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Abstract

We provide a simple method that extracts an isosurface shaginifold and intersection-free from a function over
an arbitrary octree. Our method samples the function duahtoimal edges, faces, and cells, and we show how
to position those samples to reconstruct sharp and thirufeatof the surface. Moreover, we describe an error
metric designed to guide octree expansion such that atoegjiof the function are tiled with fewer polygons than
curved regions to create an adaptive polygonalization efifosurface. We then show how to improve the quality
of the triangulation by moving dual vertices to the isosoefand provide a topological test that guarantees
we maintain the topology of the surface. While we descritreatgorithm in terms of extracting surfaces from
volumetric functions, we also show that our algorithm edteto generating manifold level sets of co-dimension

1 of functions of arbitrary dimension.

Categories and Subject Descript@ascording to ACM CCS) |.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and objectespntations

1. Introduction

Volumetric data comes from a variety of sources such as CT
scanners or Magnetic Resonance Imagers (MRI). Volumet-
ric data is also synthesized in numerical simulations ssch a
computing electron densities around a molecule, pressure i
a uid dynamics simulation, or neutron densities in a nuclea
reactor. In graphics, even surfaces are represented vblume
rically through their implicit forms, which is useful when
performing Constructive Solid Geometry (CSG) operations.
However, exploring volumetric data can be dif cult.

One way to visualize volumetric information is by com-
puting a level set of the volumetric functidh: R3! R at
some value. The set of points p2 R3jF(p) = ¢ is called
anisosurface Notice that, without loss of generality, we can
assume the isosurface is givenbfp) = 0 since the value of

¢ can be subtracted from the function. Isosurfaces are natu-

ral ways to visualize the data with clearly de ned borders
between different volumetric regions. A skeleton in a CT
scan or a shock wave in a uid simulation, for example, have
clear boundaries. Many surface reconstruction methods als
produce volumetric functions that clearly de ne the interi

process. Even without clear boundaries in the data, isosur-
faces are often helpful visual aids as they are faster to draw
and take less memory to store than volumetric data.

In particular, we examine the case where a function is
known for all points in a bounded region. Because we only
assume that the function is piecewise smooth and does not
have to be a distance function, generating accurate isosur-
faces can be challenging. The level setRqfp) may con-
tain very thin regions or sharp features that are commonly
produced during CSG operations. Moreover, uniform sam-
pling of F(p) is an inef cient strategy for calculating iso-
surfaces, because the majority of samples are far from the
surface. Therefore, we desire a method that creates a sur-
face from an adaptive sampling of the volumetric function.
Finally, the isosurface produced should be usable for other
post-processing applications such as nite element arslys
These applications require that the isosurface is manitold
avoid anomalies not present in real-world objects, meaning
that the surface must be locally equivalent to a disk in terms

and exterior of the reconstructed shape, and creating an iso of its topology and have vertices positioned to avoid self-

surface to generate polygons is typically the last stepim th
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Figure 1: Dual Contouring (left) creates a single vertex per
cell and connects the vertices to adjacent cells sharing an
edge with a sign change resulting in non-manifold geometry
whenever an ambiguous sign con guration is encountered.
Dual Marching Cube (right) can create self-intersecting-su
faces whenever the dual cells are non-convex. In both pic-
tures, the surface generated is depicted by a thick blue line

Contributions

Our method extracts an isosurface using an octree pattition
ing of space. In particular, we provide

a surface extraction method that produces a manifold sur-
face from an arbitrary octree,

a strategy for placing dual vertices to reproduce sharp fea-
tures of the isosurface or thin features beyond the sam-
pling resolution of the octree,

a method for reducing the number of polygons in the iso-
surface and improving the quality of the resulting surface
by placing dual vertices directly on the isosurface,

a simple topological safety test that guarantees that we
still produce a manifold surface and maintain the topology
of the original shape after modifying the dual vertices to
reduce the polygon count.

Finally, though our description concentrates on 3D isosur-
faces, our method extends to arbitrary dimension.

