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We present a simple and computationally efficient algorithm for approximating Catmull-Clark

subdivision surfaces using a minimal set of bicubic patches. For each quadrilateral face of the con-

trol mesh, we construct a geometry patch and a pair of tangent patches. The geometry patches
approximate the shape and silhouette of the Catmull-Clark surface and are smooth everywhere
except along patch edges containing an extraordinary vertex where the patches are C0. To make
the patch surface appear smooth, we provide a pair of tangent patches that approximate the
tangent fields of the Catmull-Clark surface. These tangent patches are used to construct a con-

tinuous normal field (through their cross-product) for shading and displacement mapping. Using
this bifurcated representation, we are able to define an accurate proxy for Catmull-Clark surfaces

that is efficient to evaluate on next-generation GPU architectures that expose a programmable
tessellation unit.

Categories and Subject Descriptors: I.3.5 [Computational Geometry and Object Modeling]:
Curve, surface, solid, and object representations—Computer Graphics

General Terms: Performance
Additional Key Words and Phrases: Catmull-Clark Subdivision, GPU Tessellation, Subdivision
Surfaces

1. INTRODUCTION

Catmull-Clark subdivision surfaces [Catmull and Clark 1978] have become a stan-
dard modeling primitive in computer generated motion pictures and 3D games. To
create a subdivision surface, an artist constructs a coarse polygon mesh that ap-
proximates the shape of the desired surface. A subdivision algorithm recursively
refines this base mesh to produce a sequence of finer meshes that converge to a
smooth limit surface. In practice, developers perform up to 5 off-line subdivision
steps to generate a dense mesh suitable for rendering a smooth surface.

This off-line refinement process leads to a number of difficulties when dealing
with Catmull-Clark surfaces in real-time applications like games. The large, dense
model produced by subdivision consumes limited removable disk space and GPU
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memory, and requires significant bus bandwidth to be transferred to and from
memory. For large numbers of models the amount of resources required can degrade
system performance. However, the most serious issue encountered by this off-line
refinement strategy is the expense of animation; every vertex of the dense model
may need to be modified independently. To minimize the computational overhead
needed by these shapes, developers often use a courser mesh, which leads to visible
faceting artifacts. All these factors could be mitigated if subdivision was deferred
until after base mesh vertex animation in the GPU.

In fact, support for higher order tessellation directly in hardware is becoming a
reality as exemplified by both the Microsoft Xbox 360 and the ATI Radeon HD
2900 series graphics cards [Lee 2006; ATI/AMD 2007]. The tessellator unit in
these GPUs provide hardware support for adaptive tessellation of parametric sur-
faces. Based on user-provided tessellation factors, the tessellator adaptively creates
a sampling pattern of the underlying parametric domain and automatically gener-
ates a set of triangles connecting these samples. The programmer then provides a
special shader program that the tessellator calls with the parametric coordinates
(u, v) for each sample in the parametric patch; the shader then emits a vertex that
corresponds to the patch evaluated at those coordinates. This approach allows the
GPU to triangulate arbitrary parametric surfaces because the evaluation details
are provided by the programmer in the form of a shader. Furthermore, the GPU
is able to exploit parallelism because multiple arithmetic units can be running the
same evaluation shader in lock-step. We expect tessellation hardware to become
standard in the near future [Blythe 2006; Boyd 2007].

1.1 Catmull-Clark Surfaces on Tessellation Hardware

Catmull-Clark subdivision surfaces are in fact piecewise parametric and therefore
amenable to hardware tessellation. Each quadrilateral face in a Catmull-Clark
control mesh corresponds to a single bicubic patch except for quadrilaterals that
contain an extraordinary vertex. These extraordinary patches, patches containing
one or more extraordinary vertices, are actually composed of an infinite collection
of bicubic patches. Using this polynomial structure, [Stam 1998] developed an
algorithm for directly evaluating the parametric form of Catmull-Clark surfaces.

