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Abstract

Our main result is that two point interpolatory subdivision schemes using Ck nonlinear averaging
rules on pairs of real numbers generate real-valued functions that are also Ck. The significance of this
result is the following consequence: Suppose that S is a subdivision algorithm operating on sequences
of real numbers using linear binary averaging that generates Cm real-valued functions and S is the
same subdivision procedure where linear binary averaging is replaced everywhere in the algorithm by
a Cn nonlinear binary averaging rule on pairs of real numbers; then the functions generated by the
nonlinear subdivision scheme S are Ck , where k = min(m, n).

Classification: CCScat{I.3.5}{Computer Graphics}{Curve, surface, and solid representations}

1 Introduction

Nonlinear subdivision algorithms can be generated from linear subdivision algorithms by replacing linear
averages by nonlinear averages [3]. For example, the de Casteljau subdivision algorithm for Bezier curves
and the Lane-Riesenfeld algorithm for uniform B-splines generate polynomials and piecewise polynomials
by successively averaging adjacent coefficients. If we start with positive real numbers and we replace the
arithmetic mean A(x, y) = (x + y)/2 by the geometric mean G(x, y) =

√
xy, then instead of generating

polynomials and piecewise polynomials, these algorithms generate exponential and piecewise exponential
functions (See Figure 1). The goal of this paper is to investigate the smoothness of the functions generated
by subdivision algorithms when linear averages on pairs of real numbers are replaced by nonlinear averages
on pairs of real numbers.

We begin in Section 2 by introducing the general notion of an averaging rule for pairs of real numbers.
We then explain the connection between averaging rules, monotone functions satisfying functional equa-
tions, and nonlinear subdivision algorithms. In Section 3 we prove our main result: that Ck averaging
rules generate via two point interpolatory subdivision Ck monotone functions. The most difficult cases
are k = 0, 1, 2, which we establish in separate subsections. The general result for arbitrary k then follows
easily by induction on k. We conclude in Section 4 with a brief summary of our main results.
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Figure 1: A function generated by the de Casteljau subdivision algorithm using the arithmetic mean
(Top), and a function generated by the de Casteljau subdivision algorithm starting with the same data
but using the geometric mean (Bottom). The limit function on top is a polynomial (a parabola); the
limit function below is an exponential (a Gaussian).

2 Nonlinear Averaging Rules and Monotonic Functions

A function Av : I × I → I, where I is an interval (open or closed) in R, is called an averaging rule if

i. Av(a, a) = a

ii. min(a, b) < Av(a, b) < max(a, b)

iii. Av(a, b) = Av(b, a)

iv. Av(Av(a, b), Av(c, d)) = Av(Av(a, c), Av(b, d))

The first three properties are self-explanatory; the fourth property simply states that if we take the
average of four numbers in pairs, then the result is independent of the way we group the pairs. This
property certainly holds for standard averaging rules such as the arithmetic and geometric means. One
immediate consequence of property iv is that

v. Av(a,Av(b, c)) = Av(Av(a, b), Av(a, c))

because
Av(a,Av(b, c)) = Av(Av(a, a), Av(b, c)) = Av(Av(a, b), Av(a, c)).

The properties of averaging rules may be easier to understand if we think of an averaging rule as a
binary operation ⊕ : I×I → I, where I is an interval (open or closed) in R. With this notation properties
i-v become

i. a⊕ a = a

ii. min(a, b) < a⊕ b < max(a, b)

iii. a⊕ b = b⊕ a

iv. (a⊕ b)⊕ (c⊕ d) = (a⊕ c)⊕ (b⊕ d)

v. a⊕ (b⊕ c) = (a⊕ b)⊕ (a⊕ c)

Thus ⊕ is idempotent, commutative, but not associative; rather ⊕ distributes through itself.
A function F generated by starting with two arbitrary values F (a) and F (b) and iterating the subdi-

vision rule

F

(
x + y

2

)
= Av(F (x), F (y)) (2.1)
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is called a function generated by the averaging rule Av. We shall show in Section 3.1 that if the averaging
rule Av is continuous, then the subdivision procedure defined by Equation 2.1 converges to a continuous
function F that satisfies this functional equation. Notice that if F (a) 6= F (b), then F is strictly monotone
on the interval [a, b].

A continuous averaging rule Av together with two initial values F (a) and F (b) generates a monotonic
function F on the interval [a, b] by the subdivision rule

F

(
x + y

2

)
= Av(F (x), F (y)).

Similarly, a monotonic function F on the interval [a, b] induces an averaging rule Av∗ on the domain
[a, b]× [a, b] by the formula

Av∗(x, y) = F

(
F−1(x) + F−1(y)

2

)
. (2.2)

Properties i,ii,and iii are easy to verify; property iv holds because

Av∗(Av∗(a, b), Av∗(c, d)) = F

(
F−1(a) + F−1(b) + F−1(c) + F−1(d)

4

)
= Av∗(Av∗(a, c), Av∗(b, d)).