2. Related Work

Early contouring algorithms like Marching Cubes (MC)
[LC87] sampleF(p) over aregular grid that partitions space.
For each cube in the grid, MC determines the vertex posi-
tions using linear interpolation along its edges. The topol
ogy of the surface is indexed from a table solely by the sign
con guration (inside/outside) of the corner samples. How-
ever, the sign con guration does not uniquely determine the
topology inside of a cell. This ambiguity can be overcome
by reconstructing the topology induced by trilinear inter-
polation Nie03. Marching Tetrahedra (MT))K91] also
removes topological ambiguities by uniformly partitiogin

(a) DC

(c) DC (d) Ours

(e) DC

(f) Ours

Figure 2: Two thin sheets contoured with DC and our
method (top), but our method uses a single cell whereas DC
uses 32 cells on a side. In the middle, the sampling reso-
lution and the partitions of space are shown. Our method
adapts its partitioning of the cell to reproduce the thinshe
exactly. The bottom shows a view in between the two sheets
to illustrate the non-manifold geometry created by DC.

Although sampling over a regular grid is simple and pro-
duces good surfaces, uniform sampling is inef cient beeaus
surfaces usually intersect only a small percentage of tie ce
in a grid. Hierarchical spatial partitions adaptively séenp
the function near the isosurface or use geometric criteria t
place fewer samples in at regions of the isosurface. How-
ever, hierarchical representations pose an additionabfset
challenges for isosurfacing methods as the interface legtwe
adaptive cells must be handled to avoid cracks and other ar-
tifacts that may arise. The rst step of creating an adaptive

space with tetrahedra rather than cubes, which has the addi-partition of space was taken in early worl&¢88, MS91].

tional bene t of using a smaller table of sign con gurations
than MC. Semi-regular grids of tetrahedra have also been
used to nd surfaces for data where each sample is either
inside, outside, or unknowriNje08 NL09].

With a few exceptions, such aBIjV97, GK04], researchers
use octrees to partition space. Some methods extend MC
to octrees through crack-patching between multi-resmhuti
cells WKE99,VTO01] or bending high-resolution vertices to
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adjacent, low-resolution contourSEYC94. Another tech-
nique ZCK97] uses a ROAM-like PWS 97] algorithm to
adaptively partition space into tetrahedra for isosurfaxe
traction. However, this partitioning method constrains th
tetrahedra’'s vertices to lie at midpoints of edges and pro-
duces a balanced tree. In contrast, we place no such restric-
tions on our octree decomposition and the vertices of our
tetrahedra can move freely inside their cells to reproduce
sharp features of the underlying isosurface.

Many of these early techniques place restrictions on the
octree's adaptivity, and patching strategies often resuii-
sual artifacts. Recent methods extract smooth, manifaid su
faces from unrestricted octrees. One meth®@&04 cre- (@) DMC (b) Ours
ates crack-free tetrahedralizations by performing a Delgiu
tetrahedralization of the octree over which MT can be run.
More recently, an algorithm was developéKDHO07] that
ensures compatible contours across faces of octree cells us
ing edge trees. In both of these methods, the vertices of the
cells that partition space (the vertices of the octree) aesl
and surface vertices are constrained to edges of the parti- NVZA\ |
tions. Without freedom to place partition vertices it is im- (c) DMC (d) Ours
possible to reconstruct thin and sharp features.

Figure 3: A mechanical part created through CSG opera-
tions is contoured using Dual Marching Cubes (DMC) and
our method. The top shows the surfaces without wireframe
where the dark areas are caused by non-convex cells that
generate folded-back, self-intersecting triangles. Belb
lustrates a zoom-in of the triangulation to clearly show the
self-intersecting triangles.

When additional information about the function other
than its value is available, it is possible to reproduce ghar
features that are otherwise impossible to resolve. One ap-
proach to capturing sharp features replaces the functitin wi
a directional distance eld{BSS0]. However, most meth-
ods that reconstruct sharp features only assume knowledge
of the gradient, and several methods exist that nd sharp fea
tures in an adaptively sampled function. Dual Contouring
(DC) [JLSW02 ZHKO04] reproduces sharp features by plac-
ing surface vertices dual to octree cells. However, DC pro- that are smaller than the sampling density. In the special
duces non-manifold, self-intersecting surfaces in antnigu case of a distance function, methods have been developed
sign con gurations as shown in Figurds(left) and2. DC to detect the existence of thin features to guide subdivi-
produces non-manifold topology because no more than one sion [VKKMO03, VKSMO04] and thereby guarantee that the
surface vertex is generated for each grid cell, but multiple topology of the isosurface is reproduced. However, it is pos
sheets of surface may pass through a single grid cell and sible to actually reconstruct features that are smaller tha
will intersect at that surface vertex. sampling resolution. Dual Marching Cubes (DMGW04
creates a partition of space that is dual to the octree grid.
DMC reproduces thin features by positioning vertices of the
dual grid at the features &f(p) (i.e. intersections between
smooth regions oF (p)). DMC then contours the dual par-
tition by applying the MC table to each partition cell. How-
ever, when reconstructing sharp features, DMC can gener-
ate self-intersecting surfaces because the dual grid may be
non-convex, as shown in Figute(right) and Figure3. In
contrast, our method uses an adaptive octree to generate a
tetrahedral partition that not only reproduces sharp featu
but also guarantees that tetrahedra cannot invert. Threrefo
our surfaces cannot self-intersect.