While programmable tessellation hardware will be capable of running Stam’s al-
gorithm, there are a number of issues that indicate performance will be poor. Stam’s
method requires branching, which reduces SIMD efficiency. Stam also factors his
computation into a sequence of matrix multiplications. Counting the number of
multiplies needed in this evaluation shows that, even in the regular case (n = 4),
Stam’s evaluation will be over an order of magnitude more expensive than normal
bicubic evaluation. Finally, Stam’s method requires that extraordinary patches
contain only one extraordinary vertex. If there are patches that contain more than
one extraordinary vertex, one level of subdivision must be performed resulting in
4 times as many patches to evaluate (see Figure 1). If this subdivision step is
performed off-line, then even more disk space, memory, computational resources
for animation and bandwidth to transfer the data to the GPU are required. Fur-
thermore, this subdivided mesh becomes the coarsest level of resolution, reducing
the effectiveness of level of detail management. Therefore, alternatives to exact
evaluation are needed to improve performance on a GPU tessellator pipeline.
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Fig. 1. Blue patches (left) contain more than one extraordinary vertex and cannot be evaluated

using Stam’s method. The subdivided shape (right) contains patches with one or less extraordinary

vertex but increases the number of patches by a factor of 4.

1.2 Previous Work

Some of the early work in this area used Gregory patches [Chiyokura and Kimura
1983] to create surfaces that interpolate networks of curves and allow the user to
specify cross-boundary derivatives. While these patches could be used to approxi-
mate Catmull-Clark surfaces, the patches are rational polynomials whose denomi-
nators vanish at patch corners complicating evaluation. Furthermore, these patches
contain few degrees of freedom that can be used to approximate Catmull-Clark sur-
faces.

[Peters 2000] describes an algorithm that converts Catmull-Clark surfaces into a
NURBS approximation of the subdivision surface. This method creates one bicubic
patch for each face of a quad mesh. The surfaces produced are C2 everywhere except
near extraordinary vertices where they are C1. However, this method requires that
the base quad mesh be subdivided at least once (twice if there are extraordinary
vertices of even valence) to create sufficient separation of extraordinary vertices
resulting in 4–16 times as many patches as the base subdivision surface.

Recently, several researchers have considered techniques for performing subdivi-
sion directly on the GPU. [Bolz and Schröder 2002], [Shiue et al. 2005] and [Bunnell
2005] have used the GPU to dynamically tessellate Catmull-Clark surfaces. [Bolz
and Schröder 2002] and [Shiue et al. 2005] require that extraordinary vertices (a
vertex not touched by exactly four quadrilaterals) be sufficiently separated, which
necessitates at least one level of subdivision in software before GPU acceleration.
[Bunnell 2005] does not require separation of extraordinary vertices but is a multi-
pass scheme requiring significant CPU intervention. Also, all of these techniques
can only produce sampling patterns compatible with binary subdivision, which
may introduce visible popping artifacts when patch resolution changes or require
blending vertices between different resolutions. None of these methods can produce
sampling patterns compatible with future tessellation hardware [Blythe 2006; Lee
2006; ATI/AMD 2007; Boyd 2007].

Finally, Curved PN Triangles (sometimes known as N-Patches) [Vlachos et al.
2001] bear the most similarity to our work. This method takes as input a set of tri-
angles with normals specified at the vertices and attempts to build an interpolating,
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smooth surface consisting of cubic Bézier triangles. Unfortunately, the patches are
not smooth across their edges. To combat this effect, the authors create a separate
normal field that gives the surface the appearance of being smooth. The advantage
of this method is that the computations are local and a patch can be constructed
using only the information present in a single triangle. The disadvantage is that
the surfaces suffer from various shading artifacts and the lack of smoothness can
typically be seen in the silhouette of the object.

Contributions

We propose an algorithm for visually approximating Catmull-Clark subdivision
surfaces, possibly with boundaries, using a collection of bicubic patches (one for
each face of a quad-mesh). We contend approximating the surface with patches
that are in one-to-one correspondence with the faces of the coarsest base mesh is
best. Further subdividing mesh faces may improve the quality of the approximation
but diminishes tessellator utilization, requires increased bandwidth to the GPU
and limits the minimal level of tessellation leading to over sampling. Our patches
are also smooth everywhere except along edges leading to an extraordinary vertex
where they are only C0; therefore shading discontinuities may result. We overcome
this difficulty by creating independent tangent patches that conspire to produce a
continuous normal field and, hence, the appearance of a smooth surface. When each
vertex of the patch has valence 4, our geometry and tangent patches are identical
to the Catmull-Clark subdivision surface.