The rule Av∗ in Equation 2.2 is called the averaging rule induced by the function F. Averaging rules of
this form are studied in detail by Hardy et al [2].

Hardy et al [2] also introduce a generic collection of such averaging rules. Let Fp : (0,∞) → (0,∞)
be defined by

Fp(x) =

{
x

1
p p 6= 0

ex p = 0

Then the corresponding averaging rules Av∗p : (0,∞)× (0,∞) → (0,∞) induced by the functions Fp are

Av∗p(x, y) =





(
xp+yp

2

) 1
p

p 6= 0
√

xy p = 0.

In particular,

Av∗−1(x, y) =
2xy

x + y
(Harmonic Mean)

Av∗0(x, y) =
√

xy (Geometric Mean)

Av∗1(x, y) =
x + y

2
(Arithmetic Mean)

Notice that

lim
p→−∞

Av∗p(x, y) = min(x, y)

lim
p→∞

Av∗p(x, y) = max(x, y)

lim
p→0

Av∗p(x, y) = Av∗0(x, y)

All three of these limits can be derived by considering log(Av∗p(x, y)) and applying L’Hopital’s Rule.
Thus we see that averaging rules and monotonic functions are closely linked. We begin with a

proposition summarizing the interrelationship between monotonic functions and averaging rules.

Proposition 2.1. The following properties hold:

i. A continuous averaging rule Av and two initial values F (a) and F (b) generate a continuous mono-
tonic function F on the interval [a, b] that satisfies the functional Equation 2.1.

ii. A monotonic function F on [a, b] induces an averaging rule Av on [a, b]× [a, b].

iii. If F is generated by a continuous averaging rule Av, then the averaging rule Av∗ induced by F is
the same as the original averaging rule Av that generates F .
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iv. If F and F−1 are continuous, then the monotonic function F is generated by the averaging rule
induced by F .

v. Every continuous monotonic function with continuous inverse is generated by some continuous
averaging rule.

vi. Every continuous averaging rule is induced by some continuous monotonic function.

vii. Two monotonic functions F, F∗ induce the same averaging rule if and only if there is a linear
function L such that F∗ = F ◦ L.

viii. Two monotonic function F, F∗ are generated by the same averaging rule (with different initial values)
if and only if there is a linear function L such that F∗ = F ◦ L.

Proof. Property i will be proved in Section 3.1, and Property ii follows immediately from Equation 2.2.
To prove Property iii, suppose that a continuous averaging rule Av generates the monotonic function

F and that F induces the averaging rule Av∗. Then since by Property i F satisfies the functional Equation
2.1,

Av∗(x, y) = F

(
F−1(x) + F−1(y)

2

)
= Av(F (F−1(x)), F (F−1(y))) = Av(x, y).

Property iv follows because if Av∗ is the averaging rule induced by F , then

Av∗(x, y) = F

(
F−1(x) + F−1(y)

2

)
,

so

Av∗(F (x), F (y)) = F

(
x + y

2

)
.

Thus since Av∗ is continuous, F is generated by Av∗.
Property v is an immediate consequence of Property iv, and Property vi is an immediate consequence

of Property iii.
To prove Property vii, let F be a monotonic function and let L be a linear function. Suppose that

F∗ = F ◦ L, and set

Av(x, y) = F

(
F−1(x) + F−1(y)

2

)

and

Av∗(x, y) = F∗

(
F−1
∗ (x) + F−1

∗ (y)
2

)
.

Then since L is linear,

Av∗(x, y) = F∗

(
F−1
∗ (x) + F−1

∗ (y)
2

)
= F ◦ L

(
L−1 ◦ F−1(x) + L−1 ◦ F−1(y)

2

)

= F

(
F−1(x) + F−1(y)

2

)
= Av(x, y).

Thus F and F∗ = F ◦L induce the same averaging rule. Conversely if F and F∗ induce the same averaging
rule, then

F∗

(
F−1
∗ (x) + F−1

∗ (y)
2

)
= F

(
F−1(x) + F−1(y)

2

)
.

Setting a = F−1(x), b = F−1(y), and composing F−1 with both sides yields

(F−1 ◦ F∗)
(

F−1
∗ (F (a)) + F−1

∗ (F (b))
2

)
=

a + b

2
.

Now let L = F−1 ◦ F∗. Then

L

(
L−1(a) + L−1(b)

2

)
=

a + b

2
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or equivalently
L−1(a) + L−1(b)

2
= L−1

(
a + b

2

)
.

