband-IP) is
integrated into the existing Host and thereby reducing the system
cost. This can be a 2 CPU solution in one host or 1 CPU solution.
The external RF-part can still be a well-proven RF-component
from various vendors with Ericsson IP included.
3rd case show a case where the Baseband and RF-part of
Bluetooth is integrated into one external device giving same
functionality cut as in 1st scenario, but with less components.

All cases are possible and various solutions are available on the
market, but to get lowest cost in case 3 you need to be aware of
the yield items for RF and Baseband in one Die. In case 2 the cost
can be reduced to less than case 3, but the risk and challenge is
the Software integration.
2.3.4 Cost - Low CPU-load
CPU-load is a cost-factor, both for reducing current but also to
enable smooth Embedded integration into your existing system.
Increased complexity in Bluetooth functionality ranging from
point-to-point data only up till full multi point with both voice
and data-links functionality do not need to generate any increase
in CPU-load if lot of hardware support is included, but with a
Software based architecture you will definitely need to take a
closer look to what happens when adding features in future
product scenarios.

3. Bluetooth Enabling Project, a Case study
This section describe a case study for a typical Bluetooth enabling
project where the main decision factors has been as below:

Table 1. Bluetooth Selection Criteria for this Design Project

Parameter Comment

Time – Fast learning cure Large amount of buy-in IP
Time – Reuse
Development Tools and
well defined interfaces

To reduce own design resourcing
efforts

Quality- Mature Solution To enable good interoperability
with the bluetooth Standard

Quality – Complete
solution 1500 pages of spec / profiles

Cost – Low CPU load To enable embedded applications
Cost – Low Current
Consumption

To enable handheld wireless
devices.

With this case study the above objectives can be met and the
below learning curve for the integration project can be adopted
where we have used the product EBCP developed by Ericsson and
ARM as a complete solution. There are basically 3 activities that
needs to be enabled.
Table 2. Wanted time-plan with reusable IP.

9

Time - Fast Learning CurveTime - Fast Learning Curve

Bluetooth System Evaluation teamBluetooth System Evaluation team
•• day 1morning: day 1morning: unpack Demo Kitunpack Demo Kit

•• day 1 afternoon: day 1 afternoon: Run full link scenariosRun full link scenarios

•• day 2:day 2: Consider next stepConsider next step

Bluetooth ASIC Project teamBluetooth ASIC Project team
•• day 1: day 1: unpack RTL-code + test benches + unpack RTL-code + test benches +

documentationdocumentation

•• day 2: day 2: simulate and select your target processsimulate and select your target process

•• day 3 : day 3 : use synthesis / static timing-scripts for use synthesis / static timing-scripts for
backend workbackend work

Bluetooth Software-Project teamBluetooth Software-Project team
•• day 1 morning:day 1 morning: unpack Integration platformunpack Integration platform

•• day 1 afternoon: day 1 afternoon: SW-development on “full 1.0-spec”SW-development on “full 1.0-spec”

3.1 System Team tasks and reuse items
The system evaluation team need to quickly get up the learning
curve and also if needed do prototyping with standard component
including the tentative IP-block. The system group also need to
make the proper assessment of the quality of the IP-block. In this
user-case the following items were used:

• Bluetooth Academy Training by Ericsson including basics
about Bluetooth and the development Kits available.

• Bluetooth Development Kits for trials.

• Bluetooth Ericsson IP included in standard components for
both Baseband and Radio components from any of the
existing licensees.

• Bluetooth Ericsson Host Stack

3.1.1 Quality - CPU load , architecture issue #1
Based on the architectural definition in the EBCP-solution there is
a Frame Scheduler controlled by Software with “look-ahead
capabilities” that will enable a possibility to point at Chunk
Descriptors and Receive Descriptors defining items to keep track
on for each link. In bench-marking we have seen that this give a
CPU-load of about 1.3 MIPS (Million Instructions per Second) at
a ARM7TDMI and is roughly 5 times better than what has been
seen in the Bluetooth industry so far. The benfits of this is shown
in both lower Current consumption (less bus-activities etc), but
also enables a smoother integration of this IP into existing ASIC-
architectures that should become Bluetooth enabled.