2. GEOMETRY PATCHES

For each face in a quad-mesh, we construct a bicubic patch to approximate the
Catmull-Clark surface over the corresponding region. We represent these bicubic
patches in Bézier form with the labeling scheme illustrated in Figure 2.
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Fig. 2. Control point labeling for a bicubic Bézier patch.

Our geometry patch construction is a generalization of B-spline knot insertion,
used to convert from the B-spline to Bézier basis. If all four vertices of a quad-
mesh face have valence 4, then the construction reproduces the standard uniform
B-spline patch in Bézier form. There are three types of masks needed to construct
the control points of a Bézier patch from a uniform B-spline control mesh as shown
in Figure 3. These masks encode a set of coefficients that are applied by summing
the products of these coefficients and the corresponding points. For masks that
generate points (such as the masks in this figure) there is an implied normalization
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that these masks sum to 1. However, masks that generate vectors must sum to 0
and, thus, do not have an implied normalization.
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Fig. 3. Masks for determining Bézier control points from a uniform bicubic B-spline surface.

Referring to Figure 3, mask a) is used (in four orientations) to create the four
interior points b11,b21,b12 and b22, corresponding to each quad face; mask b) is
used to create the edge points b10,b20,b01,b02,b31,b32,b13 and b23 corresponding
to the edges of the quad-mesh; finally, mask c) is used to create the corner points
b00,b30,b03 and b33 corresponding to the vertices of the quad-mesh. Note that each
edge point lies at the midpoint of two interior points, belonging to adjacent faces;
and each corner point lies at the centroid of the 4 interior points that surround that
vertex. Our general quad-mesh patch construction is inspired by these geometric
relationships.

In the ordinary case (all vertices of the patch have valence 4), the corner points
b00,b30,b03 and b33 interpolate the limit position of the Catmull-Clark surface.
Therefore, in the extraordinary case, we also choose these control points to interpo-
late the limit position of the Catmull-Clark surface. [Halstead et al. 1993] showed
that the left eigenvector corresponding to the dominant eigenvalue of the Catmull-
Clark subdivision matrix corresponds to the mask that generates the limit position
of an extraordinary vertex. Figure 4 c) illustrates this limit position mask.

If the centroid of the surrounding interior Bézier points creates the corner point
with the mask shown in Figure 4 c), then we can infer the mask for the interior
points (shown in Figure 4 a). Note that the value n in the generalized interior point
mask corresponds to the valence of the vertex whose weight is n. Furthermore, this
valence may differ for each interior point b11,b21,b12 and b22. Finally, the edge
points are found as midpoints of the adjacent interior points leading to the mask
shown in Figure 4 b). Notice that, if n = 4, the masks in Figure 4 reproduce the
knot insertion masks in the uniform case shown in Figure 3.

3. TANGENT PATCHES

In general, replacing the Catmull-Clark surface with the geometry patches from the
previous section results in a surface that is smooth everywhere except along edges
containing extraordinary vertices. For some applications, this lack of smoothness
may be acceptable. However, for smooth shading, we need a surface that has
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Fig. 4. Generalized masks for interior, edge and corner points.

a continuous normal field over the entire surface. The normal field of a bicubic
surface is biquintic, which produces a large number of control vectors in Bézier form
to exactly represent the biquintic polynomial (36 control vectors). Furthermore, the
control vectors do not depend linearly on the underlying control mesh complicating
animation. Therefore, our approach uses a pair of tangent patches denoted by
∂u, ∂v whose cross-product approximates the normal field of the Catmull-Clark
surface. These tangent patches have fewer control vectors (they are degree 3 × 2)
and depend linearly on the control mesh.

Fig. 5. Control vectors for tangent patches ∂u and ∂v.

Consider the tangent patch ∂u. This patch will be bidegree 2× 3, since differen-
tiating the bidegree 3 × 3 geometry patch with respect to u will lower the degree
by one in the u-direction. Similarly, the ∂v patch will be bidegree 3 × 2. Since
the ∂u and ∂v patches represent vector fields, their coefficients are control vectors,
as illustrated in Figure 5. The construction of tangent patches is symmetric; that
is, the constructions are identical up to an interchange of principle directions, with
appropriate change of signs. Therefore, we limit our discussion to the ∂v patch.

