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Figure 1: Deformation using Moving Least Squares. Original image with control points shown in blue (a). Moving Least Squares deforma-
tions using affine transformations (b), similarity transformations (c) and rigid transformations (d).

Abstract

We provide an image deformation method based on Moving Least
Squares using various classes of linear functions including affine,
similarity and rigid transformations. These deformations are real-
istic and give the user the impression of manipulating real-world
objects. We also allow the user to specify the deformations using
either sets of points or line segments, the later useful for control-
ling curves and profiles present in the image. For each of these
techniques, we provide simple closed-form solutions that yield fast
deformations, which can be performed in real-time.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations; Curve,
surface, solid, and object representations; Geometric algorithms,
languages, and systems

Keywords: Deformations, moving least squares, rigid transforma-
tions

1 Introduction

Image deformation has a number of uses from animation, to mor-
phing [Smythe 1990] and medical imaging [Warren et al. 2003].
To perform these deformations the user selects some set of han-
dles to control the deformation. These handles may take the form
of points [Bookstein 1989], lines [Beier and Neely 1992], or even
polygon grids [MacCracken and Joy 1996]. As the user modifies
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the position and orientation of these handles, the image should de-
form in an intuitive fashion.

We view this deformation as a function f that maps points in the
undeformed image to the deformed image. Applying the function
f to each point v in the undeformed image creates the deformed
image. Now consider an image with a set of handles p that the user
moves to new positions q. For f to be useful for deformations it
must satisfy the following properties:

• Interpolation: The handles p should map directly to q under
deformation. (i.e; f (pi) = qi).

• Smoothness: f should produce smooth deformations

• Identity: If the deformed handles q are the same as the p, then
f should be the identity function. (i.e; qi = pi ⇒ f (v) = v).

These properties are very similar to those used in scattered data
interpolation. The first two properties simply state that the func-
tion f interpolates the scattered data values and is smooth. The last
property is sometimes referred to as linear precision in the approxi-
mation field. It states that if data is sampled from a linear function,
then the interpolant reproduces that linear function. Given these
similarities, it comes as no surprise that many deformation meth-
ods borrow techniques from scattered data interpolation.

Previous Work

Previous work on image deformation has focused on specify-
ing deformations using different types of handles. Grid-based
techniques such as free-form deformations [Sederberg and Parry
1986; Lee et al. 1995] parameterize the image using bivariate cubic
splines to create C2 deformations. Typically these methods require
aligning grid lines corresponding to the control points of the spline
with features of the image, which can be cumbersome for the user.

Beier et al. [Beier and Neely 1992] improve upon these grid-
based techniques and allow the user to specify the deformation
using sets of lines. This method is based on Shepard’s inter-
polant [Shepard 1968] and creates smooth deformations. However,
the authors note that their method produces complicated warps that



Figure 2: Deformation of the test shape from figure 1 using thin-
plate splines (left). The deformation is smooth but lacks realism.
On the right we use the method by Igarashi et al. shown with tri-
angulation (right). The lack of smoothness is clearly visible in the
wood grain.

can sometimes suffer from “ghosts”, undesirable folding in the de-
formation. Koba et al. [Kobayashi and Ootsubo 2003] later gener-
alized this technique to surface deformations.

Very few deformation methods investigate the type of transfor-
mations that are desirable for performing deformation. One notable
exception is worked based on thin-plate splines [Bookstein 1989]
that attempts to minimize the amount of bending in the deforma-
tion. Bookstein presents a deformation algorithm using the sim-
plest deformation handle, a point, that uses radial basis functions
with thin-plate splines. Figure 2 (left) shows an example of the
deformation created with thin-plate splines for our example in fig-
ure 1. The deformation appears very similar to the affine-method in
figure 1. In both cases, the test shape undergoes local non-uniform
scaling and shearing, which is undesirable in many applications.

