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1 Introduction After appropriate linearization and discretization, the following

The simulation of incompressible fluid flow is a computation-system must be solved:

ally intensive application that has challenged high-performance A B f
computing technology for several decades. The ability to solve ui_ } ()
large, sparse linear systems arising from Navier-Stokes equations B" ojlp] O

is critical to the success of such simulations. Linear systems of

equations are typically solved by iterative methods that have tiéiereu is the velocity vectorp is the pressure vectog’ andB
advantage of requiring storage proportional to the number of ute discrete operators for divergence and gradient, respectively.
knowns only. One can use the conjugate gradients me@@j, The matrixA denotes the discrete operator on velocitylin This

[1], for symmetric positive definite systems and the generalizéigear system is indefinite due to the incompressibility constraint
minimum residual metho€GMRES), [2], for nonsymmetric sys- on velocity which is enforced b'u=0 in (4).

tems. Although these methods are memory-efficient in comparisorA convenient way to circumvent the indefiniteness of the linear
to direct methods such as Gaussian elimination, the rate of c@ystem due to these constraints is to restrict the fluid velocity to
vergence to the solution can be unacceptably slow. Often odlyergence-free subspace. There are a number of techniques to
needs to accelerate convergence by using some preconditiortagstruct divergence-free velocity functions. These include dis-
strategy that computes an approximate solution at each step of ¢hetely divergence-free functions obtained from specially con-
iterative method. It is well known that commonly used precondbtructed finite element spacdd,5], as well as continuous func-
tioning schemes such as those based on incomplete factorizations derived from solenoidal functions such as those used in
(see, e.g.[3]) may not be effective for indefinite linear systemg/ortex methods. The problem is reduced to solving the momentum
with eigenvalues on both sides of the imaginary axis. Since tleguation for divergence-free velocity functions without the need
eigenvalue distribution of linear systems arising from the Navieto include continuity constraints. In many cases, the resulting re-
Stokes equations could produce such systems, it is a challengéltieed linear systems are no longer indefinite. Furthermore, these
devise robust and effective preconditioners for incompressibleduced systems can be preconditioned to accelerate the conver-

flows. gence of iterative solvers.
The Navier-Stokes equations governing incompressible fluid The existing schemes for divergence-free functions are compli-
are given as follows: cated and difficult to generalize to arbitrary discretizations. In this
paper, we present an algebraic scheme to compute a basis for
au discretely divergence-free velocity. Our scheme constructs a basis
p oy tpu-Vu=pg—Vp+V.r, (1) for the null space of the matrix representing the linear constraints
imposed on fluid velocity by(2). The algebraic nature of the
V-u=0, (2) scheme ensures applicability to a wide variety of methods includ-

ing finite difference, finite volume, and finite elements methods.
whereu denotes fluid velocityp denotes pressurp,denotes fluid Since the choice of the basis preconditions the reduced linear
density,g represents gravity, andrepresents the extra-stress tensystem implicitly, it is possible to compute an optimal basis that
sor. For Newtonian flowss takes the form leads to rapid convergence of the iterative solver. A more modest
target is to compute a well-conditioned basis that preconditions

— T
r=u(Vu+vu)). 3) the reduced system to some degree. The paper presents an algo-
—Foun § hould be add g rithm to construct a hierarchical basis of divergence-free functions
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Fig. 1 The coarsening of a4 X4 mesh to a 2 X2 mesh

2 Hierarchical Divergence-Free Basis 0 -S;viBl,
A straightforward way to construct discretely divergence-free p{u } I 0 P 0 } 9)
bases is to compute the null space of the discrete divergence op- I 0 PW

erator matrixB'. This null space can be computed via full QR 0 '

factorization or singular value decompositi®®VD) of BT, [6]. whereP( is a null-space basis of the matEBE”T:VEBIut. With

For anm by n matrix (m<n), the computation is proportional o ;<" +ansformation, the problem of computing the null-space of