For Bézier patches, the ∂v patch can be found using differences of the control
points. If bi,j are the coefficients of the geometry patch and vk,l are the coefficients
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of the tangent patch, then

vi,j = 3 (bi,j+1 − bi,j) , i = 0, . . . , 3 j = 0, . . . , 2. (1)

These control vectors represent a Bézier patch that exactly encodes the tangent
field in the v-direction of the corresponding geometry patch. However, since the
geometry patches do not meet with C1 continuity everywhere, the tangent patches
∂u and ∂v will not create a continuous normal field. In particular, the tangent
field must create a unique normal at the corners of the patch (shared by multiple
patches) and along the edges of the patch (shared by two patches). Therefore,
we must modify the control points along the edges of ∂v such that we create a
continuous normal field over the entire surface.
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Fig. 6. a) Tangent mask for uniform bicubic B-splines surfaces b) Mask for Catmull-Clark limit
tangent.

3.1 Tangent Patch Corners

To modify our tangent patch ∂v, we begin with the corner vertices v00,v02,v30,
and v32, which should produce a unique tangent plane among all patches sharing
this corner. Unfortunately, our geometry patches are not smooth for an arbitrary
valence vertex so our construction from Equation 1 does not produce a unique
tangent plane. Given that the geometry patches are meant to approximate the
Catmull-Clark surface, we use the limit tangent mask of the Catmull-Clark surface
to create a unique tangent plane at the corners of the patch.

[Halstead et al. 1993] showed that the tangent limit masks for Catmull-Clark
surfaces correspond to the left eigenvectors of the subdivision matrix associated
with the subdominant eigenvalue pair. Using these eigenvectors, we arrive at a
tangent mask

αL
i = cos

(

2πi
n

)

,

βL
i =

(
√

4+cos(π

n )
2−cos(π

n )
4

)

cos
(

2πi+π
n

)

.
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where αL and βL are the coefficients for the left eigenvector and use the labeling
shown in figure 6 b). Unfortunately, this relationship between the left eigenvectors of
the subdivision matrix and the tangent mask only generates a mask that determines
the direction of the tangent vector and not its length (eigenvectors are independent
of scale). Therefore, we must find an appropriate scale for this vector to ensure a
well behaved tangent field.

Fig. 7. The characteristic map of a Catmull-Clark surface for various valences.

Our approach conceptually uses the characteristic map of the subdivision scheme
as a local parameterization of the surface [Reif 1995]. Similar to the tangent mask,
the coordinates of the characteristic map are given by the pair of right eigenvectors
corresponding to the subdominant eigenvalues. If we allow αR, βR to be points in
the plane, then the one-ring control points of the characteristic map are

αR
i =

(

cos
(

2πi
n

)

, sin
(

2πi
n

))

βR
i = 4

√

4+cos(π

n )
2
+cos(π

n )

(

cos
(

2πi+π
n

)

, sin
(

2πi+π
n

))

.

The characteristic map is also independent of scale, which we are free to choose.
We pick a scale for the map such that αR

0 = (1, 0). Figure 7 shows examples of the
characteristic map for Catmull-Clark surfaces for various valences.

If we apply the limit tangent mask to the control points of the characteristic map,
the result will be a vector with non-unit length. We then find a scalar σ such that

σ

n−1
∑

i=0

αL
i αR

i + βL
i βR

i = (1, 0).

Solving for σ yields

σ =
1

n
+

cos
(

π
n

)

n

√

4 +
(

cos
(

π
n

))2
.

Multiplying the previous tangent mask by σ produces the final tangent mask.

αi =

(

1
n

+
cos(π

n )

n

√

4+(cos(π

n ))
2

)

cos
(

2πi
n

)

,

βi =

(

1

n

√

4+(cos(π

n ))
2

)

cos
(

2πi+π
n

)

.

(2)

This tangent mask is used to construct the vectors v00,v02,v30, and v32 resulting
in a unique tangent plane at each of the patch corners. Also, note that all these
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Fig. 8. a) The patch structure we associate with a Catmull-Clark subdivision surface. The

grey patches contain only valence 4 vertices, green have one extraordinary vertex and blue have

more than one extraordinary vertex. b) Our approximation to the Catmull-Clark subdivision

surface using geometry patches and c) our final approximation using geometry and tangent patches

compared with d) the actual Catmull-Clark limit surface.

vectors must be consistently aligned. In particular, the tangent vector directions
must be reversed (multiplied by −1) for v02 and v32. The construction of tangent
field vectors u00,u20,u03, and u23 is identical. Finally, notice that if n = 4, this
tangent mask exactly reproduces the tangent mask for bicubic B-splines in Figure 6
a) including scale.