Extensions of DC generate either manifold topology
[SIWOT or an intersection-free surfacdyoq, but neither
method produces surfaces that are both intersection-ficce a
manifold. Although the partition of space described in In-
tersection Free Contouring on an Octree Grid (IFZ)0g
is similar to ours, IFC maintains the same topology as the
DC surface and, hence, produces non-manifold surfaces in
the same sign con gurations that DC does, as shown in Fig-
ure 1. Volumetric data stored in KD-trees can also be con-
toured using an extension of D@GKO04], but the method
has many of the same problems as DC. Cubical Marching
Squares (CMS)HWC 05] generates surfaces with sharp
features from Hermite data sampled over an octree, but per-
forms complicated intersection of areas on faces and inter- 3. Partitioning Space

section of volumes in cells. We make no assumptions abdep) other than that the

Thin features of a surface are pieces of the surface function is piecewise smooth and continuous so that a gra-
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(a) Vertex (b) Edge
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’ Figure 5: Adaptive simplicial partitioning using minimal
cells. The highlighted triangle shows how dual vertices to
: ! ' a O-cell are connected to a 1-cell and nally to a 2-cell to
(c) Face (d) Cell form triangles.

Figure 4: Space is recursively decomposed into simplices.
Starting from a single vertex in (a), we form a line segment
by adding an edge vertex in (b). We add a face vertex to the
line segment in (c) to form a triangle, from which we form a
tetrahedron by adding a cube vertex in (d).

dual vertices such that linear interpolation between daal v
tices approximateB (p) well and reproduces sharp features
that occur at the intersection of smooth pieces of the func-
tion. This strategy allows us to reproduce thin shapes with
far less subdivision than methods such as MC or DC where

dient is well-de ned almost everywhere. Places where the function samples are restricted to the vertices of an octree

gradient is not de ned are sharp features of the functiorr. Ou To nd sharp features irF(p) we observe some proper-
method is related to DMC in that we partitiér{ p) along its ties of the function. First(p) de nes a four dimensional
features to improve our piecewise linear approximation. We surface. Becauge(p) is piecewise smootlf (p) can be lo-
focus on accurately representing the function rather thant  cally approximated by tangent hyperplanes except at sharp
isosurface because an accurate function estimate produceseatures. Second, sharp features occur at intersectidos of
an accurate isosurface from the resulting spatial pamtitio  cally smooth regions d¥ (p), and we can approximate these
Although our method easily extends to extracting manifolds features using intersections of hyperplanes samplediyocal
of co-dimension 1 from functions of arbitrary dimension, we around the features. We therefore place dual vertices gt sha
restrict our discussions to assumifgp) is de ned overR3 features by minimizing their distance to the hyperplanes in
and that our isosurface is 2-manifold. the neighborhood of the vertex.

An octree is composed of cubes, faces, edges, and ver- For eachm-cell, we sample the functioR(p) at each oc-
tices, which we refer to as 3-cells, 2-cells, 1-cells, and 0- tree vertexp; on the boundary of the cell as well as the nor-
cells respectively. Given an octree, we place verticesual  mal iy =<NF(p;); 1>. Whenm< 3, we restrict the gra-
each minimalm-cell. A minimal m-cell is a cell of dimen- dient to the cell by projectin§lF (p;) onto the subspace de-
sionm that does not contain any cells of dimensioras a ned by the cell. Each of the pairép;; nj) forms a tangent
subset. For example, a minimal cube is a leaf in the octree plane and we place the vertgxdual to this cell at the posi-
and a minimal face is the smaller of the two shared faces of tion that minimizes the squared distance to each plane
adjacent leaf cubes. o, — D
ming (0 X N pj) 1)

