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Abstract - Most capacitance extraction algorithms based on Boundary Element Method (BEM) use iterative 
solvers, which is favorable for solving large systems. Different from the common practice, we present an approach 
that solves a small system for capacitance using the direct solver. Our study is based on the sparse formulation 
proposed in 181. With proper ordering of the rows and columns, the sparse system can be approximated by its 
inexact factorization. Furthermore, with the proper ordering, the part of the solution vector, which contributes to 
capacitance, can be solved using the sub-matrix of the inexact factors. The dimension of the sub-matrix is O(m), 
where m is the number of conductors. To our knowledge, this is the first BEM style method to solve capacitance 
extraction problem without using iterative solver. Experimental results show that the new algorithm is up to 100 
times faster than Fastcap 141 and is also much faster than the method in 181 (we call it PHiCap). The error of the 
new method with respect to FastCap is within 2%. 

I. INTRODUCTION 

Capacitance extraction is an important problem that has been extensively studied. The capacitance of an m- 
conductor geometry is summarized by an m x m capacitance matrix C. To determine the j-th column of the 
capacitance matrix, we compute the surface charges produced on each conductor by raising conductor j to unit 
potential while grounding the other conductors. Then Cij is numerically equal to the charge on conductor i. This 
procedure is repeated m times to compute all the columns of C. 

Many capacitance extraction algorithms are based on BEM. Fastcap [4], HiCap [6], and other algorithms [l] 
are accelerated with Fast Multipole Method (FMM) [Z]. The pFFT algorithm [ 5 ]  and IES3 algorithm [3] are 
accelerated using Fast Fourier Transform and singular value decomposition respectively. These methods split the 
conductor surfaces into small panels and formulate the problem using a linear system 

Pq = v, (1) 
where q E Rn is the vector of unknown panel charges, v E iRn is the vector of known panel potentials, P E RnXn 
is the potential coefficient matrix and n is the number of panels. The linear system is dense and iterative methods 
are used for solving it. 

In [8], we proposed a linear transformation which transforms the dense linear system to the equivalent sparse 
linear system, which is solved using preconditioned iterative methods. Experimental results show the incomplete 
LU or incomplete Cholesky factorizations are very efficient preconditioners. Inspired by this observation, instead 
of using the inexact factorizations as preconditioners for iterative solver, in this paper, we approximate the sparse 
linear system using its inexact factorization and solve the approximate system using direct method. The accuracy 
of the approximate system can be improved with proper row/column ordering. In addition, with proper row/column 
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ordering, the capacitance matrix can be computed by solving a small system of size O(m) obtained from the 
inexact factors. 

11. PRELIMINARIES 

The Hicap method [6] constructs a hierarchical data structure .that contains the potential coefficient matrix P, 
which is a dense matrix with O(n) block entries. Fig. 1 shows an example of the hierarchical data structure. The 
panels are stored as nodes in the tree, and the block coefficient entries are stored as links between the nodes. 
Each tree represents the partition of a conductor surface. The root node represents the conductor surface. Each 
non-leaf node represents a panel that is further subdivided into two child panels. Each leaf node represents a 
panel that is not subdivided further. The union of all the leaf nodes covers the conductor surfaces completely. 
The rows and columns of P, the entries of g and v correspond leaf nodes. 

Based on the hierarchical data structure, [8] 
constructs the transformation W, which convert 
the dense linear system (1) to the equivalent 
sparse system 

PQ = Q, (2) 

where Q = Wq, ? = W - T ~  and P = WTPW. 
The entries of Q and 0 correspond to the root 
nodes and the right child nodes. Matrix P is 
sparse with the number of nonzeros comparable 
to the number of block entries in P. In [8], 
the sparse system is solved using iterative meth- Fig. I .  The hierarchical data StrUCNIC b d  potential coefficients. 
ods, with preconditioners constructed from in- 
complete LU or incomplete Cbolesky factorizations. 

of W are zero for all nodes except the root. As a result, the vector 

- 

Since the rows of W are mutually orthogonal, WWT is a diagonal matrix. The sum of entries in each row 

Q = W-Tv = (wwT)-lwv 
has only nonzero entries in rows corresponding to root nodes of the conductor surfaces at unit potential. The 
rows of W corresponding to root nodes have identical nonzero entries which depend on the height. Thus, a root 
node entry in 4 is the sum of all leaf panel charges in that tree, scaled by a factor which is decided by the height. 
Capacitance is computed from those root entries. 

111. NEW ALGORITHM 

Let f. and fJ be the inexact lower and upper triangular factors of IS obtained from incomplete LU or 
Cholesky factorization. From [8], with no more than 4 iterations, the norm residual converges to 1% using 
io as preconditioner, which means that is a very good approximation of e. The basic idea of the new 
algorithm is to solve 

for tj using forward and backward substitution. Here 9 is an approximation of 4. Furthermore, with proper 
row/column'ordering, onIy the small part of Equation (3), I&Uzz& = Qz, is necessary for solving capacitance. 
We explain this in detail later. The new algorithm is outlined below. 

i I j q  = Q (3) 
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The New Algorithm 
1) Construct hierarchical data structure of P. 
2) Transform the dense system Pq = v to equivalent sparse system Pq = B, with perper row/column ordering. 
3) Compute inexact factorization Lo for P. 
4) Solve ~ 2 2 f z z ~ 2  = Bz by forward and backward substitution. 
5 )  Compute capacitance. 