2 : ) . T
m"n while storage is proportional tmn For the matrixB ", the the original matrixB™ is reduced to a problem of smaller size. By
number of rowsm corresponds to the number of pressure basis

functions and the number of columngorresponds to the number@PPlying the same technique to compute the null-spade‘df,
of velocity basis functions. SincBT is large and sparse with ON€ gets a recursive strategy foq constructing the nuII-spaBé_.of _
nonzeros proportional ton, both QR factorization and SVD are The preceding approach is viable cTJnIy if the transformation is
unsuitable due to the prohibitive requirements of computation aimexpensive and the reduced matBi?  is easy to compute and
storage. process subsequently. These criteria are met simultaneously by
The nonzero structure d8" can be exploited to construct aexploiting the relation of the nonzero structure Bf with the
null-space basis efficiently. The following outline of the algorithndliscretization mesh. The pressure nodes in the mesh are clustered
to construct a hierarchical divergence-free basis follows the deto groups of a few nodes each, and the velocity basis functions
scription in[7]. Suppose one can reorder the column®bfsuch  with support within a cluster are placed By, whereas those with
that support across clusters are place@jp,. The resulting matriB,
T T T is block diagonal with small block sizes. Each diagonal block
B =[Bin Boul: (5)  represents the divergence operator for the corresponding cluster of

T . A » nodes. Due to the small size of the diagonal blocks, the SVD can
whereB;, is a block diagonal matrix with “small” nonzero blocks be computed very efficiently.

?igntr:ﬁ E(;i.la.gonal. Given the following singular value decomposi- To illustrate the technique, we reproduce an example of a 4
in- X 4 mesh fron8] (see Fig. 1L Pressure unknowns are defined at
S, the nodes. Th&-component of velocity is defined on the horizon-
Bi,=USV'=[U, Uz][ }[V1 V,1T, (6) tal edges ang-component of velocity is defined on the vertical
0 edges. The nodes are clustered into four gro@s={1,2,5,4,
whereS, is a nonzero diagonal matri8T can be represented asG2=13:4.7.8, G3={9,10,13,14, and G,={11,12,15,15. The

follows: solid edges indicate velocity unknowns fBf, and the dashed
LUt s, O[T sggzs;elndlcate velocity unknowns fB,;. The associated matri-
BT:VVT[BL Blur] | =[V; Vz][ 0 OViB;T)EI B,
ut B,
X I}' (7) Bin= B, ,
Since By
S, 0|vIBl, 0 ~SIViBa] 1y G G
[ o oVviBLJ|L 2 :{0 VZBZUJ’ © Bou N (10)
I —C3 Cy
the null-space basis @& is given by -Cs Ca
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in which proportional to the size oB'. This is a significant improvement
over the QR and SVD algorithms. However, it should be noted

-1 1 0 0 that this reduction in computational complexity is gained at the
0 0o -1 1 ) expense of generating a basis that is not orthonormal. The reader
Bi=| 1 0 ol i=1,....4, (11) s referred td 7] for more details of this method.
Once the divergence-free basihas been constructed, the lin-
0o -1 0 1 ear system inf4) is transformed to the following reduced system:
and PTAPx=PTf, u=PXx, (15)
0 1 0 O 1 0 0 O which is solved by GMRES to obtai WhenA is symmetric and
Ci= Co= , positive definite, one can use CG instead of GMRES. Pressure can
0 0 0 1 0 0 1 0O X
be computed correctly by solving the least-squares problem
B 0 0 1 O 1 0 0 Bp~f—Au, (16)
o 0 0 %o 1 0 0 (12)
which is consistent sinc®T(f—Au)=0. At each iteration, one
The SVD of each block iB;, is given as needs to compute matrix-vector products of the fgrmPx and
_ _ z=PTw. The computation follows a recursive structure in which
12 12 V2 12712 matrix-vector products are computed at each level of the mesh
. 12 12 —-12 -1/2 V2 hierarchy. The computation proceeds from the coarsest mesh to
Bi=UiSVi=| _ _ the finest mesh for the produgt Px and in the reverse direction
12 12 12 1/2 V2 T X ) .
for the productz=P'w. Since the computational complexity of
12 12 12 12 0]  each product is proportional to the size ®f, the cost of com-
_ T puting the matrix-vector product for the reduced syster(ib) is
1/2 v2 0 1/ . .
proportional to the number of velocity unknowns. Furthermore,
-2 0 —v2 112 the concurrency in the hierarchical structure of this algorithm can
x| ) (13) pe exploited to develop high-performance software for incom-
1/2 0 v2 12 X . - .
pressible flows. Details of an efficient parallel formulation are
172 V2 0 1/2 presented if9].
that yields
B =VvIBT 3 Particulate Flows
. . Divergence-free velocity basis can be used to solve linear sys-
1 1 0 0 1 1 0 0 AV . S X e ;
tems arising in solid-fluid mixtures that consist of rigid particles
1| 1 1 0 0 0 0o -1 -1 suspended in incompressible fluids. The solution of these linear
=5 _ _ . systems is extremely computationally intensive and accounts for
2|1 0 0 1 1 1 1 0 0 g . o . - :
majority of the simulation time. The motion of particles is gov-
0 0 1 1 0 0 1 1 erned by Newton’s equations whereas the fluid obeys Navier-