Our paper builds primarily on a recent paper by Igarashi et
al. [Igarashi et al. 2005] that proposes a point-based image defor-
mation technique for cartoon-like images in which the resulting de-
formations are as “rigid-as-possible”. Such deformation have the
property that amount of local scaling and shearing is minimized.
(The concept of rigid-as-possible transformations was itself first in-
troduced in Alexa [Alexa et al. 2000].)

To produce rigid-as-possible deformations, Igarashi et al. trian-
gulate the input image and solve a linear system of equations whose
size is equal to the number of vertices in the triangulation. In con-
trast, our method creates deformations by solving a small linear
system (2×2) at each point in a uniform grid (see Section 4 for de-
tails). Since, we solve much smaller systems of equations, we can
create very fast deformations of grids consisting of tens of thou-
sands of vertices in real-time whereas Igarashi et al. report that
their methods slows at 300 vertices on a 1 GHz machine. Due to
the relatively small number of vertices, the deformations produced
by Igarashi et al. may contain noticeable discontinuities as shown
in figure 2. Figure 7 shows an equivalent deformation with our
technique, which appears smooth.

Contributions

In this paper, we propose an image deformation method based on
linear Moving Least Squares. To construct deformations that min-
imize the amount of local scaling and shear, we restrict the classes
of transformations used in Moving Least Squares to similarity and
rigid-body transformations. By using MLS, we avoid the need to
triangulate the input image (as done in Igarashi et al.) and produce
deformations that are globally smooth.)

Next, we derive closed-form formulas for both similarity and
rigid MLS deformations. These formula are simple, easy to imple-
ment and provide real-time deformations. This derivation relies on
a surprising and little-known relationship between similarity trans-

formations and rigid transformations that minimize a common least
squares problem. As opposed to Igarashi et al., our formulas do not
require the use of a general linear solver.

As a natural extension of our point-based method, we extend our
MLS deformation method from sets of points to sets of line seg-
ments and again provide closed-form expressions for the resulting
deformation method.

2 Moving Least Squares Deformation

Here we consider building image deformations based on collections
of points with which the user controls the deformation. Let p be
a set of control points and q the deformed positions of the con-
trol points p. We construct a deformation function f satisfying the
three properties outlined in the introduction using Moving Least
Squares [Levin 1998]. Given a point v in the image, we solve for
the best affine transformation lv(x) that minimizes

∑
i

wi |lv(pi)−qi|
2

(1)

where pi and qi are row vectors and the weights wi have the form

wi =
1

|pi −v|2α
.

Because the weights wi in this least squares problem are dependent
on the point of evaluation v, we call this a Moving Least Squares
minimization. Therefore, we obtain a different transformation lv(x)
for each v.

Now we define our deformation function f to be f (v) = lv(v).
Observe that as v approaches pi, wi approaches infinity and the
function f interpolates, (i.e; f (pi) = qi). Furthermore, if qi = pi,
then each lv(x) = x for all x and, therefore, f is the identity trans-
formation f (v) = v. Finally, this deformation function f has the
property that it is smooth everywhere (except at the control points
pi when α ≤ 1).

Now since lv(x) is an affine transformation, lv(x) consists of two
parts: a linear transformation matrix M and a translation T .

lv(x) = xM+T (2)

We can actually remove the translation T from this minimiza-
tion problem further simplifying these equations. Equation 1 is
quadratic in T . Since the minimizer is where the derivatives with
respect to each of the free variables in lv(x) are zero, we can solve
directly for T in terms of the matrix M. Taking the partial deriva-
tives with respect to the free variables in T produces a linear system
of equations. Solving for T yields that

T = q∗− p∗M

where p∗ and q∗ are weighted centroids.

p∗ = ∑i wi pi

∑i wi

q∗ = ∑i wiqi

∑i wi

With this observation we can substitute T into equation 2 and
rewrite lv(x) in terms of the linear matrix M.

lv(x) = (x− p∗)M+q∗ (3)

Based on this insight, the least squares problem of equation 1 can
be rewritten as

∑
i

wi |p̂iM− q̂i|
2

(4)



where p̂i = pi − p∗ and q̂i = qi − q∗. Notice that Moving Least
Squares is very general in that the matrix M does not have to be
a fully affine transformation. In fact, this framework allows us to
investigate different classes of transformation matrices M. In par-
ticular, we are interested in the case where M is a rigid transfor-
mation. However, we first examine the case where M is an affine
transformation as the derivation is the simplest. Next we construct
deformations with similarity transformations and show how these
solutions can be used to find closed-form solutions to Moving Least
Square deformations with rigid transformations.