'()'*)
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+))
+()+*)+,)

+))
+()+*)
+,)

-
--

-

Fig. 9. Control vectors involved in smooth edge conditions.

3.2 Tangent Patch Edges

Given the tangent patch from Equation 1 with corner vertices specified by Equa-
tion 2, the tangent patches create a unique tangent plane everywhere except along
the edges of a patch. Therefore, we must modify the control vectors along the edges
of the patch as well.

Consider the patch edge in Figure 9 shared by two patches. vi,j are the control
vectors for the top patch along the shared patch boundary in the v-direction, ui,j

are the control vectors for the tangent in the u-direction shared by both patches and
v̂i,j are the control vectors of the tangent in the v-direction for the bottom patch
along the shared edge. These control vectors define two cubic functions v(t), v̂(t)
and one quadratic function u(t). These three vector fields will be linearly dependent
if

((1 − t)c0 − tc1)u(t) =
1

2
(v(t) + v̂(t)) ∀t ∈ [0, 1]
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Fig. 10. An example mesh (top) and a zoomed in region of a complex patch structure (bot-

tom). From left to right: Catmull-Clark patch structure, Geometry patch approximation, Geom-
etry/Tangent patch approximation and Catmull-Clark limit mesh.

where ci = cos
(

2π
ni

)

and n0, n1 are the valence of the left and right endpoints.

Solving for the Bézier coefficients results in four conditions:

c0 u00 = 1
2 (v00 + v̂00) , (3)

1
3 (2 c0u10 − c1u00) = 1

2 (v10 + v̂10) , (4)
1
3 (c0u20 − 2 c1u10) = 1

2 (v20 + v̂20) , (5)

−c1 u20 = 1
2 (v30 + v̂30) . (6)

Conditions (3) and (6) are satisfied by construction using Equation 2. Condition
(4) will be satisfied if

v10 = 1
3 (2 c0u10 − c1u00) + x,

v̂10 = 1
3 (2 c0u10 − c1u00) − x

for any choice of x. We choose x = 3 (b11 − b10) since, by construction, we
get the same vector x (up to sign) when processing either patch sharing an edge.
Furthermore, this construction reproduces the regular case (n = 4). The control
vector v20 can be found in a similar fashion. To summarize, we set

v10 = 1
3 (2 c0u10 − c1u00) + 3 (b11 − b10) ,

v20 = 1
3 (c0u20 − 2 c1u10) + 3 (b21 − b20) .

The construction for v̂10, and v̂20 follows in a similar manner.

4. RESULTS

Over the ordinary patches in the mesh (no extraordinary vertices), our construction
for the geometry and tangent patches exactly reproduces the surface and tangent
field of the Catmull-Clark surface. Therefore, the only regions that our surfaces
differ from the actual Catmull-Clark surface are those patches containing one or
more extraordinary vertices. Furthermore, our method interpolates the limit posi-
tion and normal of the Catmull-Clark surface at each vertex of the mesh. Though
our geometry patch approximation is only C0, the lack of smoothness is rarely if
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Fig. 11. An example of a mesh with a boundary. From left to right: Catmull-Clark patch structure,

Geometry patch approximation, Geometry/Tangent patch approximation and Catmull-Clark limit

surface using Biermann et al.’s boundary rules.

ever visible in the silhouette of the model (we have not been able to discern the C0

regions of the models along the silhouette in any of our examples).
Figures 8, 10 and 13 show examples of subdivision surfaces containing patches

with one or more extraordinary vertices. The approximation using only Geom-
etry patches matches the Catmull-Clark surface very well, but is noticeably not
smooth along some of the edges. Adding the tangent field to the model creates a
smooth normal field and results in a surface that is nearly identical visually to the
original Catmull-Clark surface. Because the tangent patches create a continuous
normal field over the surface, we can use these shapes for displacement mapping as
well. Figure 12 shows an example of displacement mapping applied to our geome-
try/tangent patch approximation from Figure 8.