Thus L−1 is linear. Hence L is linear and F∗ = F ◦ L. This result is also proved in [2]; we include the
proof here for completeness.

Finally, Property viii follows immediately from Properties vii and iii.

We are interested in functions generated by averaging rules because these functions are the simplest
examples of functions built by nonlinear subdivision algorithms. Moreover, the smoothness of these
functions is linked to the smoothness of arbitrary functions built by nonlinear subdivision from nonlinear
averaging rules. Indeed the following theorem is the main result proved in [3] concerning the smoothness
of the functions built by subdivision algorithms when linear averages are replaced by nonlinear averages.

Theorem 2.2. Let S be a subdivision algorithm based on linear averaging and let S be the same subdivi-
sion procedure where the linear averaging rule A(a, b) = (a + b)/2 is replaced everywhere in the algorithm
by a nonlinear averaging rule Av(a, b). If the functions generated by S are Cn and the functions generated
by Av are Cm, then the functions generated by S are Ck, where k = min(m,n).

Thus to determine the smoothness of the functions built by nonlinear subdivision algorithms where
linear averages are replaced by nonlinear averages, we need only determine the smoothness of the functions
generated by the nonlinear averages. The purpose of this paper is to show that if the averaging rule Av
is Cm, then the functions F generated by Av are also Cm. As a consequence of Theorem 2.2 we will then
have the following result:

Corollary 2.3. Let S be a subdivision algorithm based on linear averaging and let S be the same subdivi-
sion procedure where the linear averaging rule A(a, b) = (a + b)/2 is replaced everywhere in the algorithm
by a nonlinear averaging rule Av(a, b). If the functions generated by S are Cn and the averaging rule Av
is Cm, then the functions generated by S are Ck, where k = min(m,n).

In general, if we start with a monotone function F that is known to be Cm, and F ′ is never equal to
zero, then the function F−1 is also Cm. Hence the averaging rule

Av∗(x, y) = F

(
F−1(x), F−1(y)

2

)

induced by F is also Cm. Thus it follows from Proposition 2.1 and Theorem 2.2 that if we replace the
arithmetic average A(a, b) = (a + b)/2 by the averaging rule Av∗(a, b) in a subdivision algorithm that
generates functions that are Cn, we will generate functions that are at least Ck, where k = min(m,n).
This observation allows us to build many smooth nonlinear subdivision algorithms. For example, if we
let F (x) = ex, then F−1(x) = log x. Hence in this case

Av∗(x, y) = e
log x+log y

2 =
√

xy.

Therefore it follows from Proposition 2.1 and Theorem 2.2 that if we replace the arithmetic mean A(a, b) =
(a + b)/2 with the geometric mean G(a, b) =

√
ab in a subdivision algorithm that generates functions

that are Cn, the algorithm will still generate functions that are Cn.
A problem arises, however, when we know the averaging rule Av, but we do not have an explicit

formula for the functions F generated by Av. For example, suppose that Av1 and Av2 are two averaging
rules and for some fixed value of t we set

Av(x, y) = (1− t)Av1(x, y) + tAv2(x, y).

Then Av surely satisfies Properties i-iii of an averaging rule. If Av also satisfies property iv, then Av
is an averaging rule. Moreover if Av1 and Av2 are Cm, then Av is also Cm. But is it true that if the
functions generated by Av1,Av2 are Cm, then the functions generated by Av are also Cm? This result
is not at all obvious. Indeed, if F is a function generated by Av, then it is not necessarily true that
F (x) = (1 − t)F1(x) + tF2(x), where F1 and F2 are functions generated by Av1 and Av2. For example,
in our generic example for the averages Av∗p:

Av∗1
2
(a, b) =

1
2

(√
ab +

a + b

2

)
=

1
2
Av∗0(a, b) +

1
2
Av∗1(a, b).
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Therefore the function generated by Av∗1
2

is

F 1
2
(x) = x2 6= 1

2
F0(x) +

1
2
F1(x) =

1
2
ex +

1
2
x.

Nevertheless, even if we do not have any explicit formula for the functions F generated by the averaging
rule Av, we would still like to know that if Av is Cm, then the functions F generated by Av are also Cm.
The purpose of Section 3 is to prove exactly this result.

3 Smoothness of Functions Generated from Smooth Averaging
Rules

We are now going to show that if an averaging rule Av is Cm, then the functions F generated by Av are
also Cm. The most difficult cases turn out to be m = 0, 1, 2, so we will treat each of these cases in a
separate subsection.

