A Simple Class of Non-Linear Subdivision Schemes

Scott Schaefer
Etienne Vouga
Ron Goldman
Subdivision

- Set of rules S that recursively act on a shape p^0
 \[p^{k+1} = S(p^k) \]
- Converges to a smooth shape
Subdivision

- Set of rules S that recursively act on a shape p^0

\[p^\infty = S^\infty(p^0) \]

- Converges to a smooth shape
Linear Subdivision

- Locally can be written as matrix multiplication
 \[p^{k+1} = M p^k \]
- Usually reproduce polynomials
- Easy to analyze
 - Sufficient conditions of continuity based on eigen-structure of \(M \) [Reif 95]
- Includes Catmull-Clark, Loop, Butterfly, etc…
Non-linear Subdivision

- Greater expression
 - Reproduce non-polynomial functions
 - circles [Sabin et al. 2005]
 - $p(x)e^{l(x)}$ [Micchelli 1996]
 - Preserve convexity [Floater et al. 1998]
 - Subdivision curves on manifolds
- Hard to analyze smoothness
Contributions

- Provide a simple class of non-linear subdivision schemes
 - Easy to analyze smoothness
 - Modification of linear subdivision schemes
 - Can reproduce interesting functions: trigonometrics, gaussians
- Applications to intersection calculations
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: C^{n-1} ($n = \# \text{ of averaging steps}$)
 - Piecewise polynomial
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: $C^{n-1} \ (n = \# \ of \ averaging \ steps)$
 - Piecewise polynomial
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: C^{n-1} ($n = \# \text{ of averaging steps}$)
 - Piecewise polynomial
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: C^{n-1} ($n =$ # of averaging steps)
 - Piecewise polynomial
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: C^{n-1} ($n = \# \text{ of averaging steps}$)
 - Piecewise polynomial
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: C^{n-1} ($n = \# \text{ of averaging steps}$)
 - Piecewise polynomial
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: C^{n-1} ($n = \# \text{ of averaging steps}$)
 - Piecewise polynomial

![Diagram of a piecewise polynomial curve]
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: C^{n-1} ($n =$ # of averaging steps)
 - Piecewise polynomial
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: C^{n-1} ($n = \# \text{ of averaging steps}$)
 - Piecewise polynomial

![Diagram of linear subdivision example]
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: C^{n-1} ($n = \# \text{ of averaging steps}$)
 - Piecewise polynomial
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: C^{n-1} ($n =$ # of averaging steps)
 - Piecewise polynomial
Linear Subdivision Example

- Uniform B-splines [Lane, Reisenfeld 1980]
 - Doubling followed by mid-point averaging
 - Smoothness: C^{n-1} ($n = \# \text{ of averaging steps}$)
 - Piecewise polynomial
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean
 \[\frac{a + b}{2} \rightarrow \sqrt{ab} \]

- Is the curve smooth?

- What functions does this method reproduce?
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean
 \[\frac{a+b}{2} \rightarrow \sqrt{ab} \]

- Is the curve smooth?

- What functions does this method reproduce?
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean
 \[\frac{a + b}{2} \rightarrow \sqrt{ab} \]

- Is the curve smooth?

- What functions does this method reproduce?
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean
 \[\frac{a+b}{2} \rightarrow \sqrt{ab} \]

- Is the curve smooth?

- What functions does this method reproduce?
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean
 \(\frac{a + b}{2} \rightarrow \sqrt{ab} \)

- Is the curve smooth?

- What functions does this method reproduce?
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean
 \[\frac{a+b}{2} \rightarrow \sqrt{ab} \]

- Is the curve smooth?

- What functions does this method reproduce?
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean

\[\frac{a + b}{2} \rightarrow \sqrt{ab} \]

- Is the curve smooth?

- What functions does this method reproduce?
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean
 \[\frac{a + b}{2} \rightarrow \sqrt{ab} \]

- Is the curve smooth?

- What functions does this method reproduce?
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean
 \[\frac{a+b}{2} \rightarrow \sqrt{ab} \]

- Is the curve smooth?

- What functions does this method reproduce?
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean
 \[\frac{a+b}{2} \rightarrow \sqrt{ab} \]

- Is the curve smooth?