Fig. 12. Our Geometry/Tangent patch model (left) with displacement mapping (right).

Figure 11 illustrates an example of a mesh with a boundary containing both
ordinary and extraordinary vertices (our boundary construction can be found in
Appendix A). The Catmull-Clark surface uses the boundary rules of [Biermann
et al. 2000] to produce a smooth subdivision surface.

Despite the fact that our geometry patch approximation is only C0, the lack
of smoothness is rarely if ever visible in the silhouette of the model (we have not
been able to discern the C0 regions of the models along the silhouette in any of
our examples). Figure 14 depicts an extreme case that typically is not found in
practice. This model consists of a very high valence vertex (24 at the top vertex)
and patches that all contain more than one extraordinary vertex. Interestingly,
our geometry patch approximation produces a surface that looks smoother than
the Catmull-Clark surface at the valence 24 vertex despite the lack of continuity
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Fig. 13. A complex mesh with boundary. From left to right: Catmull-Clark patch structure,

Geometry patch approximation, Geometry/Tangent patch approximation and Catmull-Clark limit

surface.

(Catmull-Clark surfaces are known to have unbounded curvature at high valence
vertices).

Fig. 14. A model with a valence 24 vertex at the tip composed entirely of patches with more than

one extraordinary vertex (left). Our Geometry/Tangent patch approximation (center) actually
appears to have a smoother profile at the valence 24 vertex than the Catmull-Clark surface (right).

Figures 15–18 show a comparison of our technique with PN-Triangles [Vlachos
et al. 2001] and Patching Catmull-Clark Meshes (PCCM) [Peters 2000]. In these
pictures, color denotes the error between the given surface and the actual Catmull-
Clark surface where blue is no error and red represents high error. We measure
the geometric error as the difference between the given surface and the actual
Catmull-Clark surface as a percentage of the length of the bounding box diagonal.
The normal error represents the angle between the normals of the two surfaces.
In all cases, the correspondence between the two shapes is given by parametric
correspondence.

For surfaces composed of triangles, PN-Triangles [Vlachos et al. 2001] can create
the illusion of a smooth surface in a similar manner to our Approximate Catmull-
Clark Patches for Catmul-Clark surface. We modify PN-Triangles for Catmull-
Clark surfaces by triangulating the surface and forcing the PN-triangles to inter-
polate the limit position and normal of the Catmull-Clark surfaces at the vertices.
PCCM [Peters 2000] is also similar to our method except that PCCM creates an
actual C1 surface using a finite collection of bicubic patches as opposed to our
C0 surface. However, the extraordinary vertices must be sufficiently separated for
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Fig. 15. Comparison of our method with PN-Triangles and PCCM. The figures show the difference
between the normal of the Catmull-Clark surface as well as the geometric error. There is not
sufficient separation of extraordinary vertices for PCCM in this example.

Fig. 16. Comparison of our method with PN-Triangles and PCCM with the surface from Figure 15

subdivided twice. PCCM creates a flat spot with undulations in the surface away from the

extraordinary vertex in order to make the surface smooth. ACC Patches produces a surface

nearly indistinguishable from the true subdivision surface.
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Fig. 17. Comparison of our method with PN-Triangles and PCCM on a two-hole torus containing
only odd valence extraordinary vertices. There is not sufficient separation of extraordinary vertices
for PCCM in this example.

Fig. 18. Comparison of our method with PN-Triangles and PCCM on a two-hole torus containing
only odd valence extraordinary vertices after one level of subdivision. Our ACC-Patches provide
superior approximation both in terms of the normals of the surface as well as its geometry.

PCCM, which requires two-ring separation for odd valence vertices and four-ring
separation for even valence vertices.

Figures 15–18 illustrate that, as expected, PN-Triangles does not produce good
approximations of the Catmull-Clark surface. This is especially true for the normal
field approximation since PN-Triangles only have a quadratic normal field whereas
ordinary bicubic patches have a degree 5× 5 normal field. Hence, even in ordinary
regions of the surface, PN-Triangles do not provide good approximations to the
underlying subdivision surface.