To fix our notation once and for all, let Fk denote the piecewise linear function generated after k
levels of subdivision starting from a straight line F0 joining two initial values F0(a), F0(b) and inserting
new vertices at the dyadic points

dj,k = a +
j

2k
(b− a) j = 0, . . . , 2k

by applying the subdivision rule

Fk+1

(
x + y

2

)
= Av(Fk(x), Fk(y)),

–that is, by setting

Fk+1(d2j,k+1) = Av (Fk(dj,k), Fk(dj,k)) = Fk(dj,k) (3.1)
Fk+1(d2j+1,k+1) = Av (Fk(dj,k), Fk(dj+1,k)) . (3.2)

Notice that this subdivision scheme is interpolatory; old vertices are retained since d2j,k+1 = dj,k and
Fk+1(d2j,k+1) = Fk(dj,k). Moreover, since

min(F (dj,k), F (dj+1,k)) < Av(F (dj,k), F (dj+1,k)) < max(F (dj,k), F (dj+1,k)),

the functions Fk are monotone functions on the interval [a, b]. When the functions Fk converge, we shall
use F to denote the limit of the functions Fk on the interval [a, b].

3.1 C0

We are now going to prove that if Av is a continuous averaging rule, then the piecewise linear functions
Fk(x) converge to a continuous function F (x). We begin with a somewhat technical lemma.

Lemma 3.1. Av(Fk(dp,k), Fk(dq,k)) = Fk+1(dp+q,k+1).

Proof. We proceed by induction on k. The result is certainly true for k = 0. We shall now assume that
the result is valid for some k ≥ 0 and prove that the result is true as well for k +1. There are three cases
to consider:

• p and q are both even.

By Equation 3.1,

Av(Fk+1(dp,k+1), Fk+1(dq,k+1)) = Av(Fk(dp/2,k), Fk(dq/2,k)) (3.3)

But by the inductive hypothesis and Equation 3.1

Av(Fk(dp/2,k), Fk(dq/2,k)) = Fk+1(d(p+q)/2,k+1) = Fk+2(dp+q,k+2),

so by Equation 3.3
Av(Fk+1(dp,k+1), Fk+1(dq,k+1)) = Fk+2(dp+q,k+2).
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• p and q are both odd.

By Equation 3.2 and Property iv of averaging rules,

Av(Fk+1(dp,k+1), Fk+1(dq,k+1))
= Av(Av(Fk(d(p−1)/2,k), Fk(d(p+1)/2,k)), Av(Fk(d(q−1)/2,k), Fk(d(q+1)/2,k))) (3.4)
= Av(Av(Fk(d(p−1)/2,k), Fk(d(q+1)/2,k)), Av(Fk(d(p+1)/2,k), Fk(d(q−1)/2,k))).

But by the inductive hypothesis

Av(Fk(d(p−1)/2,k), Fk(d(q+1)/2,k)) = Fk+1(d(p+q)/2,k+1)
Av(Fk(d(p+1)/2,k), Fk(d(q−1)/2,k)) = Fk+1(d(p+q)/2,k+1).

Therefore by Equation 3.4

Av(Fk+1(dp,k+1), Fk+1(dq,k+1)) = Av(Fk+1(d(p+q)/2,k+1), Fk+1(d(p+q)/2,k+1))
= Fk+1(d(p+q)/2,k+1) = Fk+2(dp+q,k+2).

• p is even and q is odd.

Since q is odd, it follows from Equation 3.2 that

Av(Fk(d(q−1)/2,k), Fk(d(q+1)/2,k)) = Fk+1(dq,k+1).

Moreover, since p is even, we know from Equation 3.1 that

Fk+1(dp,k+1) = Fk(dp/2,k).

Therefore by Property v of averaging rules,

Av(Fk+1(dp,k+1), Fk+1(dq,k+1))
= Av(Fk(dp/2,k), Av(Fk(d(q−1)/2,k), Fk(d(q+1)/2,l)))
= Av(Av(Fk(dp/2,k), Fk(d(q−1)/2,k)), Av(Fk(dp/2,k), Fk(d(q+1)/2,k))). (3.5)

But by the inductive hypothesis

Av(Fk(dp/2,k), Fk(d(q−1)/2,k)) = Fk+1(d(p+q−1)/2,k+1)
Av(Fk(dp/2,k), Fk(d(q+1)/2,k)) = Fk+1(d(p+q+1)/2,k+1).

Therefore by Equation 3.5 and Equation 3.2

Av(Fk+1(dp,k+1), Fk+1(dq,k+1)) = Av(Fk+1(d(p+q−1)/2,k+1), Fk+1(d(p+q+1)/2,k+1))
= Fk+2(dp+q,k+2).

Proposition 3.2. Let Av be a continuous averaging rule. Then the piecewise linear functions Fk(x)
converge pointwise for each value of x.