For each minimam-cell, we create a dual vertgx=< i
p;F(p)>2 R* with p2 R3 and constrain each vertex to lie  such that the spatial coordinates sofie within its corre-
within its cell (e.g. vertices dual to 3-cells are consteasin ~ sponding cell (scaled by 1¢). Lindstrom et al. LS01] pro-
to cubes, 2-cells to faces, 1-cells to edges, and O-cellsetot  vides a simple method for minimizing such quadratics over
position of the O-cell vertex). Notice that, for 0-cellsetho- box constraints.
sition of the dual vertices coincides with vertices of the oc
tree. Fom-cells wherem> 0 we enforce an additional con-
straint that vertices cannot lie on the boundary of theil cel
to avoid degenerate tetrahedra and T-intersections irethe r
sulting isosurface. Hence we constrain these points tola ce
of size 1 e of their containing cell.

Unfortunately, the function value returned by minimiz-
ing Equationl is often a poor estimate of the actual func-
tion value in regions wher&(p) has high curvature. De-

| pending on if the function is locally convex or concave, the
estimated function values will be consistently high or low.
We have found that mixing consistently wrong function esti-
We use dual vertices to de ne a partition of space over mates with the value dF(p) at vertices results in a dimpled
which we extract the isosurface. Since dual vertices are fre surface and that, at the cost of an extra function evaluation
to move within their cells, we use this freedom to position off of the regular grid, using x;F(x)> as the dual vertex
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Figure 6: Moving dual vertices to the isosurface improves the tridation. Thick blue lines indicate the isosurface. Left to
right: () original placement of dual vertices, (b) ndinghaappropriate vertex with opposite sign, (c) placement oéfeertex
onisosurface, (d) nding an end-point on the edge with ojiieasign of edge vertex, and (e) placing edge vertices omifase.

gives better results than usirgNotice that this step requires As long as the dual vertices lie within their correspond-
evaluation of~(p) away from a regular grid. For some func-  ing cells, this process cannot produce any inverted tetrahe
tions (such as those produced by CSG operations), this re- dra and creates a partition of space. This is because octree
quirement is trivial. When such functions are not available decompositions are convex and each dual vertex lies within
this step can either be left out or an interpolant can be used the kernel (region of the cell visible by every point on its
to extend the functiofr (p) between its samples at grid ver-  boundary) of the cell. Moreover, none of the tetrahedra will
tices. be degenerate since we constrain dual vertices so that they

We can also measure the error of minimized vertices by cannot lie on the boundary of their cell (dual vertices are

evaluating Equatiori. The error is larger in regions with colr;st_ralne:I to lie Im cells of size I1e times thetﬁrlglnlal
high curvature than in regions with low curvature, because cell size). Also, as long as no samples are zero, the polygons

planes estimate nearly planar surfaces well and nonplanar produced by MT wil b.e contained solely by thg tetrahedra
that generate them. Since our decomposition is one-to-one,

our surface cannot intersect itself. Each edge in our sarfac

) will also be contained by exactly two polygons since tetra-
4. Isosurfacing hedra share a common triangle face with adjacent tetrahe-
Given an octree containing dual vertices as described in Sec dra. Finally, since vertices of the isosurface cannot lihat

tion 3, we provide a simple method for tetrahedralizing these end-points of the edges of the tetrahedra, our isosurface is
cells. Using these tetrahedra, we then apply Marching Tetra guaranteed to be manifold and intersection-free.

hedra PK91] to extract an isosurface.

Our tetrahedralization proceeds recursively in termsefth ~ 4-1. Triangulation Improvement
dimensionality of the dual vertices in the octree. We recur- As we have described the algorithms so far, the surface that

surfaces poorly.

sively build anm-simplex (simplex of dimensiom) by con- is generated will approximate contours well. However, like
necting dual vertices of minimatcells where®  m. The MT, our isosurfaces contain numerous small, sliver triasgl
base case is a 0-simplex (a point) composed of the dual ver- when vertices of the tetrahedra pass close to the isosurface
tex for a O-cell. Given a minima# 1-cell with a dual vertex, We can improve the triangu|ati0n using a method similar to
we connect this vertex to all of thiesimplices de ned on Hall et al. HW90Q] by placing the vertices that are dual to
its boundary to build a set ot 1-simplices. Figuret shows each cell directly on the isosurface. Triangles that become

an example of this recursive process over uniform cells of degenerate from this operation are then removed. Figure
different dimensions. We start with every 0-cell as its own shows an example of this process where many of the unde-
simplex. Edges are then created by adding edge-dual ver-sjrable triangles are removed.