2.1 Affine Deformations

Finding an affine deformation that minimizes equation 4 is straight-
forward using the classic normal equations solution.

M =

(

∑
i

p̂T
i wi p̂i

)−1

∑
j

w j p̂T
j q̂ j.

Though this solution requires the inversion of a matrix, the matrix
is a constant size (2×2) and is fast to invert. With this closed-form
solution for M we can write a simple expression for the deformation
function fa(v).

fa(v) = (v− p∗)

(

∑
i

p̂T
i wi p̂i

)−1

∑
j

w j p̂T
j q̂ j +q∗. (5)

Applying this deformation function to each point in the image cre-
ates a new, deformed image.

While the user creates these deformations by manipulating the
points q, the points p are fixed. Since the p do not change during
deformation, much of equation 5 can be precomputed yielding very
fast deformations. In particular, we can rewrite equation 5 in the
form

fa(v) =∑
j

A j q̂ j +q∗.

where A j is a single scalar given by

A j = (v− p∗)

(

∑
i

p̂T
i wi p̂i

)−1

w j p̂T
j .

Notice that, given a point v, everything in A j can be precomputed
yielding a simple, weighted sum. Table 1 provides timing results
for the examples in this paper, which shows that these deformations
may be performed over 500 times per second in our examples.

Figure 1 (b) illustrates this affine Moving Least Squares defor-
mation applied to our test image. Unfortunately, the deformation
does not appear very desirable due to the stretching in the arms and
torso. These artifacts are created because affine transformations in-
clude deformations such as non-uniform scaling and shear. To elim-
inate these undesirable deformations we need to consider restrict-
ing the linear transformation lv(x). In particular, we modify the
class of deformations lv(x) produces by restricting the transforma-
tion matrix M from being fully linear to similarity and rigid-body
transformations.

2.2 Similarity Deformations

While affine transformations include effects such as non-uniform
scaling and shear, many objects in reality do not undergo even these
simple transformations. Similarity transformations are a special
subset of affine transformations that only include translation, ro-
tation and uniform scaling.

To alter our deformation technique to only use similarity trans-
formations, we constrain the matrix M to have the property that
MT M = λ 2I for some scalar λ . If M is a block matrix of the form

M =
(

M1 M2

)

where M1, M2 are column vectors of length 2, then restricting M
to be a similarity transform requires that MT

1 M1 = MT
2 M2 = λ 2

and MT
1 M2 = 0. This constraint implies that M2 = M⊥

1 where ⊥ is

an operator on 2D vectors such that (x,y)⊥ = (−y,x). Though re-
stricted, the minimization problem from equation 4 is still quadratic
in M1 and can be rephrased as finding the column vector M1 that
minimizes

∑
i

wi

∣

∣

∣

∣

(

p̂i

− p̂⊥i

)

M1 − q̂T
i

∣

∣

∣

∣

2

.

This quadratic function has a unique minimizer, which yields the
optimal transformation matrix M

M =
1

µs
∑

i

wi

(

p̂i

− p̂⊥i

)

( q̂T
i −q̂⊥T

i ) (6)

where

µs =∑
i

wi p̂i p̂T
i .