3.1.2 Quality - Interrupts, architecture issue #2
Due to the architecture based on CD (Chunk Descriptors) and RD
(Receive Descriptors) and the FS (Frame Scheduler) we can
generate a system where we generate 2 interrupts per 14 Frames
(1/7 Frames). This is about 7 times better that the Bluetooth
Industry average and will also allow ups to keep the CPU load
very low and also the current consumed. The other obvious
benefit due to this is to enable simple integration of this EBCP
into a System on a Chip already existing with lot of real-time
constraints to be met.

3.1.3 Quality - Voice, architecture issue #3
Due to the hardware implementation of the Voice part in the
EBCP we can run a voice connections continuously without any
interrupts as long as there are not Management Packets to be sent.
This is due to the built in DMA-support in the solution. The voice
part includes support for 3 simultaneous voice-paths and voice-
format conversion for these for various PCM-formats as well as
CVSD. This hardware approach gives very low power
consumption for voice, which is necessary for most headset
applications.

3.1.4 Quality - Scaling, architecture issue #4
The reusable IP solution is scalable both for Hardware and
Software.

•PD:s (Piconet Descriptors) defined between 0-4

•CD:s (Chunk Descriptors) defined between 1-10

•RD:s (Receive Descriptors) defined between 1-10

•VD:s (Voice Descriptors) defined between 0-3

•FS (FrameScheduler length) defined between 1-32
This enables en easy reduction of footprint in scalable way to fit
the needs for the intended applications.

3.1.5 Quality - Maturity of Solution
Ericsson started already in 1994 with an internal small research
project for short-link radios and in 1996 a first generation of
Chipset for this was available. In 1997 the SIG was started and the
specification was improved even further to become the Bluetooth
Specification 1.0 (now 1.1) reviewed by the other SIG-members.
Ericsson 3rd generation Chipset is now one of the Blue Units used a
reference kit for interoperability until the complete Qualification
Procedure is in place. This generation will also be the basis for all
1st generation products like Mobile Phones, Headset and phone-
plugs.
Ericsson 4th generation Chipset include full spec multi point etc and
is also the basis for the reusable IP for HW SW that is used in this
case-study, the EBCP-product.

3.1.6 Quality - System Test FPGA
To enable high quality testing in lab apart from the feedback from
all Unplug fests within the Bluetooth community Ericsson used an
approach of intensive FPGA-testing of HW + SW + RF in
development platforms. 20 FPGA-boards each compliant with all
features in the Bluetooth specification has been developed
generating clusters of test-platform, some are point-to-point, some
multi point.
A test specification covering all HCI-commands was developed and
implemented also as automatic test-scripts testing all features
intensively to cover all strange corner cases that might happen when
running Bluetooth scenarios. Regression tests were made for each
new Software release.

3.1.7 Summary – System Team Analysis
The above activities within the Bluetooth System Evaluation team
made them prepared to decide that the EBCP-IP-block was mature
and fulfilled their requirements and now it is up to the ASIC and
Software team to get started with real development work.

3.2 ASIC Project Team Tasks and reuse items
3.2.1 ASIC overall architecture design
To enable easy integration of the EBCP-IP has adopted the AMBA
2.0 bus structure that is well proven for ARM-based systems For the
Radio-interface the EBCP include support for BlueRF as well as
several leading RF-vendors providing flexibility for vendor-
choice.The first steps in the ASIC-design project is to get a complete
overview of the intended block-functionality and how to integrate
this into a complete System on a Chip (SoC). EABBC Technical
Reference Manual (SC039-DC-02001) is the main reference
source for the EABBC for use by both hardware and software
engineers. It includes Introduction to the EABBC: its features,
programmable parameters, interfacing diagram, Functional

overview: block diagram, description of sub-blocks, description of
operation, resets, clocks, initialization, operating modes,
programming procedure and timing diagrams, Programmer’s model
for each block: register map, register descriptions, reset values,
illegal values, equations to calculate programmed values, tables of
example values and description of interrupts, Block I/O signal
descriptions for each block: AMBA bus signals, on-chip signals and
signals to device I/O pads.