(14) Stokes_ equati(_)ns. Assumir_lg no-slip on t_he surface o_f the part_icle,
the fluid velocity at any point on the particle surface is a function
Note that the rows oB(’ correspond to the nodes 6, 8, 14, an®f the particle velocity. For the sake of simplicity, this discussion
16 of the original mesh, and the columns correspond to the crogssumes spherical particles. For fltle particle, the positiorX;
cluster edges. It is easy to see tB&) " is a divergence matrix for @nd VelocityU; is obtained by solving the following equations:

the coarse mesh shown in Fig. 1. Since columpsl2zand 3 are du,

identical forj=1, . .. 4, thecolumns ofB™®" can be reduced to g i a7
four nonzero columns by multiplying with an orthogonal matrix

from the right. The resulting matrix is the divergence matrix of a dX;

2% 2 mesh which has been scaled by2l/ a9t Y (18)

)T .
Strlgc?uergeg?l;ré(e);rggz;rgsitrggigirﬁe%f F:]oemmgar%ﬁpinrgtim:tg;g i he_reUi includes both translation and angular components of the
) T ; ' grtlcle,Mi represents the generalized mass matrix, Bncepre-
single nodes. FurthermorB("" may be considered equivalent tosents the force and torque acting on the particles by the fluid as
a divergence operator matrix for the coarse mesh. Thus, the reGyed| as gravity. Fluid velocity at the surface of the particle is
sive strategy can be applied in a straightforward manner. Sing&ated to the particle velocity as follows:
B can also be computed efficiently from the SVDByf, each _
step of the recursive algorithm is very efficient. Uj=Uyi+ XU, (19)
The recursive algorithm to construct the divergence-free basidereU,; andU, ; are the translation and angular velocity com-
gives rise to a hierarchical basis that consists of basis functiopsnents, respectively, amgl is the position vector of thgth point
defined on each level of the mesh hierarchy. In the actual implelative to the center of the particle.
mentation of the algorithm, the null-space matrix is never com- A simple way to represent the linear system arising in particu-
puted explicitly. It is available only in the form of product oflate flows is as follows. The systems for fluid and particles are
matrices constructed from the SVD matrices and the equivalemtitten independently along with the constraint(it®) that forces
archy. velocity. Thus,

The size of meshes in the hierarchy decreases geometrically o g ¢

) . . u b
from the finest mesh to the coarsest mesh. Since the sBé*be T Ug I Ug
! ! . |B" 0 Of|p|=|0]|, whereu= = ,
is proportional to the mesh size at each level, the cost of comput Up wll U
ing and storing SVDs is also proportional to the mesh size atthel 0 0 C U g
corresponding level. Thus, the overall computation and storage is (20)
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. mesh with particles. The fluid nodes on the particle surface are
gravity absent from the mesh in this system. The presence of particles

A ——mmmm e —————— introduces a single node that is connected to all the fluid nodes

! that are adjacent to the particle surface. The algebraic scheme for
computing the divergence-free basis ensures that the algorithm
p applies without any change to particulate flows as well.
g = 4 Experiments
& The hierarchical divergence-free basis method has been used to
o solve the linear systems arising in particulate flow simulations.
3 The simulations involved incompressible fluid in a two-
?g dimensional channel with a number of rigid particles moving
freely under the action of gravitational force as well as force from
the surrounding fluidsee Fig. 2.
w The physical system is evolved from an initial state by the
implicit backward Euler method. The first-order accuracy of this
Yl _____ . scheme was adequate because the time step was severely con-
strained by particle dynamics. At each time-step, a nonlinear sys-
ﬁ pressure gradient tem of equations was solved by an inexact Newton’s metfidi,