Proof. If F0(a) = F0(b), then by construction the functions Fk converge to a constant function F .
Therefore, without loss of generality, we shall assume that F0(a) < F0(b). (The case F0(a) > F0(b)
can be treated symmetrically.) At each dyadic value dj,k, we know that the piecewise linear functions
Fn(dj,k) converge to a fixed value because, since our subdivision scheme is interpolatory, the values of
the functions Fn(dj,k) are all equal for n > k. Therefore we only need to consider non-dyadic values.
Let c be a non-dyadic value. Since the dyadic values are dense in the reals, there is a sequence of dyadic
values dj1,1, dj2,2, . . . approaching c from below, and another sequence of dyadic values dj∗1 ,1, dj∗2 ,2, . . .
approaching c from above. Moreover, since the functions Fk are monotone increasing,

Fk(djk,k) < Fk(c) < Fk(dj∗k ,k).

To show that limk→∞ Fk(c) exists, we shall show that limk→∞ Fk(djk,k) and limk→∞ Fk(dj∗k ,k) both exist
and are equal. Since the functions Fk are monotone increasing, the sequence F1(dj1,1), F2(dj2,2), . . . is a
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monotone increasing sequence bounded above. Therefore this sequence has a limit which we shall denote
by d. Similarly, the sequence F1(dj∗1 ,1), F2(dj∗2 ,2), . . . is a monotone decreasing sequence bounded below,
and so also has a limit, which we shall denote by d∗. We need to show d = d∗. Suppose that d 6= d∗.
Then since Av is continuous,

lim
k→∞

Av(Fk(djk,k)Fk(dj∗k ,k)) = Av( lim
k→∞

Fk(djk,k), lim
k→∞

Fk(dj∗k ,k)) = Av(d, d∗).

Therefore since d < d∗,
d < lim

k→∞
Av(Fk(djk,k), Fk(dj∗k ,k)) < d∗.

But, and here is the key point, since djk,k and dj∗k ,k are dyadic values,

djk+j∗k ,k+1 =
djk,k + dj∗k ,k

2

is also a dyadic value. Moreover, since c is not dyadic, djk+j∗k ,k+1 6= c. Thus either djk+j∗k ,k+1 < c or
djk+j∗k ,k+1 > c. Now without loss of generality we can assume that for infinitely many k, djk+j∗k ,k+1 <
c. Since djk,k → c and dj∗k ,k → c, it follows that djk+j∗k ,k+1 → c. Moreover, since by assumption
djk+j∗k ,k+1 → c from below,

lim
k→∞

Fk+1(djk+j∗k ,k+1) = d.

But by Lemma 3.1
Av(Fk(djk,k), Fk(dj∗k ,k)) = Fk+1(djk+j∗k ,k+1).

Therefore
lim

k→∞
Av(Fk(djk,k), Fk(dj∗k ,k)) = lim

k→∞
Fk+1(djk+j∗k ,k+1) = d,

which contradicts the result proved earlier that

d < lim
k→∞

Av(Fk(djk,k), Fk(dj∗k ,k)) < d∗.

Hence the assumption that d 6= d∗ must be false, so d = d∗. Thus

d = lim
k→∞

Fk(djk,k) ≤ lim
k→∞

Fk(c) ≤ lim
k→∞

Fk(dj∗k ,k) = d,

so limk→∞ Fk(c) exists. Therefore the functions Fk(x) converge pointwise for all values of x.

Lemma 3.3. Let Av be a continuous averaging rule, and let F be the pointwise limit of the functions
Fk. Then for any two dyadic values d1,d2,

F

(
d1 + d2

2

)
= Av(F (d1), Fk(d2)).

Proof. By Lemma 3.1
Fk+1(dp+q,k+1) = Av(Fk(dp,k), Fk(dq,k)).

Since the subdivision scheme that generates the function Fk is interpolatory, it follows that for any integer
n > k,

Fn(dp+q,k+1) = Av(Fn(dp,k), Fn(dq,k)).

Moreover, since by assumption Av is continuous,

lim
n→∞

Fn(dp+q,k+1) = lim
n→∞

Av(Fn(dp,k), Fn(dq,k))

= Av( lim
n→∞

Fn(dp,k), lim
n→∞

Fn(dq,k)),

so

F (dp+q,k+1) = Av(F (dp,k), F (dq,k)). (3.6)

Now let d1, d2 be any two dyadic values. Then for k sufficiently large, d1 = dp,k and d2 = dq,k, so

d1 + d2

2
= dp+q,k+1.
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Therefore by Equation 3.6

F

(
d1 + d2

2

)
= Av(F (d1), F (d2)).

Proposition 3.4. Let Av be a continuous averaging rule. Then the piecewise linear functions Fk(x)
converge pointwise to a continuous monotone function F (x).