Similar to the affine deformations, the user manipulates the q to
produce the deformation while the p remain fixed. Using this ob-
servation we write the deformation function fs(v) in a form that
allows us to precompute as much information as possible. fs(v) is
then

fs(v) = ∑
i

q̂i(
1

µs
Ai)+q∗

where µs and Ai depend only on the pi, v and can be precomputed
and Ai is

Ai = wi

(

p̂i

− p̂⊥i

)(

v− p∗
−(v− p∗)

⊥

)T

. (7)

As expected, similarity MLS deformations preserves angles in
the original image better than affine MLS deformations. (Transfor-
mations that strictly preserve angle are called conformal transfor-
mations and have been studied extensively in [Gu and Yau 2003].)
While approximate (or exact) angle preservation is a desirable prop-
erty in many cases, allowing local scaling can often lead to unde-
sirable deformations. Figure 1 (c) shows an example of applying
the similarity Moving Least Squares deformation to our test image.
The result is a much more realistic looking deformation than (b).
However, this deformation scales the size of the upper arm as it is
stretched. To remove this scaling, we consider building deforma-
tions using only rigid transformations.

2.3 Rigid Deformations

Recently, several works [Alexa et al. 2000; Igarashi et al. 2005]
have shown that, for realistic shapes, deformations should be as
rigid as possible; that is, the space of deformations should not even
include uniform scaling. Traditionally researchers in deformation
have been reluctant to approach this problem directly due to the
non-linear constraint that MT M = I. However, we note that closed-
form solutions to this problem are known from the Iterated Closest
Point community [Horn 1987]. Horn shows that the optimal rigid
transformation can be found in terms of eigenvalues and eigenvec-
tors of a covariance matrix involving the points pi and qi. We show
that these rigid deformations are related to the similarity deforma-
tions from section 2.2 via the following theorem.



Figure 3: Original image (left) and its deformation using the rigid
MLS method (right). After deformation, the face is thinner and she
is smiling.

Theorem 2.1 Let C be the matrix that minimizes the following sim-
ilarity functional

min
MT M=λ 2I

∑
i

wi | p̂iM− q̂i|
2 .

If C is written in the form λR where R is a rotation matrix and λ is
a scalar, the rotation matrix R minimizes the rigid functional

min
MT M=I

∑
i

wi | p̂iM− q̂i|
2 .

Proof: See Appendix A.

This theorem is valid in arbitrary dimension, however, it is very
easy to apply in 2D. Using this theorem, we find that the rigid
transformation is exactly the same as equation 6 except that we use
a different constant µr in the solution so that MT M = I given by

µr =

√

√

√

√

(

∑
i

wiq̂i p̂
T
i

)2

+

(

∑
i

wiq̂i p̂⊥T
i

)2

.

Unlike the similarity deformation fs(v), we cannot precompute as
much information for the rigid deformation function fr(v). How-
ever, the deformation process can still be made very efficient. Let

~fr(v) = ∑
i

q̂iAi

where Ai is defined in equation 7, which may be precomputed. This

vector ~fr(v) is a rotated and scaled version of the vector v− p∗. To

compute fr(v) we normalize ~fr, scale by the length of v− p∗ (which
also can be precomputed), and translate by q∗.

fr(v) = |v− p∗|
~fr(v)

|~fr(v)|
+q∗. (8)

This method is slower than the similarity deformation due to the
normalization; however, these deformations are still very fast as
shown in table 1.

Figure 1 (d) shows this rigid deform applied to the test image
in (a). As opposed to the other methods, this deformation is quite
realistic and almost feels as if the user is manipulating a real object.
Figures 3 and 4 show additional examples of this rigid deformation
method. In the figure with the Mona Lisa, we deform the image to
create a thinner facial profile and make her smile. In the figure with
the horse, we stretch the horses legs and neck to create a giraffe.
Due to the use of rigid transformations, the deformation maintains
rigidity and scale locally so that the body and head of the horse
retain their relative shape.

Figure 4: Original image (left) and its deformation using the rigid
MLS method (right).

3 Deformation with Line Segments

So far we have considered creating deformations with Moving
Least Squares using only sets of points to control the deformation.
In applications where precise control over curves such as profiles in
the image is needed, points may be insufficient for specifying these
deformations. One solution that allows the user to control curves
precisely is to convert these curves to dense sets of points and ap-
ply a point-based deformation [Wolberg 1998]. The disadvantage
of this approach is that the computation time of the deformation is
proportional to the number of control points used and creating large
numbers of control points adversely affects performance.