At each iteration, a linear system of the fo(@®) was solved for

the Jacobian of the nonlinear equations. In general, this Jacobian
matrix is a saddle-point system with a nonsymmetric ma#ix
which tends to be real positive for a sufficiently small Reynolds
number. The hierarchical divergence-free basis approach is used
in which u is the fluid velocity in the interior of the fluid and/  to transform the system i22) to the reduced form shown {i15).

is the linear transformation from particle velocity to fluid ve- The reduced system is solved by the GMRES method. The adap-
locity u, on particle surface given bjl9). Using subscripté and tive tolerance proposed [i1] was used as a stopping criteria.

p to denote fluid interior and particle surface, respectively, the The differential equations are approximated by the mixed finite
preceding system can be transformed to the following system: elements method in which fluid velocity and pressure are repre-

Fig. 2 Particles moving in a periodic channel

A A B. 01F1 0 0 sented by the P2/P1 pair of elements. The choice of quadratic
| o o ol ™ et i velocity elements is necessary to capture the behavior of closely
T A Agp Bip 0|0 W O ur spaced particles. A nonuniform mesh is used to discretize the fluid
0w BT BT o ollo o 1 U domain resulting in a linear system that is large and sparse. The
0 0 I o f "ip p scheme proposed if12] is used in an arbitrary Lagrange-Euler
0 0 0o CjlO I ©O (ALE) framework to accommodate moving particles.
The parallel simulation code was developed using Péis],
b Communication between processes was done by MBI, The
=|g+W'b |, (21) mesh is generated using Triangl&5] and partitioned using Par-
0 allel METIS, [16]. Further implementation details are available in
. N . . 171,
which can be simplified further to obtain the following system: Simulations were conducted for rigid particles falling in a 3.2
At AptW By Uy by in.l_vé/i(_je and SObiIn. lLong ton-gimens_iolnaI vertical chanréel Wtiyth a
T T T T solid impenetrable bottom. The particles were assumed to be cir-
WA WiARpWHC - WiBrp || U =| g+ Wby . cular disks of diameter 0.25 in. and specific gravity 1.14. The
Bf Bf,W 0 p 0 initial position of particles was specified.

(22) 4.1 Single Particle Sedimentation. This benchmark simu-
Note that this system has a form similar to the linear syste@)in |ates the sedimentation of a single particle from rest whose center
A hierarchical divergence-free basis can be computedZ®r s at a distance of 0.8 in. from the left wall and 30 in. from the
without any difficulty. In this case, the null-space is computed fasottom of the channel. At the first time-step, the computational
the constraint matriy B BprW]. The basic algorithm remains mesh had 2461 elements and 1347 nodes. The number of un-
unchanged although care has to be taken when coarsening khewns in the unconstrained problem was 9418. Figure 3 shows

Fig. 3 Sedimentation of a single particle: (a) mesh with 2461 elements and 1347 nodes, (b) parti-
tioning into eight domains. The gravitational force pulls the particles towards the right.
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Table 1 Single particle sedimentation on the SGI origin 2000. Table 2 Multiple particle sedimentation on the SGI origin 2000

Processors Time Speedup Efficiency Processors Time Speedup Efficiency
1 1819 s 1.0 1.00 1 3066 s 1.0 1.00
2 822's 2.2 1.11 2 1767 s 1.7 0.85
4 502 s 3.6 0.91 4 990 s 3.0 0.75
8 334 s 5.3 0.66 8 570 s 5.3 0.66

the initial mesh and the associated partitioning into eight subdgme to solve the linear system is dominated by matrix-vector
mains. multiplication with the Jacobian, application of the hierarchical
To illustrate the numerical and parallel performance of the abasis, and orthogonalization of the Krylov subspace vectors in
gorithm, the experiment was restricted to the first five time-stegSMRES. The nonlinear solver takes most of the time, and its
starting with the particle and fluid at rest. Each time-step was 0.@}rallelization is critical to the overall performance.
sec. Table 1 presents the performance of the algorithm on eight . ) )
processors of the SGI Origin 2000 multiprocessor. The parallel4-3 Additional Remarks. The parallel implementation of
efficiency is expected to be much higher for a larger problem. fRe algorithm demonstrates good parallel efficiency even for
this experiment, superlinear speedup is observed due to effectifdall-sized problems. The overall speedup of 5.3 on eight proces-

cache utilization when data on individual processors is sm&Prs shown in Table 2 includes nonparallelizable components of
enough to fit within the cache. the code as well as preconditioning effects that slowed the con-