Many of our examples (Figures 8, 10, 11, 13, 15 and 17) do not have sufficient
separation of extraordinary vertices for PCCM and require one or more levels of
subdivision before we can apply this technique. In Figures 15 and 17 this lack
of separation is denoted by “N/A”. Figures 16 and 18 show the same surfaces
subdivided to provide sufficient separation of extraordinary vertices. Surprisingly,
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ACC patches provide a better approximation to the Catmull-Clark surface both
in terms of geometric error as well as normal field error. The reason behind this
phenomenon is that PCCM patches are quite constrained by the need to create a
C1 surface using only bicubic patches and can create flat spots or undulations (at
even valence vertices) not present in the Catmull-Clark surface. In contrast, ACC
patches decouple the geometry and normal field approximation and, therefore, have
more degrees of freedom leading to lower error approximations.

5. IMPLEMENTATION

vertices patches triangles



   vertex


processing

  patch


assembly
tessellation

   pixel 


processingindices

Fig. 19. Proposed future GPU pipeline.

The GPU processing stages needed to support hardware tessellation are illus-
trated in Figure 19. We should emphasize that no GPU’s currently exist that
implement all of these stages in hardware and, hence, this section reflects our view
of the proposed pipeline necessary for hardware tessellation. Processing begins at
the left with the base control mesh as input and proceeds to the right, ending with
triangle rasterization. The function of these stages are as follows:

—Vertex Processing. In addition to vertex transform, vertices are also animated
in this stage.

—Patch Assembly. Patch control nets are formed by averaging over local collec-
tions of control mesh vertices.

—Tessellation. Patches are evaluated at hardware generate domain points.

—Pixel Processing. Conventional pixel/fragment shading.

Both the Xbox 360 and the Radeon HD 2900 have vertex and pixel units, as well as
tessellation hardware [Lee 2006; ATI/AMD 2007]. Currently, the patch assembly
stage on these devices must be implemented as vertex program. In future hardware,
we expect patch assembly to be a dedicated hardware stage [Boyd 2007].

The algorithm for patch construction presented in this paper is intended to run as
a patch assembly program. Without this specialized hardware stage, our algorithm
could be implemented instead as vertex program. In either case, a control mesh
would consist of a pair buffers; one that contains control mesh vertices, and a
second containing a neighborhood of indices corresponding to the quad faces of the
control mesh. The vertices in the first buffer are transformed and animated. Each
entry of the second buffer contains the indices of the union of all mesh vertices
belonging to faces incident on a quad, together with the valence of each of the
four vertices of the quad. These local index neighborhoods are computed as a
preprocess by visiting each base mash face. In order to optimize SIMD efficiency

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



16 ·

and avoid under utilizing GPU buffers, the amount of data that can be packed into
an index neighborhood structure must be limited. Therefore, this approach cannot
accommodate arbitrarily high valence vertices. The structure for storing these per-
quad index neighborhoods should only be large enough to handle common cases;
larger structures will waste resources in all but extreme situations. When each
index neighborhood structure is processed, the shader gathers the needed vertices
and averages these to form patch vertices that are written to an output buffer for
input to the tessellator stage.

Even though the patches input to the tessellator unit contain 40 control points
(16 for geometry and 12 for each tangent), we do not need to transfer this amount
of data since many of these control points are redundant. In reality, all we need
is the quad of the corresponding patch with its edge-adjacent quads (12 points) as
well as the limit positions at the corners of the patch (4 points) and the tangents
(8 vectors). Along with the valence at each patch corner we only need 25 points to
evaluate the patch on the GPU.

6. FUTURE WORK

While Catmull-Clark surfaces are typically created from quad-meshes, the subdi-
vision rules are general enough to handle meshes with arbitrary sided polygons.
Arbitrary polygons are theoretically possible in our framework, but are not prac-
tical for adaptive tessellation on current graphics hardware, which support only
triangular and quadrilateral domains. However, it is possible to incorporate trian-
gle patches into the tessellation process.

For simplicity, we only operate on meshes consisting entirely of quads. We can,
of course, produce an all-quad mesh by performing one step of subdivision. How-
ever, the disadvantage of this approach is the increase in the number of patches
similar to Figure 1. In the future we would like to extend our method to triangular
patches, and more generally triangle-quad surfaces [Stam and Loop 2003] using
Bézier triangles.