tices to each 0-cell so that each edge is composed of two . .
line segments. Face-dual simplices are added to each adja- Our ;trategy IS to move th? dual vertices of eme".
cent line segment to form triangles in each face, and, nally to_ the _|sosurface W.h”e keeping the dual vertex contained
cube-dual vertices are added to each triangle to form tetra- within its m-cell. Notice that we cannot use the value at the

hedra. Figures shows how this process also works in the dual vertices to indicate how close the vertex is to the iso-
adaptive case where dual vertices corresponding to minimal SUface, nor does the magnitude of the gradient provide this

cells are used to create the simplicial decomposition. Two information, because we have not placed any resrictions on

minimal edges are shared between the large square and thethe funct!onF(p). .Furthermore, we want to preserve sharp
smaller squares in the gure, which means that a total of four features in the object when moving the dual vertices.

line segments are formed on the right boundary of the large  When moving dual vertices onto the surface, we want to
square, which then form four triangles connecting the large maintain the accuracy of our approximation of the function.
square to the smaller squares. In the original partition of each cell, the dual vertex was
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Figure 7: Moving dual vertices onto the isosurface may © @

change the topology for cells that do not contain a single Figure 8: Top: a multiresolution face (left) whose connec-
sheet. Thick blue lines indicate the isosurface. (a) shbest tivity graph is shown (right) that fails the topological saf
original topology that is altered by moving an edge sample test. Bottom: a 3D cube (left) whose connectivity graph is
to the isosurface in (b). The original topology in (c) is also  shown (right) that passes the topological safety test.
altered by moving the face sample to the isosurface in (d).

placed to minimize the squared distance to a set of local
planes. We must nd a direction to move the dual vertex in
that introduces the least error and guarantees that we can
move the dual vertex to the surface. To do so, we evaluate
the error at each dual vertex in the boundary with opposite
sign using Equatiod and choose to move in the direction of
the vertex that has the smallest error. We then perform a bi-  ngte that some cells in the octree form graphs that have
section algorithm between the.d.ual vertex and the boundary special forms for which we can calculate connected compo-
vertex to compute the new position of the dual vestesuch nents easily. For an edge, there are only two vertices on its
thatF(x) = 0 andx lies on the isosurface. For eaafcell, boundary, so we simply test that the vertices have opposite
.triangulation. improvement depends only on vgrtices .dual to sign. The graph formed by a face will be a ring with an even
i-cells wherd < m. Hence, we proceed from higher dimen- mper of sign changes between vertices, because for any
sional cells to lower dimensional cells so that each vertex iyansition from negative to positive there must be a transi-
can be processed independently. This process is shown ingion pack. For faces, we can therefore check that there are
Figure®. exactly two sign changes along its boundary. For a cube, we
Notice that we must be careful when moving dual vertices Use the Union-Find algorithm, which is a simple algorithm
as we may Change the t0p0|ogy of the surface in some cells, that takes nearly linear time to nd connected components
which could result in non-manifold topology since we now in a graph. Figure3 shows this reduction applied to a mul-
allow zero isovalues. Figuré demonstrates this problem. tiresolution face and a cube.
Parts (a) and (b) show how moving a vertex dual to an edge
can result in non-manifold geometry without a topological
test. Parts (c) and (d) illustrate a similar problem with & ve
tex dual to a face that creates non-manifold geometry.

restricting vertex movement if the test fails. We reduce our
topological safety test to counting connected components i
a graph. Given am-cell, we build a graph consisting of all
of the edges of the simplices on the boundary of the cell that
connect all dual vertices of dimensior m.

Our topology test is exact in that we preserve the topology
of the surface if and only if the test is satis ed. Assume that
the topology test is satis ed. This means the boundary of the
cell forms two disjoint vertex sets of inside/outside vest

We provide a test that preserves the topology of the iso- and the boundary is a connected sheet. Since the dual vertex
surface within eacim-cell by detecting if the portion of the  of them-cell is connected to all of the dual vertices on the
isosurface intersecting the-cell is a topological disk and boundary, the value and position of the vertex are irrelevan
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(a) Original (b) Improved triangulation

Figure 9: Our method for improving surface triangulation
reduces the number of triangles frofd192on the left to
147200n the right.

as the contour through the cell is still a topological diste(t
boundary is completely connected as a single sheet).