- What functions does this method reproduce?
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean
 \[
 \frac{a + b}{2} \rightarrow \sqrt{ab}
 \]
- Is the curve smooth?
- What functions does this method reproduce?
Simple Non-Linear Subdivision

- Replace mid-point with geometric mean
 \[\frac{a+b}{2} \rightarrow \sqrt{ab} \]

- Is the curve smooth?

- What functions does this method reproduce?
Functional Equations

- Find parametric midpoint of a function F

 $$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

- Example: $L(x) = m \cdot x + b$

 $$L\left(\frac{x_0 + x_1}{2}\right) = \frac{L(x_0) + L(x_1)}{2}$$
Functional Equations

- Find parametric midpoint of a function F

 \[F \left(\frac{x_0 + x_1}{2} \right) = G(F(x_0), F(x_1)) \]

- Example: $L(x) = mx + b$

 \[L \left(\frac{x_0 + x_1}{2} \right) = \frac{L(x_0) + L(x_1)}{2} \]
Functional Equations

- Find parametric midpoint of a function F

$$F\left(\frac{x_0 + x_1}{2} \right) = G(F(x_0), F(x_1))$$

- Example: $L(x) = m \cdot x + b$

$$L\left(\frac{x_0 + x_1}{2} \right) = \frac{L(x_0) + L(x_1)}{2}$$
Functional Equations

- Find parametric midpoint of a function F

\[F \left(\frac{x_0 + x_1}{2} \right) = G(F(x_0), F(x_1)) \]

- Example: $L(x) = m x + b$

\[L \left(\frac{x_0 + x_1}{2} \right) = \frac{L(x_0) + L(x_1)}{2} \]
Functional Equations

- Find parametric midpoint of a function F

$$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

- Example: $L(x) = m \cdot x + b$

$$L\left(\frac{x_0 + x_1}{2}\right) = \frac{L(x_0) + L(x_1)}{2}$$
Functional Equations

- Find parametric midpoint of a function F

\[F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1)) \]

- Example: $L(x) = m \cdot x + b$

\[L\left(\frac{x_0 + x_1}{2}\right) = \frac{L(x_0) + L(x_1)}{2} \]
Functional Equations

- Find parametric midpoint of a function F

$$F \left(\frac{x_0 + x_1}{2} \right) = G(F(x_0), F(x_1))$$

- Example: $F(x) = e^{mx} + b$

$$F \left(\frac{x_0 + x_1}{2} \right) = \sqrt{F(x_0)F(x_1)}$$
Functional Equations

- Find parametric midpoint of a function F

$$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

- Example: $F(x) = e^{mx} + b$

$$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{F(x_0)F(x_1)}$$
Functional Equations

- Find parametric midpoint of a function F

$$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

- Example: $F(x) = e^{mx} + b$

$$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{F(x_0)F(x_1)}$$
Functional Equations

- Find parametric midpoint of a function F

\[F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1)) \]

- Example: $F(x) = e^{mx} + b$

\[F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{F(x_0)F(x_1)} \]
Functional Equations

- Find parametric midpoint of a function F

$$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

- Example: $F(x) = e^{mx} + b$

$$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{F(x_0)F(x_1)}$$
Functional Equations

Find parametric midpoint of a function F

$$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

Example: $F(x) = e^{mx} + b$

$$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{F(x_0)F(x_1)}$$
Functional Equations

■ **Find parametric midpoint of a function** F

\[F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1)) \]

■ **Example:** $F(x) = \cos(mx + b)$

\[F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1 + F(x_0))(1 + F(x_1))} - \sqrt{(1 - F(x_0))(1 - F(x_1))}}{2} \]
Functional Equations

- **Find parametric midpoint of a function** F

 $$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

- **Example:** $F(x) = \cos(m \cdot x + b)$

 $$F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1 + F(x_0))(1 + F(x_1))} - \sqrt{(1 - F(x_0))(1 - F(x_1))}}{2}$$
Functional Equations

- Find parametric midpoint of a function F

\[F\left(\frac{x_0 + x_1}{2} \right) = G(F(x_0), F(x_1)) \]

- Example: $F(x) = \cos(m \ x + b)$

\[F\left(\frac{x_0 + x_1}{2} \right) = \frac{\sqrt{(1 + F(x_0))(1 + F(x_1))} - \sqrt{(1 - F(x_0))(1 - F(x_1))}}{2} \]
Functional Equations

- **Find parametric midpoint of a function** F

 \[F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1)) \]