Alternatively, we desire a generalization of these Moving Least
Squares deformations from section 2 to arbitrary curves in the

plane. First, assume pi(t) is the ith control curve and qi(t) is the de-
formed curve corresponding to pi(t). We generalize the quadratic
function in equation 1 by integrating over each control curve pi(t)
where we assume t ∈ [0,1].

∑
i

∫ 1

0
wi(t) |pi(t)M+T −qi(t)|

2 (9)

where wi(t) is

wi(t) =
|p′i(t)|

|pi(t)−v|2α

and p′t(t) is the derivative of pi(t). (This factor of |p′(t)| makes the
integrals independent of the parameterization of the curve pi(t).)
Now notice that, despite the integral, equation 9 is still quadratic in
T and can be solved for in terms of the matrix M.

T = q∗− p∗M

where p∗ and q∗ are again weighted centroids.

p∗ = ∑i

∫ 1
0 wi(t)pi(t)dt

∑i

∫ 1
0 wi(t)dt

q∗ = ∑i

∫ 1
0 wi(t)qi(t)dt

∑i

∫ 1
0 wi(t)dt

(10)

Therefore, we rewrite equation 9 only in terms of M as

∑
i

∫ 1

0
wi(t) | p̂i(t)M− q̂i(t)|

2 (11)

where
p̂i(t) = pi(t)− p∗
q̂i(t) = qi(t)−q∗.



Figure 5: Deformation of the Leaning Tower of Pisa. From left to right: original image, Affine MLS, Similarity MLS and Rigid MLS
deformations.

Until now, pi(t) and qi(t) have been arbitrary curves. However,
the integrals in equation 11 may be difficult to evaluate for arbitrary
functions. Instead, we restrict these functions to be line segments
and derive closed-form solutions for the deformations in terms of
the end-points of these segments. Similar to section 2, we first con-
sider affine transformations due to its relatively simple derivation
and then move to similarity transformations, which we use to create
closed-form solutions to the equivalent problem using rigid-body
transformations.

3.1 Affine Lines

Since p̂i(t), q̂i(t) are line segments, we can represent these curves
as matrix products

p̂i(t) =
(

1− t t
)

(

âi

b̂i

)

q̂i(t) =
(

1− t t
)

(

ĉi

d̂i

)

where âi, b̂i are the end-points of p̂i(t) and ĉi, d̂i are the end-points
of q̂i(t). Equation 11 is then written as

∑
i

∫ 1

0

∣

∣

∣

∣

( 1− t t )

((

âi

b̂i

)

M−

(

ĉi

d̂i

))∣

∣

∣

∣

2

(12)

whose minimizer is

M =

(

∑
i

(

âi

b̂i

)T

Wi

(

âi

b̂i

)

)−1

∑
j

(

â j

b̂ j

)T

Wj

(

ĉ j

d̂ j

)

where Wi is a weight matrix given by

Wi =

(

δi00 δ 01
i

δ 01
i δ 11

i

)

and the δi are integrals of the weight function wi(t) multiplied by
the different quadratic polynomials.

δ 00
i =

∫ 1
0 wi(t)(1− t)2dt

δ 01
i =

∫ 1
0 wi(t)(1− t)tdt

δ 11
i =

∫ 1
0 wi(t)t

2dt

These integrals have closed-form solutions for various values of α .
In appendix B we provide a closed-form solution for α = 2 though
other solutions can be computed with the aid of a symbolic integra-
tion package. Note that these integrals can also be used to evaluate
p∗ and q∗ from equation 10.

p∗ = ∑i ai(δ
00
i +δ 01

i )+bi(δ
01
i +δ 11

i )

∑i δ 00
i +2δ 01

i +δ 11
i

q∗ = ∑i ci(δ
00
i +δ 01

i )+di(δ
01
i +δ 11

i )

∑i δ 00
i +2δ 01

i +δ 11
i

As before, we write the deformation function fa(v) as

fa(v) = ∑
j

A j

(

ĉ j

d̂ j

)

+q∗

where A j is a 1×2 matrix of the form

A j = (v− p∗)

(

∑
i

(

âi

b̂i

)T

Wi

(

âi

b̂i

)

)−1(
â j

b̂ j

)T

Wj.