Proof. If F0(a) = F0(b), then by construction the functions Fk converge to a constant function F .
Hence, without loss of generality, we shall assume F0(a) < F0(b). From Proposition 3.2 we know that
the functions Fk(x) converge pointwise for each value of x. Therefore the limit function F (x) exists.
Moreover, since the functions Fk(x) are monotonic, the function F (x) is also monotonic. It remains only
to show that the limit function F (x) is a continuous function.

Consider first the dyadic values dj,k. Let

d0 = dj−1,k

dn+1 =
dj,k + dn

2
.

Then {dn} is a monotone increasing sequence converging to dj,k. Since F is a monotone increasing
function, {F (dn)} is a monotone increasing sequence bounded above by F (dj,k). Therefore the sequence
{F (dn)} converges to some limit value y. We claim that y = F (dj,k). Indeed from Lemma 3.3 we know
that

F (dn+1) = F

(
dj,k + dn

2

)
= Av(F (dj,k), F (dn)).

Therefore by the continuity of Av

lim
n→∞

F (dn+1) = lim
n→∞

Av(F (dj,k), F (dn)) = Av
(
F (dj,k), lim

n→∞
F (dn)

)
,

so
y = Av(F (dj,k), y).

But, by the definition of an averaging rule, we can have Av(a, b) = b if and only if a = b. Hence
y = F (dj,k). Since F is monotonic, we conclude that F is continuous at dj,k from below. A similar
argument shows that F is continuous at dj,k from above. Thus F is continuous at dyadic values.

Now let c be a non-dyadic value. In the proof of Proposition 3.2 we showed that there is a se-
quence of dyadic values dj1,1, dj2,2, . . . approaching c from below, and another sequence of dyadic values
dj∗1 ,1, dj∗2 ,2, . . . approaching c from above such that

lim
k→∞

Fk(djk,k) = F (c) = lim
k→∞

Fk(dj∗k ,k).

Hence
lim

k→∞
F (djk,k) = F (c) = lim

k→∞
F (dj∗k ,k).

Therefore, since F is a monotonic function, F is continuous at c.

Corollary 3.5. Let Av be a continuous averaging rule. Then the piecewise linear functions Fk(x) con-
verge uniformly to a continuous monotone function F (x).

Proof. By Proposition 3.4, we know that the functions Fk(x) converge pointwise to a continuous monotone
function F (x). Therefore we need only show that the convergence is uniform. Since F is continuous on
a compact interval, F is uniformly continuous. Therefore for any ε > 0 there exists a δ > 0 such that for
all x, y

|x− y| < δ ⇒ |F (x)− F (y)| < ε.

Now given any ε > 0 we can choose N large enough that 1
2

N
< δ. Then for k > N , adjacent dyadic points

dj,k, dj+1,k in the domain of Fk are within δ, so

|Fk(dj,k)− Fk(dj+1,k)| = |F (dj,k)− F (dj+1,k)| < ε.
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But by construction, for any value c, where dj,k < c < dj+1,k, and any i > k, we must have

min(Fk(dj,k), Fk(dj+1,k)) < Fi(c) < max(Fk(dj,k), Fk(dj+1,k)).

Moreover, since Fk is monotonic (in fact a straight line between dj,k and dj+1,k),

min(Fk(dj,k), Fk(dj+1,k)) < Fk(c) < max(Fk(dj,k), Fk(dj+1,k)).

Hence
|Fi(c)− Fk(c)| < |Fk(dj,k)− Fk(dj+1,k)| < ε.

Corollary 3.6. Let Av be a continuous averaging rule, and let F be the limit of the functions Fk. Then
for all x, y in the domain of F ,

F

(
x + y

2

)
= Av(F (x), F (y)).

Proof. This result follows immediately from Lemma 3.3 because F is continuous and the dyadic points
are dense in the reals.

Theorem 3.7. Let Av be a continuous averaging rule. Then the piecewise linear functions Fk(x) converge
uniformly to a continuous monotone function F (x) that satisfies the functional equation

F

(
x + y

2

)
= Av(F (x), F (y)).

Proof. This result follows immediately from Corollaries 3.5 and 3.6.

3.2 C1

If Av is C1 and F is differentiable, then differentiating Equation 2.1 with respect to x and y by the chain
rule yields

1
2
F ′

(
x + y

2

)
= Av(1,0)(F (x), F (y))F ′(x)

1
2
F ′

(
x + y

2

)
= Av(0,1)(F (x), F (y))F ′(y)

Therefore,

F ′(y) =
Av(1,0)(F (x), F (y))
Av(0,1)(F (x), F (y))

F ′(x).

Thus we should expect that if F is differentiable anywhere, then F is differentiable everywhere.