3.2.2 HDL-design and functional simulations
When the architectural decisions are made you integrate you
peripherals to the reusable Bluetooth IP functionality The EABBC
Integration Manual (SC039-DC-10001) explains how to connect
up the parts of the EABBC hardware description., how to get the
test bench up and running in the simulator, how to run the
integration tests, with the EABBC as supplied in the EBCP and how
to add additional components to the hardware design.
The delivered functional and behavioural VHDL-code consists of
the following defined items. EBC Synthesisable VHDL (SC039-
MN-23001) The EBC is the ‘Enhanced Bluetooth Core’ from
Ericsson. This is an on-chip peripheral macro cell that performs the
link control functions (including frequency hopping, data whitening.
dewhitening, encryption/decryption etc) and includes a DMA
controller. It is delivered in Synthesisable VHDL conforms to
ARM’s PrimeCell design guidelines for soft IP. ARM Bluetooth
MicroPack Synthesisable VHDL (SC039-MN-23002) The
synthesiseable VHDL of the ARM Bluetooth MicroPack ARM
Bluetooth MicroPack Behavioural Models (SC039-MN-23003)
The behavioural models of the ARM Bluetooth MicroPack, for
simulation. ARM Bluetooth Peripherals Synthesisable VHDL
(SC039-MN-23004) The synthesisable VHDL of the ARM
peripherals for the Example AMBA Bluetooth Baseband Controller
(EABBC) ARM Design Simulation Model (AT010-MS-23402) of
the ARM7TDMI Rev 3 suitable for use with ModelSim VHDL
simulator.
The above Functional blocks then needs to be simulated and assure
that the integration into your ASIC has been done in the correct way
before you go to the backend work.
3.2.3 3. Functional Simulation environment
The functional simulation environment and test-suite delivered
consist of the System Testbench (SC039-MN-23004) that connects
to the EABBC with simulation models to form a complete
functional system in simulation. The connected system can then be
used to run the tests defined in the EABBC Hardware Integration
Tests (SC039-VE-01001) that consist of ARM source code, the
purpose of which is to carry out integration testing of each part of
the EABBC. These tests do not check the complete functionality of
the EABBC but provide verification that interconnections of the
blocks have been carried out correctly.

3.2.4 Back End ASIC Flow

When you have a functional simulation working at RTL-level it is
time to get the back-end flow iterations in place. All the relevant
scripts for enable this are Synthesis Scripts (SC039-MN-01001)
to synthesize the components and top level of the EABBC
synthesizeable HDL to a netlist of gates from Avanti's CB25 cell
library using Synopsys Design Compiler. Static Timing Analysis
Scripts (SC039-MN-01002), Top level static timing analysis
scripts for the EABBC for use with Synopsys Prime Time.
Formal Verification Scripts for enabling a smooth comparison
of RTL-level with Gate-level to avoid long timing simulations at
gate-level for toll Chrysalis.

FPGA Synthesis Scripts (SC039-MN-01002) These scripts
allow the synthesis of the EABBC Synthesisable VHDL into
bitstreams suitable for loading onto the FPGA-Integrator platform

3.3 Software Team Tasks and reuse items
3.3.1 Documentation and Standard API:s

7

Time - Complete software stack reuseTime - Complete software stack reuse

LM

EBC

L2CAP
SDP

O
S

E

Custom Drivers

Custom
Peripherals

E///-ARM drivers

E///-ARM Peripherals

RFCOM

Host Application

HCI

HCI driver

A
ny O

S

Software

Hardware

Normally there is a lot of pressure on the ASIC-team to deliver
samples so the Software team can get stated in real-time
environment, but in this case it is solved by getting the Integrator
Platform with BTLM so ASIC-team is not out of the critical line
for a while. Apart from the already mentioned EABBC Technical
Reference Manual there exist also a EABBC Software Reference
Guide Reference (SC039-DC-02002) for the EABBC Software
that which parts of the Bluetooth Spec the software provides,
exceptions and additions to the spec, supported platforms and
processors. Functional overview: logical structure of software’s
modules and interfacing, description of each module, description
of reset state, initialisation, operating modes, and configuration
options. Configuration Model for each module: Configuration
parameters, range of allowed values and their effect on
functionality and performance.