Finally, Catmull-Clark surfaces are smooth everywhere while, in practice, many
surfaces contain sharp edges or corners. We can handle these creases by marking
edges in the mesh and treating them as boundary edges. However, [DeRose et al.
1998] introduced rules to create semi-sharp creases in Catmull-Clark surfaces. We
believe that we may be able to incorporate semi-sharp creases into our method by
modifying the patch coefficients as well.
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A. MESHES WITH BOUNDARIES

Orginally, Catmull-Clark surfaces were assumed to be closed surfaces; however,
not all meshes are closed. [Nasri 1987] extended Catmull-Clark subdivision to
surfaces with boundaries. Along the boundary, Nasri chose the subdivision rules to
reproduce cubic B-splines. To generalize our geometry patches to boundaries, we
follow [Nasri 1987] and require that the boundary curves form cubic B-splines.

./0

0000

1//

0000

/0

00

234353

Fig. 20. Rules for Bézier control points along the boundary to create a cubic B-spline. Bolded

edges indicate boundaries. From left to right: mask for an edge control point, corner control point

and a corner control point contained by only one quad.
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A.1 Geometry Patches

For a boundary edge, the two edge points are found along the edge at ratios 1 : 2
and 2 : 1 from the endpoints. For a boundary vertex incident on two or more faces,
we find the corner point as the midpoint of the two adjacent edge points. For a
boundary vertex contained by only one face, we set the corner point to the boundary
vertex. These rules are summarized in Figure 20 with the implied normalization
that the masks sum to 1.

6768

9688

:6

96

;<=<

Fig. 21. Rules for creating the interior Bézier control point adjacent to a boundary vertex contained
by more than one quad a) and only one quad b).

Besides modifying the Bézier control points along the boundary, we also modify
the interior control point adjacent to a boundary vertex. For boundary vertices
contained by more than one quad, we use the mask in Figure 21 a) where k is equal
to the number of quads containing the boundary vertex. When a boundary vertex
is contained by only one quad, the interior control point is given by Figure 21 b).
Similar to Section 2, edge points on interior edges are placed at the midpoint of
the adjacent interior points. In the interest of simplicity, we ignore topologically
anomalous configurations, such as bow-ties and pin-wheels; though in principle,
such configuration do not cause problems.

We make a distinction from the valence n used in Sections 2 and 3 and the
number of quads k containing a boundary vertex because we treat the boundary as
being half of a closed mesh. Therefore, n = 2k. In fact, if we apply this identity to
Figure 21, we obtain the interior point mask for closed meshes shown in Figure 4.

>?@?A

B@?C?ADE
BADE

Fig. 22. Labeling for vertices around a boundary vertex contained by k quads.

A.2 Tangent Patches

Our tangent patch construction is identical to Section 3 except that we modify the
way the limit tangents are computed at boundary vertices. For boundary vertices
contained by more than one quad, we use the tangent masks derived for Catmull-
Clark surfaces by [Biermann et al. 2000] to compute the tangent vectors. These
tangent vectors provide direction, but lack length information and we use the same
normalization process from Section 3 to choose an appropriate length. The result
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is two tangent masks that create two vectors r0 and r1 that span the tangent plane
at that vertex. Referring to Figure 22, the mask for r0 is

γ = −4s
3k+c

α0 = αk = −
(1+2c)

√
1+c

(3k+c)
√

1−c

αi6=0,k = 4si

3k+c

βi = si+si+1

3k+c

and for r1

α0 = 1
2

αk = −
1
2

αi6=0,k = γ = βi = 0

where c = cos
(

π
k

)

, s = sin
(

π
k

)

and si = sin
(

πi
k

)

.
The tangent vector along the jth edge is then given by

cos

(

πj

k

)

r0 + sin

(

πj

k

)

r1.

The rest of the tangent patch construction is the same except that we use the
substitution n = 2k in Section 3.2 for the edges of the tangent patches.

For boundary vertices contained by only one quad (k = 1), we again change the
tangent masks for r0

γ = −1

α0 = 1

αi6=0 = βi = 0

and for r1

γ = −1

α1 = 1

αi6=1 = βi = 0.

The rest of the tangent patch construction is identical in Section 3.2 except that
we substitute n = 4 for the vertex contained by only one quad.
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