During the deformation, the end-points ai and bi of the line segment
pi(t) are fixed while the user manipulates the end-points ci and di

of the line segments qi(t). Since A j is independent of ci and di, A j

can be precomputed.
Figure 5 shows an example deformation performed with line seg-

ments where we modify the Leaning Tower of Pisa to lean the op-
posite direction and shrink the tower. The Affine MLS deformation
shears the tower to the side instead of being rotated and does not
appear to be realistic. To remove this shear effect, we restrict the
matrix in equation 11 to be a similarity or rigid-body transforma-
tion.

3.2 Similarity Lines

Restricting equation 12 to similarity transforms requires that
MT M = λ 2I for some scalar λ . As noted in section 2.2, M can
be parameterized using a single column vector M1 yielding

∑
i

∫ 1

0

∣

∣

∣

∣

∣

∣

∣

∣

(

1− t 0 t 0
0 1− t 0 t

)

















âi

−â⊥i
b̂i

−b̂⊥i









M1 −

(

ĉT
i

d̂T
i

)









∣

∣

∣

∣

∣

∣

∣

∣

2

This error function is quadratic in M1. To find the minimizer, we
differentiate with respect to the free variables in M1 and solve the
linear system of equations to obtain the matrix M.

M =
1

µs
∑

j









â j

−â⊥j
b̂ j

−b̂⊥j









T

Wj

(

ĉT
j ĉ⊥T

j

d̂T
j d̂⊥T

j

)

(13)

where Wj is a weight matrix

Wj =











δ 00
j 0 δ 01

j 0

0 δ 00
j 0 δ 01

j

δ 01
j 0 δ 11

j 0

0 δ 01
j 0 δ 11

j













Figure 6: Comparison of the line deformation method of Beier et
al. (left) with the Rigid MLS deformation (right).

and µs is again a scaling constant, which has the form

µs =∑
i

âiâ
T
i δ 00

i +2âi b̂
T
i δ 01

i + b̂i b̂
T
i δ 11

i .

This deformation function has a very similar structure to the
point-based similarity deformation. Using this matrix we write
fs(v) explicitly as

fs(v) = ∑
j

( ĉ j d̂ j )(
1

µs
A j)+q∗

where A j is a 4×2 matrix.

A j =Wj









â j

−â⊥j
b̂ j

−b̂⊥j









(

v− p∗
−(v− p∗)

⊥

)T

(14)

Figure 5 shows the tower deformed using this similarity-based
method. In contrast to the affine method, the tower actually appears
to be rotated, not sheared, to the left resulting in a more realistic
deformation. Similarity transformations contain uniform scaling,
which is apparent from the way in which the tower shrinks with the
line segment. Rigid transformations remove this uniform scaling.

3.3 Rigid Lines

Using the solution from section 3.2 and Theorem 2.1, we imme-
diately have a closed form solution for rigid-body transformations.
The transformation matrix is, therefore, the same as equation 13
except we choose a different scaling constant µr so that MT M = I.

µr =

∣

∣

∣

∣

∣

∑
j

(

âT
j −â⊥T

j b̂T
j −b̂⊥T

j

)

Wj

(

ĉT
j

d̂T
j

)∣

∣

∣

∣

∣

This deformation is non-linear, but we can compute it in a sim-
ple fashion using equation 8. This equation uses the rotated vector

Method
Figure 1 Figure 4 Figure 5

(7 points) (11 points) (7 lines)

Affine MLS 1.5 ms 2.2 ms 1.5 ms

Similarity MLS 2.3 ms 3.4 ms 1.6 ms

Rigid MLS 2.6 ms 3.8 ms 3.3 ms

[Bookstein 1989] 2 ms 2.7 ms N/A

[Beier and Neely 1992] N/A N/A 1.6ms

Table 1: Deformation times for the various methods.