3.3.2 Software Integration Components

EABBC BIOS Software (SC039-SW-02001) In order to ease the
task of Licensee’s software engineers when they add their own
peripherals, or modify the ARM Bluetooth Peripheral, a set of
BIOS calls and a set of drivers for the ARM Bluetooth
peripherals, have been implemented. The EABBC BIOS software
runs on the EABBC hardware and provides access to the EABBC
hardware (excluding the EBC) for the EABBC Bluetooth
Software and access to the EABBC hardware and OS resources
for functionality added by the Ericsson Licensee.
EABBC Bluetooth Software (SC039-SW-02002) Software that
runs on the EABBC and provides the following operational mode:
HCI-LM – this provides the Link Manager, Host Controller
Interface and UART Transport Layer suitable for implementing a
Bluetooth Baseband controller.

3.3.3 System Integration Platform
In the EBCP case Ericsson teamed up with ARM to make the
Bluetooth IP compatible to the Integrator Platform Integrator/AP
(SC039-BD-02003) a standard ARM development board but
modified to allow its correct operation with a Bluetooth Logic
Module (BTLM) (SC039-BD-02001)– provides FPGA for EBC,

S tart
Integrate H D L

functionality & sim ulate

N etlist

P ass S im ?

S can used ?

S tatic T im ing A nalysis
(S T A)

P ass S T A ?

C lock buffering, place and
route

Layout

E xtract P ost route
tim ing

S D F
T im ing

S T A & .

P ass
S T A /S im ?

W ire load
M odels

S ynthesize
C ell

Library

S can
insertion

E quivalence
checking

P ass?

T im ing

constraints

N

Y

Y

N

N

Y

NY

Y N

S ign off

E quivalence checking

E quivalence
C hecking

and RF module and used together with Integrator/CM7TDMI
(SC039-BD-02002) a standard ARM core module. While you are
waiting for the ASIC-team to put the ASIC together (would take
some weeks of production time, generally 6-8 weeks from Tape
Out to sample and another 4-6 weeks before that to enable the
backend flow meaning that you would have 10-14 weeks of time
to spend on getting the complete system with application up and
running in an emulated environment.
EABBC Software Integration Guide (SC039-DC-10002)
describes the configurable elements of the SW to allow
integration of the EABBC by the users end application.

Figure 1 Integrator board with BTLM and RF-module
Bluetooth Development Platform User Guide (SC039-DC-
10004) describes how to use the logic module (BTLM) in
conjunction with an ARM integrator/AP development board

including How to program the functional components of the
EABBC into the FPGA’s in the BTLM How to download the
EABBC software onto Integrator/AP. How to execute and debug
the EABBC software.

Bluetooth Test Software (SC039-SW-00003) also known under
the name HCI Toolbox is a PC Software which can communicate
with the EABBC through the UART Transport layer provided by
the HCI-LM option of the EABBC software. This software
normally runs on a PC with 2 serial ports – the first serial port
(COM1) is connect to the first development board; the second
serial port (COM2) is connected to the second development
board. All relevant information about this is inlcuded in the
Bluetooth Test Software User Guide (SC039-DC-10003)

4. CONCLUSIONS
An example Bluetooth enabling SoC-project with reuse-
methodology has been presented together with the most important
parameter to analyze to choose in-house design or IP-reuse. The
conclusion is that reuse of both SW and HW is possible even with
large IP-blocks if the complete design-process from fast-learning
curve to final proven silicon is taken into account.

5. ACKNOWLEDGMENTS
Our thanks to the inventors of Bluetooth that have given us the
opportunity for enormous engineering challenges to solve.

6. REFERENCES
[1] Bluetooth Official Web-site http://www.bluetooth.com .

[2] ARM Official Web-site http://www.arm.com