The converse statement is also true. Suppose we give a
vertex,x, that is dual to amn-cell a value of zero by placing  Figure 10: An M1 Abrams tank reconstructed at depth 8 by

it on the isosurface. Then any portions of the contour on the our method is shown. Notice that high resolution details lik
boundary of the cell will form a sheet that passes thraxygh  the antenna are found correctly.

becauseis connected to all of the vertices on the boundary

of the cell. Since each sheet toucheshe sheets all touch ) ) )
each other and create a single surface. Placing the centraliSoSurface using the error metric from Sect@nrhere are

dual vertex on the isosurface pinches the surface to a point WO classes of approaches to generating an octree for isosur
and creates a non-manifold vertex when portions of the con- face calculation. A bottom-up approach samples the functio
tour are not connected before moving the dual vertex. Even if Uniformly in a full octree and then prunes cells that do not
the boundary does not contain any of the isosurface (all ver- Contain a contour. In many applications, the function we-con
tices have the same sign), the test still works, since piacin  OUr iS expensive to evaluate, which makes simple bottom-up
the central dual vertex on the isosurface collapses a tgpolo  OCtree calculation infeasible.

ical sphere to a point or creates an isolated point. Therefore, we use a top-down contour- nding approach
that adds cells to the tree by re ning the sampling around
5. Implementation detected contours. To begin, we use a uniform re nement

o ] ) . down to a prescribed level to capture the coarse features of
The tetrahedralization in Sectidrequires that the minimal the function. Then, we analy#&(p) at the dual vertices of
edges and minimal faces are enumerated to build the tetra- e5ch cube. We re ne each cube that the dual vertices indicate
hedra we use to generate the isosurface. Our implementationyhe contour intersects until the sum of the errors from Equa-

uses the recursive octree traversal of IC3WO03 to nd tion 1 for each dual vertex in a cube is below a set threshold
the leaves in the octree that surround a minimal edge in the gown to a prescribed maximum depth.

tree. Of the (up to) four cubes surrounding a minimal edge,

the cube at the deepest depth will contain the minimal edge ~ While this strategy does not detect all of the possible
of the tree. This minimal edge creates two line segments cor- Pieces of the isosurface, we note that this goal is impassibl
responding to the octree vertices of the minimal edge and its Without further knowledge of the functiofi(p). However,

dual vertex. Next, for each pair of face-adjacent cubes sur- beginning with a uniform sampling does guarantee that we
rounding the minimal edge, we connect these two line seg- detect all features greater than the size of a cube in the uni-
ments to the vertex dual to the minimal face between these form grid. These features, as well as any additional feature
pairs of cubes to create two triangles for each minimal face. detected during re nement, will be re ned to the level of ac-
Finally, we connect each of these triangles to the vertek dua Ccuracy speci ed by the user. We use an error criterion simply
to the cube they are adjacent to, forming four tetrahedra for to avoid re nement in regions of the function that are well
each face-adjacent cube. Our algorithm requires no ankilia ~@Pproximated by a linear function such as at regions of the
data structures beyond the octree itself and the dual esrtic  isosurface. However, any octree generation method can be
to ef ciently construct our tetrahedralization for any oe. used with our technique.

We then use a table-based method based on the sign con g-
uration of each tetrahedron to contour the cBKP1]. 6. Results
Our algorithm allows us to extract a manifold surface from
arbitrary octrees and all of the examples in this paper were
While our method operates on arbitrary octrees, we provide generated using octree decompositions. FigBal9 were

a simple method to create an octree that conforms well to the generated with the octree generation method in Se&iin

5.1. Octree Generation
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@ (b)

Figure 11: The armadillo man cut in half by a CSG plane
and reconstructed by our method. The adaptive nature of the
surface is evident in the at region.

Armadillo man | Mech. part| Lens
Depth 8 9 10
Ours 2.58s 4.81s 9.72s
Ours improv. 2.69s 6.80s 10.35s
DMC 1.85s 3.54s 6.42s
DC 1.35s 2.97s 5.99s

Table 1: Times taken by our method with and without trian-
gulation improvement, DMC, and DC for a variety of mod-

Ours | Oursimprov.| DMC DC
Time total 8.78s 8.19s 5.29s | 3.78s
Time tree 4.02s 6.13s 3.41s | 2.69s
Time extract| 4.77s 2.06s 1.88s | 1.09s
Triangles | 3.63M 1.13M 1.16M | 727k

Table 2: Details are given for each method when calculat-
ing the surface of the tank shown in Figut®. We re ne

the octree to depth 9 for DC and DMC, and to depth 8 for
our method so that sampling densities are equal. Notice that
our times are about twice as long as DMC and number of
triangles are comparable to DMC.