In Step 1, we use HiCap algorithm to construct the dense linear system. In Step 2, we make the sparse 
transformation using PHiCap algorithm, When forming the P matrix, in order to improve the accuracy of the tu 
approximation of the following step, we order the rowdcolumns carefully. Compared with the exact factorization, 
the inexact factors t and U maintain the sparse pattern of P by dropping the nonzero entries, called fill-ins, 
in positions where f' has zero entries. Since incomplete factorization updates the rows one by one from top to 
bottom, we can order the rows with less nonzeros to the top part and the rows with more nonzeros to the bottom 
to reduce the number of dropped fill-ins. Considering the hierarchical data structure in Fig. 1, after the sparse 
transformation, higher nodes have more links than lower nodes. We order the nodes according to the heights, 
with lower nodes before higher nodes. All root nodes are ordered last. As a result, the accuracy of the inexact 
factorization in Step 3 is improved. 

- 

In addition, with the proper ordering, the cost needed to solve system (3) can be reduced. Let 

where vectors 81 and B1 correspond to right child nodes and 42 and Bz correspond to root nodes. According 
to the discussion in previous section, = 0 .  Furthermore, each entry of Q is the sum of all the Ieaf panel 
charges in that tree, scaled by a factor that depends on the height of the root node. Thus, only & is necessary 
for computing capacitance. 

Following the same ordering, we represent e and 0 as the follows. 

Thus, equation (3) can be written as 

fll U 1 2  

La1 L22 

which results in 
211 (U1141 + u 1 2 4 2 )  = 0 (4) 

e 2 1  (OI,Sl+ o l 2 a 2 )  + e22u22a2  = +a. (5 )  

From Equation (4), since e,, is nonsingular, we have 

u,,a, + o1242 = 0. (6) 
Substitute (6) in Equation (5 ) ,  the problem is reduced to - -  

LzzUzz8a = Bz., (7) 

We only need to solve system (7) for 62 to compute capacitance. That is Step 4 and Step 5. The dimension 
of system (7) equals the number of conductor surfaces, which is O(m). Since the system dimension is small, it 
can he solved easily using forward and backward substitution. 
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Bus4x4 Bus6x6 
Fastcap PHiCap New FastCap PHiCap New 

( o r d e ~ 2 )  Algorithm (order2) Algorithm 
Time 18.6 0.4 0.3 113.9 I .5 1 . 1  

Iteration 8 3 - 14.4 3.2 - 
Memory 25.7 2.4 2. I 62.5 7.3 6.4 

Enor - 2.1% 1 . 1 %  - 2.3% 1.7% 
Panel 2736 1088 1088 5832 3168 3168 

Bus8x8 
Fastcap PHiCap New 

( o r d e ~ 2 )  Algorithm 
206 3.3 2.8 
12 3.4 
I12 12.8 11.4 
- 3.0% 1.8% 

10080 4224 4224 

- 

Iv. EXPERIMENTAL RESULTS 

We compare the new method with FastCap [4] and PHiCap [SI. Table I reports the experimental results. 
The bus crossing examples in uniform dielectric are standard benchmarks from [4]. The examples in multilayer 
dielectrics are from [SI. The algorithms are executed on a Sun UltraSPARC Enterprise 4000. The relative error 
in the capacitance matrix C r ,  which is computed by the algorithms, is defined as IIC - C ‘ l l ~ / l l C l l ~ ,  where 11. I I F  
denotes the Frobenius n o m  The new algorithm uses less memory compared with PHiCap, because L and U 
overwrite P and the memory for iterative solver in PHiCap are not needed in the new algorithm. 

V. CONCLUSIONS 

The algorithm propsed in this paper is the first capacitance extraction algorithm based on BEM, which solves 
the linear system using direct method, instead of iterative solver. The new method is up to 100 times faster than 
FastCap and is also much faster than PHiCap. 

Bus4x4 Bus6x6 
Fastcap PHiCap New FastCap PHiCap New 

(ordec2) Algorithm (orde~2)  Algorithm 
Time 63 2.0 1.5 162 5.7 3.4 

Iteration 13 1 - 17.1 3 
Memory 68 6.4 5.6 92 14.0 12.4 

1.3% 1.4% Error - 0.7% 0.7% 
Panel 3456 2120 2120 5448 4120 4120 

- 
- 
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Bus8x8 
FastCap PHiCap New 

( o r d e ~ 2 )  Algorithm 
324 14.2 6.9 
18 ’ 3 - 
133 26.3 23.5 
- 1.4% 1.5% 

7968 6784 ‘6784 
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