~fr(v), scales the vector so that its length is |v− p∗| and translates
by q∗. For this deformation using line segments, the rotated vector
is given by

~fr(v) = ∑
j

( ĉ j d̂ j )A j

where A j is from equation 14.

Figure 5 (right) shows a deformation of the tower using this rigid
method. In this deformation, the tower is rotated but does not shrink
as the similarity deformation does. Instead the effect is almost the
same as non-uniform scaling along the direction of the line seg-
ment.

Figure 6 also shows a comparison of the rigid deformation tech-
nique (right) with the line deformation method of Beier et al. [Beier
and Neely 1992] (left). The warps created with Beier et al.’s method
fold and pull in unrealistic ways whereas the rigid method does not
suffer from these same defects.

4 Implementation

To implement these deformations, we precompute as much infor-
mation as possible for the deformation functions f (v). When we
apply the deformation to an image, we typically do not apply f (v)
to every pixel in the image. Instead we approximate the image with
a grid and apply the deformation function to each vertex in the grid.
We then fill the resulting quads using bilinear interpolation (see fig-
ure 7).

Figure 7: Deforming an image with a uniform grid (50×50). Orig-
inal image (left) and rigid MLS deformation (right) using bilinear
interpolation in each quad.

In practice, this approximation technique produces deformations
indistinguishable from the more expensive process of applying the
deformation to every pixel in the image. For all of the examples
in this paper, the images were approximately 500×500 pixels. To
compute the deformations, we used grids on the order of 100×100
vertices. If desired, more accurate deformations may be achieved
with denser grids and the deformation time is linear in the number
of vertices of these grids.



Table 1 shows the amount of time taken to deform each of the
images using various methods on a 3 GHz Intel machine. Each de-
formation uses a grid of size 100×100. The rigid transformations
take the longest due to the square root in the deformation function,
but are still quite fast.

Figure 8: Foldback caused during deformations.

5 Conclusions and Future Work

We have provided a method for creating smooth deformations of
images using either points or lines as handles to control the de-
formation. Using Moving Least Squares we created deformations
using affine, similarity and rigid transformations while providing
closed-form expressions for each of these techniques. Though the
least squares minimization with rigid transformations led to a non-
linear minimization, we showed how these solutions could be com-
puted directly from the closed-form deformation using similarity
transformations thereby bypassing the non-linear minimization.

In terms of limitations, our method may suffer from fold-backs
like most other space warping approaches. These situations oc-
cur when the sign of the Jacobian of f changes. For many defor-
mations, these fold backs may not be noticeable though extreme
deformations will certainly cause such fold-backs to happen (see
figure 8). For some deformations, fold-backs are acceptable since
these 2D images are meant to represent 3D objects. Igarashi et al.
take advantage of the explicit topology of the image and provide a
simple method for rendering these deformations. Our lack of topol-
ogy makes this technique difficult though topological information
may be added to our method.

In other applications, fold-backs are not desirable and must be
eliminated. There is a generic approach available for fixing these
fold-backs provided by Tiddeman et al. [Tiddeman et al. 2001].
Given a warp, Tiddeman et al. create a subsequent warp such that
the product of the two warps results in a non-negative Jacobian.
Since we provide simple equations for our deformations, we intend
to explore the possibility of constructing closed-formed formulas
for the Jacobian for use with Tiddeman et al.’s method.

Our warping technique also deforms the entire plane that the im-
age lies in without regard to the topology of the shape in the image.
This lack of topology is both a benefit and a limitation. One of the
advantages of our approach is the lack of such topology, which cre-
ates a simple warping function. Other techniques such as Igarashi
et al. [Igarashi et al. 2005] construct triangulations that outline the
boundary of the shape and build deformations dependent on the
specified topology. This topological information can create better
deformations by separating parts of the images such as the legs of
the horse in figure 4 that are geometrically close together. Notice
that our method is general enough to accommodate different dis-
tance metrics dependent on the topology of the shape rather than

the simple, Euclidean distance used as our weight factor. We intend
to explore this issue in future work.