To make the comparison between methods fair, we calcu-
late the surface in our method at a lower resolution than DC
and DMC. Running times for our method, DC, and DMC
are shown in Tabld for a variety of functions. The fastest
method is DC, because it minimizes three dimensional er-
ror functions to position surface vertices at sharp feature
whereas DMC and our method minimize four dimensional
error functions to position dual vertices with function val
ues. DMC is approximately 10-20% slower than DC, and
our method takes an additional 50% longer than DMC.

Table2 shows a breakdown of the times for each method
when reconstructing the tank shown in Figd@ Although
the octree for the tank was re ned only around the surface,
the antenna is of higher resolution than the sampling grid.
DC only samples near the isosurface and is unable to detect
small details like the antenna and railings of the tank. Our

els. Each method uses the same octree sampling density. Th%ethod and DMC, on the other hand, form a grid dual to

armadillo man is shown cut in half in Figutel, the mechan-
ical part is shown in Figure3, and the lens is de ned by CSG
intersection of two spheres.

the octrees of Figures0 and 11, however, were calculated
from the signed distance function of a polygonal surface and
re ned only where polygons intersect the octree cells.

We can generate manifold surfaces over arbitrary octrees
because our algorithm combines the strengths of primal and
dual contouring methods. The primal octree grid ensurés tha

cells are convex and that the contoured surface cannot self-

intersect. The dual structure of the octree provides a topol
ogy for transitions between neighboring cells at differesst
olutions, and only constrains positions of points to reniain
the cell that they are dual to. We use the extra degrees of
freedom in placing vertices to nd better approximations of
the function being contoured so that we can recover sharp
features. By forming a piecewise linear approximation of
the function, we are also able to recover sharp features in
the function itself that result in surface features that rbay
smaller than the grid resolution.

the octree structure and detect the antenna of the tank even
at depth 6. However, DMC produces several aps of sur-
face that fold back on themselves in the tank, whereas our
method avoids such self-intersections. Contouring method
that partition space into tetrahedra are notorious for ggne

ing many triangles, but with triangulation improvementy ou
method generates fewer triangles than DMC does.

We focus our discussion on three dimensional isosurfaces,
but our method extends to contouring functions of any di-
mension. Our method's construction and proofs of correct-
ness are inductive, which means that we can apply our algo-
rithm to higher dimensions. By contrast, a direct extension
of MC to higher dimensions is complicated by the MC table.
The MC table is dif cult to compute, and hag 2entries for
dimensionm, whereas the simplex table used in our method
is easy to compute and is sizE"2. These higher dimen-
sional isosurfaces may be useful for time-dependent simula
tions, surface reconstruction of moving objects, or ratsti
for path planning.

7. Future Work

Given the same octree, our method essentially samples theWe want to further improve the triangle quality in the sur-
function at one higher resolution than DC or DMC because face generated by our method. Moving dual vertices to lie

of the extra samples on edges, faces, and cells in the octree

directly on the isosurface greatly improves the triangarat

¢ 2010 The Author(s)
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of isosurfaces, but some small and poor aspect ratio trian- [KKDH07]
gles still remain. These triangles are generated nearl0-cel
vertices that the isosurface passes close to because 0-cell

vertices cannot move to ensure convexity of ditells in
the octree. One possibility we would like to investigate is

allowing O-cell vertices to move. So long as we can ensure

that higher-dimensional dual vertices remain in the keofiel

their cell, our tiling of space is guaranteed to be convex and

the surface will be manifold.

We would also like to improve octree generation. Cur-
rently, we use an error metric that is zero in at regions and
positive in curved regions of the function, but we do not di-

rectly measure the curvature of the surface. For example,

F(p) = p>2< 1 has a completely planar isosurface, but our
current re nement criteria detects that the function isvear

near the contour and re nes the octree more than necessary.
By more accurately determining the curvature of the sur-
face, it will be possible to generate accurate surfaces with

fewer triangles and using less memory. Alternatively, iyma
be possible to design a back-tracking algorithm that uses th

samples generated during expansion to collapse parts of the[NL09]

tree that have been re ned too far.
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