Proposition 3.8. Let F be a function generated by a C1 averaging rule Av. Then F is either differen-
tiable everywhere or differentiable nowhere. Moreover, if F ′(x) exists, then for all y,

F ′(y) =
Av(1,0)(F (x), F (y))
Av(0,1)(F (x), F (y))

F ′(x). (3.7)

Proof. Suppose that there is a point x where F ′(x) exists. We shall show that for any y, F ′(y) also exists.
By definition,

Av(1,0)(F (x), F (y))
Av(0,1)(F (x), F (y))

= lim
h→0

Av(F (x+h),F (y))−Av(F (x),F (y))
F (x+h)−F (x)

Av(F (x),F (y+h))−Av(F (x),F (y))
F (y+h)−F (y)

.

But by Corollary 3.6,

Av(F (x + h), F (y))−Av(F (x), F (y)) = F

(
x + y + h

2

)
− F

(
x + y

2

)

Av(F (x), F (y + h))−Av(F (x), F (y)) = F

(
x + y + h

2

)
− F

(
x + y

2

)
.
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Therefore
Av(1,0)(F (x), F (y))
Av(0,1)(F (x), F (y))

= lim
h→0

F (y + h)− F (y)
F (x + h)− F (x)

= lim
h→0

F (y+h)−F (y)
h

F (x+h)−F (x)
h

,

so

F ′(y) = lim
h→0

F (y + h)− F (y)
h

=
Av(1,0)(F (x), F (y))
Av(0,1)(F (x), F (y))

F ′(x).

Thus if F is differentiable at one point, then F is differentiable at every point.

Theorem 3.9. If F is a monotonic function, then F is differentiable almost everywhere.

Proof. See [1, Theorem 39.9, page 375].

Corollary 3.10. Let F be a function generated by a C1 averaging rule Av. Then F is also C1.

Proof. This result is an immediate consequence of Proposition 3.8 and Theorem 3.9.

Corollary 3.11. Let F be a function generated by a C1 averaging rule Av. Then the slopes of the
piecewise linear functions Fk(x) converge to the slope of F (x).

Proof. Consider first a dyadic point d. We can compute the slope of F at d by approaching d along a
sequence of dyadic points d1, d2, . . .. But the points d1, d2, . . . can be used to calculate the slope at d
of the functions Fk, since for sufficiently large values of k, F and Fk agree at dyadic points. Thus the
result is valid at the dyadic points. Now the result follows at the non-dyadic points, since F is C1 and
the dyadic points are dense in the reals.

3.3 C2

To simplify our notation, we shall write Av(i,j)(a, b) in place of ∂i+jAv
∂xi∂yj (a, b).

Proposition 3.12. Let F be a function generated by a C2 averaging rule Av. Then F is also C2.
Moreover,

F ′′(x) = 4Av(1,1)(F (x), F (x))(F ′(x))2. (3.8)

Proof. From Corollary 3.6 F satisfies the functional equation

F

(
x + y

2

)
= Av(F (x), F (y)).

Differentiating both sides with respect to x by the chain rule yields

1
2
F ′

(
x + y

2

)
= Av(1,0)(F (x), F (y))F ′(x).

Let
R(y) = Av(1,0)(F (x), F (y))F ′(x).

Then F ′
(

x+y
2

)
is differentiable with respect to y if and only if R(y) is differentiable with respect to y.

But since by assumption Av is C2, it follows by the chain rule that

R′(y) = Av(1,1)(F (x), F (y))F ′(x)F ′(y).

Hence R′(y) exists and is continuous. Therefore F ′
(

x+y
2

)
is differentiable with respect to y, and

1
4
F ′′

(
x + y

2

)
= R′(y) = Av(1,1)(F (x), F (y))F ′(x)F ′(y).

This result is true for all x, y. Setting y = x yields

F ′′(x) = 4Av(1,1)(F (x), F (x))(F ′(x))2.
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3.4 Ck

Once we have proved that if an averaging rule Av is Ck, then the functions F generated by Av are also
Ck when k = 2, the general result for arbitrary k follows by a simple induction on k because Equation
3.8 provides us with an explicit formula for F ′′(x) in terms of the partial derivatives of Av and F ′(x).

Proposition 3.13. Let F be a function generated by a Ck averaging rule Av. Then F is also Ck.
Moreover, if k ≥ 2, then there is a polynomial Pk in the variables Av(i,j)(F (x), F (x)), F (h)(x), where
i, j ≥ 1, i + j ≤ k, and 1 ≤ h ≤ k − 1 such that

F (k)(x) = Pk(Av(i,j)(F (x), F (x)), F (h)(x)).

Proof. By induction on k. We have already proved this result for k = 0, 1, 2. Suppose then that the result
is true for some value of k ≥ 2. We shall prove that the result is also true for k + 1. By the inductive
hypothesis,

F (k)(x) = Pk(Av(i,j)(F (x), F (x)), F (h)(x)).