vergence of iterative solver on larger number of processors. The

4.2 Multiple Particle Sedimentation. The next benchmark detailed view in Table 3 shows that the speedup in critical steps is
simulates the sedimentation of 240 particles arranged in a stati®® on eight processors. The computation of divergence-free ve-
ary crystal The crystal consists of an array of 240 particles in 2fycity in the hierarchical basis is very efficient even on the small
rows and 12 columns. The centers of the particles coincide wighioblem considered here. The relatively modest speedup in
the nodes of a uniform mesh with 20 rows and 12 columns. Thgatrix-vector products is due to the structure of computation in-
centers of the particles are approximately 0.06154 in. apart in eag@lving multiplication with the matrices of the hierarchical basis.
direction. The distance between the walls and the nearest partighgs discussed in Section 2, this requires matrix-vector products
is also 0.06154 in. The top of the crystal is 30 in. above thgith matrices defined on meshes whose size decreases geometri-
channel bottom. Figure 4 shows the initial mesh and the assogilly from the finest to the coarsest level. In addition, it may be
ated partitioning into eight subdomains. noted that parallel efficiency can be increased by replacing the

At the first time-step, the computational mesh had 8689 elgrthogonalization step in GMRES with a variant that has a smaller
ments and 6849 nodes, giving rise to 43,408 unknowns in tlerial component.
unconstrained problem. The simulation was run for five time-stepsThe preceding benchmark experiments defipeedupas the
starting with the particles and fluid at rest. Each time step wasprovement in speed over theestimplementation of the algo-
0.01 sec. Table 2 presents the performance of the algorithm @fm on a uniprocessor. This implies that although the parallel
eight processors of the SGI Origin 2000. algorithm demonstrates gosgpeed improvemenin multiple pro-

It is instructive to see the breakdown of the computational timgssors, the speedup may be modest. The code attempts to achieve
into important steps. Table 3 presents the computational costiijh parallel performance by adopting an aggressive partitioning
critical steps. The nonlinear system solution time consists of thgategy which is aimed at good load balance in the overall com-
following main steps: calculation of the Jacobian matrix, applicgutation. This particular implementation of the hierachical
tion of the nonlinear operator, formation of the hierarchicadivergence-free basis algorithm computes a basis that changes
divergence-free basis, and the solution of the linear system. TRgh the number of processors. This has resulted in weaker pre-
conditioning which has caused a growth in the number of itera-
tions when the number of processors is increased. The deteriora-
tion in numerical efficiency of the algorithm can be eliminated by
using thesamebasis on multiple processors. In this case, however,
there is a marginal decrease in parallel efficiency which is offset
by superior numerical convergence. The reader is referr¢@]to
for a scalable parallel implementation of this approach.

5 Conclusions

This paper describes an algorithm to compute discrete
divergence-free velocity functions for incompressible fluid flow
>4 problems. The proposed scheme computes a basis for the null-
space of the constraint matrix used to enforce incompressibility in
the linearized Navier-Stokes equations. A multilevel recursive al-
gebraic transformation of this constraint matrix yields a hierarchi-
cal basis for the required divergence-free functions. The algebraic
nature of the scheme allows easy extension to particulate flow
problems in which rigid particles are coupled with the surround-
ing fluid by no-slip condition on the particle surface. The paper
outlines the extension of the hierarchical basis method for particu-

(a) (b) late flow problems. The effectiveness of the proposed scheme is

demonstrated by a set of benchmark experiments with single and

Fig. 4 Sedimentation of multiple particles: ~ (a) mesh with 8689 ~ Multiple sedimenting particles. The algorithm is designed to be
elements and 6849 nodes, and (b) partitioning into eight do- parallelizable. The resulting implementation on the SGI Origin

mains. Only the region of interest is shown. 2000 parallel computer demonstrates good parallel performance
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Table 3 Parallel performance of important steps in the nonlinear solver for multiple particle sedimentation

P=1 P=8

Simulation Step Time Percent Time Percent Speedup
Matrix assembly 224 11 33 10 6.8
Hierarchical Basis 1010 49 143 41 7.1
Matrix-vector multiplication 452 22 86 25 5.3
GMRES orthogonalization 360 18 83 24 4.3
Total 2046 100 345 100 5.9

even on small sized problems. For larger problems, the algorithn6] Golub, G. H., and Van Loan, C. F., 199@atrix Computations3rd Ed., Johns
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