- **Example:** $F(x) = \cos(m \cdot x + b)$

 \[F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{(1 + F(x_0))(1 + F(x_1))} - \sqrt{(1 - F(x_0))(1 - F(x_1))} \]
Functional Equations

- **Find parametric midpoint of a function** F

$$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

- **Example:** $F(x) = \cos(mx + b)$

$$F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1 + F(x_0))(1 + F(x_1))} - \sqrt{(1 - F(x_0))(1 - F(x_1))}}{2}$$

[Graph of a decreasing function with points plotted on it]
Functional Equations

- **Find parametric midpoint of a function** \(F \)

\[
F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))
\]

- **Example:** \(F(x) = \cos(mx+b) \)

\[
F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1+F(x_0))(1+F(x_1))} - \sqrt{(1-F(x_0))(1-F(x_1))}}{2}
\]
Functional Equations

- Find parametric midpoint of a function F

$$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

- Example: $F(x) = \cos(mx + b)$

$$F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1+F(x_0))(1+F(x_1))} - \sqrt{(1-F(x_0))(1-F(x_1))}}{2}$$
Functional Equations

- **Find parametric midpoint of a function** F

 $F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$

- **Example:** $F(x) = \cos(m \cdot x + b)$

 $F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1+F(x_0))(1+F(x_1))} - \sqrt{(1-F(x_0))(1-F(x_1))}}{2}$
Functional Equations

- Find parametric midpoint of a function F

$$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

- Example: $F(x) = \cos(mx+b)$

$$F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1+F(x_0))(1+F(x_1))} - \sqrt{(1-F(x_0))(1-F(x_1))}}{2}$$
Functional Equations

Find parametric midpoint of a function F

$$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

Example: $F(x) = \cos(m x + b)$

$$F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1 + F(x_0))(1 + F(x_1))} - \sqrt{(1 - F(x_0))(1 - F(x_1))}}{2}$$
Functional Equations

- Find parametric midpoint of a function F

$$F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))$$

- Example: $F(x) = \cos(m \times + b)$

$$F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1 + F(x_0))(1 + F(x_1))} - \sqrt{(1 - F(x_0))(1 - F(x_1))}}{2}$$
Functional Equations

- **Find parametric midpoint of a function** F

 \[
 F\left(\frac{x_0 + x_1}{2}\right) = G(F(x_0), F(x_1))
 \]

- **Example:** $F(x) = \cos(mx + b)$

 \[
 F\left(\frac{x_0 + x_1}{2}\right) = \frac{\sqrt{(1+F(x_0))(1+F(x_1))} - \sqrt{(1-F(x_0))(1-F(x_1))}}{2}
 \]
Other Averaging Rules

<table>
<thead>
<tr>
<th>Function</th>
<th>Averaging Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(x) = \sqrt{x}$</td>
<td>$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{\frac{F(x_0)^2 + F(x_1)^2}{2}}$</td>
</tr>
<tr>
<td>$F(x) = x^2$</td>
<td>$F\left(\frac{x_0 + x_1}{2}\right) = \frac{(F(x_0) + F(x_1))/2 + \sqrt{F(x_0)F(x_1)}}{2}$</td>
</tr>
<tr>
<td>$F(x) = \frac{1}{x}$</td>
<td>$F\left(\frac{x_0 + x_1}{2}\right) = \frac{F(x_0)F(x_1)}{(F(x_0)+F(x_1))/2}$</td>
</tr>
<tr>
<td>$F(x) = \frac{1}{x^2}$</td>
<td>$F\left(\frac{x_0 + x_1}{2}\right) = \frac{F(x_0)F(x_1)}{\sqrt{(F(x_0)^2 + F(x_1)^2)/2}}$</td>
</tr>
<tr>
<td>$F(x) = \cosh(x)$</td>
<td>$F\left(\frac{x_0 + x_1}{2}\right) = \sqrt{\frac{(F(x_0)+1)(F(x_1)+1)+\sqrt{(F(x_0)-1)(F(x_1)-1)}}{2}}$</td>
</tr>
</tbody>
</table>
Non-linear Maps

- **Given**
 - F: 1-1 function on $\Omega \subseteq \mathbb{R}^n$
 - S: subdivision scheme
 - $\hat{S} = F \circ S \circ F^{-1}$

- **Then**
 - $\hat{S}^\infty = F \circ S^\infty \circ F^{-1}$
 - $S^\infty(p^0) = p^\infty \implies \hat{S}^\infty(F(p^0)) = F(p^\infty)$
Non-linear Maps