Let
R(x) = Pk(Av(i,j)(F (x), F (x)), F (h)(x)).

To show that F (k+1)(x) exists and is continuous, we need only show that R′(x) exists and is continuous.
But since Pk is a polynomial depending only on the variables Av(i,j)(F (x), F (x)), F (h)(x), where i, j ≥ 1,
i + j ≤ k, and 1 ≤ h ≤ k − 1, we can differentiate R(x) using only the chain rule and the product rule
to get a polynomial Pk+1 depending only on the variables Av(i,j)(F (x), F (x)), F (h)(x), where i, j ≥ 1,
i + j ≤ k + 1, and 1 ≤ h ≤ k. Since by assumption Av is Ck+1, the functions Av(i,j)(F (x), F (x)), where
i, j ≥ 1 and i + j ≤ k + 1 exist and are continuous. Similarly, by the inductive hypothesis, the functions
F (h)(x), 1 ≤ h ≤ k, exist and are continuous. Hence R′(x) exists and is continuous, so F (k+1)(x) exists
and is continuous.

Corollary 3.14. Let F be a function generated by a Ck averaging rule Av. Then F is also Ck. Moreover,
if k ≥ 2, then there is a polynomial Pk in the variables Av(i,j)(F (x), F (x)), F ′(x), where i, j ≥ 1 and
i + j ≤ k such that

F (k)(x) = Pk(Av(i,j)(F (x), F (x)), F ′(x)).

That is, we only need the first derivative of F along with the partial derivatives of Av at F to compute
F (k)(x) for k ≥ 2.

Proof. This result follows immediately from Proposition 3.13.

Despite Corollary 3.14, it is not so simple to calculate F (k)(x) explicitly, even if we have explicit
formulas for Av and for the partial derivatives of Av. In general, the only way to calculate F (x) is to
apply subdivision to compute the piecewise linear functions Fk that approach F in the limit and then to
use the values of Fk(x) to approximate F (x). To calculate F ′(x), we can compute the piecewise linear
functions Fk and use the slopes of these functions to approximate the derivative of F at each point.
Alternatively, we can calculate the derivative F ′(x) at one point x by using the slopes of the functions
Fk at x and then use Equation 3.7,

F ′(y) =
Av(1,0)(F (x), F (y))
Av(0,1)(F (x), F (y))

F ′(x),

to calculate F ′(y) at an arbitrary point y.

4 Summary and Conclusion

As a consequence of Theorem 3.7, Propositions 3.8 and 3.12, and Corollaries 3.10, 3.11, and 3.14, we
have now proved the following general theorem:
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Theorem 4.1. Let Av be a Ck averaging rule, and let Fk be the piecewise linear functions generated by
two point interpolatory subdivision from the averaging rule Av. Then the functions Fk converge uniformly
to a Ck function F , and if k ≥ 1 the slopes of Fk converge to the derivative of F . Moreover, F satisfies
the following functional equations:

F
(

x+y
2

)
= Av(F (x), F (y)) k ≥ 0

F ′(y) = Av(1,0)(F (x),F (y))
Av(0,1)(F (x),F (y))

F ′(x) k ≥ 1

F ′′(x) = 4Av(1,1)(F (x), F (x))(F ′(x))2 k ≥ 2

F (k)(x) = Pk(Av(i,j)(F (x), F (x)), F ′(x)) k ≥ 3

where Pk is a polynomial in the variables Av(i,j)(F (x), F (x)), F ′(x) for i, j ≥ 1 and i + j ≤ k.

The only difficult cases to prove are when Av is either C0 or C1. The reason that these cases are so
hard is that we do not have an explicit expression for F in terms of Av; all we have is the functional
equation:

F

(
x + y

2

)
= Av(F (x), F (y))

and even this equation must be derived when Av is C0. Therefore we need to use some tricky arguments
to prove that F is C0 or C1 when Av is C0 or C1. But once we establish that F is C1 we have the
functional equation

1
2
F ′

(
x + y

2

)
= A(1,0)(F (x), F (x))F ′(x)

and the proof that F is Ck when Av is Ck follows rather easily by induction on k.
As a consequence of the fact that when Av is Ck then F is Ck, we now have the following result,

which is the ultimate goal of this paper:

Theorem 4.2. Let S be a subdivision algorithm based on linear averaging and let S be the same subdivi-
sion procedure where the linear averaging rule A(a, b) = (a + b)/2 is replaced everywhere in the algorithm
by a nonlinear averaging rule Av(a, b). If the functions generated by S are Cn and the averaging rule Av
is Cm, then the functions generated by S are Ck, where k = min(m,n).

Proof. This result is an immediate consequence of Theorem 2.2 and Theorem 4.1.
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