Finally, in the future we would like to explore generalizing these
deformation methods to 3D to deform surfaces. Such a generaliza-
tion has potential applications in the motion capture field where an-
imation data can take the form of points in space for each frame of
animation. However, the similarity transformation in section 2.2 no
longer leads to a quadratic minimization, but an eigenvector prob-
lem and we are looking into methods to efficiently compute the
solution to this minimization.
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A Appendix

Here we provide a proof of Theorem 2.1.

Theorem 2.1 Let C be the matrix that minimizes the following sim-
ilarity functional

min
MT M=λ 2I

∑
i

wi | p̂iM− q̂i|
2
.

If C is written in the form λR where R is a rotation matrix and λ is

a scalar, the rotation matrix R minimizes the rigid functional

min
MT M=I

∑
i

wi | p̂iM− q̂i|
2
.

Proof: First, we expand both of the above error functions into their
quadratic forms yielding

minRT R=I,λ ∑i wi

(

λ 2 p̂i p̂T
i −2λ p̂iRq̂T

i + q̂iq̂
T
i

)

minRT R=I ∑i wi

(

p̂i p̂T
i −2 p̂iMq̂T

i + q̂iq̂
T
i

)

These minimization problems are very similar. We find the matrices
that minimize these error functions by differentiating the functions
with respect to the free variables θ j in R.

∑i wi

(

−2λ p̂i
∂ R
∂ θ j

q̂T
i

)

= 0

∑i wi

(

−2 p̂i
∂ R
∂ θ j

q̂T
i

)

= 0

Now, unless λ = 0, which implies a degenerate transformation,
these equations are equal. Since C = λR, this implies that ±R mini-
mizes the quadratic function using rigid transformations. The nega-
tive solution corresponds to a maximum while the positive solution
is the minimum. QED

B Appendix

In section 3 we derive closed-form solutions for Moving Least
Squares deformations using line segments. In order to complete
the derivation, we need closed-form solutions for integrals of three
quadratic polynomials times the weight function wi(t) over the line
segments. Let ai, bi be the endpoints of the line segment described
by pi(t) and let

∆i = (ai −v)⊥(ai −bi)
T

θi = tan−1
(

(bi−v)(bi−ai)
T

(bi−v)⊥(bi−ai)T

)

− tan−1
(

(ai−v)(ai−bi)
T

(ai−v)⊥(ai−bi)T

)

β 00
i = (ai −v)(ai −v)T

β 01
i = (ai −v)(v−bi)

T

β 11
i = (v−bi)(v−bi)

T .

The integrals then have the closed-form solution

∫ 1
0 wi(t)(1− t)2dt = |ai−bi|

2∆2
i

(

β 01
i

β 00
i

−
β 11

i θi

∆i

)

∫ 1
0 wi(t)t(1− t)dt =

|ai−bi|
2∆2

i

(

1−
β 01

i θi

∆i

)

∫ 1
0 wi(t)t

2dt = |ai−bi|
2∆2

i

(

β 01
i

β 11
i

−
β 00

i θi

∆i

)

.

When v is on the line segment defined by ai and bi, these integrals
do not need to be evaluated because the function f (v) interpolates
the line segments. However, if v is on the extension of one of these
line segments, ∆i = 0 and these integrals reduce to

∫ 1
0 wi(t)(1− t)2dt = |ai−bi|

5

3((v−bi)(bi−ai)T )((ai−v)(bi−ai)T )3

∫ 1
0 wi(t)t(1− t)dt = −|ai−bi|

5

6((v−bi)(bi−ai)T )2((ai−v)(bi−ai)T )2

∫ 1
0 wi(t)t

2dt = |ai−bi|
5

3((v−bi)(bi−ai)T )3((ai−v)(bi−ai)T )
.