- **Given**
 - \(F: 1-1 \) function on \(\Omega \subseteq R^n \)
 - \(S = S_d \circ \ldots \circ S_2 \circ S_1 \): subdivision scheme
 - \(\hat{S} = F \circ S \circ F^{-1} \)

- **Then**
 - \(\hat{S} = (F \circ S_d \circ F^{-1}) \circ \ldots \circ (F \circ S_2 \circ F^{-1}) \circ (F \circ S_1 \circ F^{-1}) \)
Non-linear Maps Example

\[
\hat{S} = (F \circ S_d \circ F^{-1}) \circ \ldots \circ (F \circ S_2 \circ F^{-1}) \circ (F \circ S_1 \circ F^{-1})
\]

Lane-Reisenfeld

\[
S_1(p)_j = p \lfloor j/2 \rfloor
\]

\[
S_{i \neq 1}(p)_j = \frac{p_j + p_{j+1}}{2}
\]

\[
\hat{S}_1(p)_j = F(F^{-1}(p \lfloor j/2 \rfloor))
\]

\[
\hat{S}_{i \neq 1}(p)_j = F\left(\frac{F^{-1}(p_j) + F^{-1}(p_{j+1})}{2}\right)
\]
Non-linear Maps Example

\[\hat{S} = (F \circ S_d \circ F^{-1}) \circ \ldots \circ (F \circ S_2 \circ F^{-1}) \circ (F \circ S_1 \circ F^{-1}) \]

Lane-Reisenfeld

\[
S_1(p)_j = p\left\lfloor \frac{j}{2} \right\rfloor \\
S_{i \neq 1}(p)_j = \frac{p_j + p_{j+1}}{2}
\]

\[
F(x) = e^x \\
\hat{S}_1(p)_j = p\left\lfloor \frac{j}{2} \right\rfloor \\
\hat{S}_{i \neq 1}(p)_j = \sqrt{p_j p_{j+1}}
\]
Smoothness and Interpolation

- Given
 - F: 1-1 function on $\Omega \subseteq R^n$
 - S: subdivision scheme
 - $\hat{S} = F \circ S \circ F^{-1}$

- Then
 - $S^\infty(p^0): C^k$ & $F:C^n \Rightarrow \hat{S}^\infty(\hat{p}^0): C^{\min(k,n)}$
 - S: interpolatory $\Rightarrow \hat{S}$: interpolatory
Example

Four-Point [Dyn et al. 1987]

Mobius Transform
Example

Four-Point [Dyn et al. 1987]

Mobius Transform
Geometric Properties

- Properties: convex-hull, variation diminishing

Linear

\[F(z) = e^z \]
Geometric Interpretation

- Modify geodesics so that the properties hold

\[D(\hat{P}, \hat{Q}) = \text{Dist}_{\text{Euclidean}}(F^{-1}(\hat{P}), F^{-1}(\hat{Q})) \]
Geometric Interpretation

- A set C is convex w.r.t. the geodesics G if the geodesic connecting any two points in C lies completely within C
Geometric Interpretation

- A set C is convex w.r.t. the geodesics G if the geodesic connecting any two points in C lies completely within C
Geometric Interpretation

- A set C is convex w.r.t. the geodesics G if the geodesic connecting any two points in C lies completely within C
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect

2) If each curve is approximately a straight line, intersect those lines; else subdivide
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.

2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.

2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.

2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.

2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect

2) If each curve is approximately a straight line, intersect those lines; else subdivide
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.

2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.
2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect

2) If each curve is approximately a straight line, intersect those lines; else subdivide
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.

2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.

2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.
2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.

2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect

2) If each curve is approximately a straight line, intersect those lines; else subdivide
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect

2) If each curve is approximately a straight line, intersect those lines; else subdivide
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.

2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect

2) If each curve is approximately a straight line, intersect those lines; else subdivide
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect.

2) If each curve is approximately a straight line, intersect those lines; else subdivide.
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect

2) If each curve is approximately a straight line, intersect those lines; else subdivide
Intersection

1) If convex hulls of the control points do not intersect, then the curves do not intersect

2) If each curve is approximately a straight line, intersect those lines; else subdivide
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If \(F'(t) \) is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute.
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation.
Computing Convex Hulls

- Non-linear hulls may be curved and difficult to compute
- If $F'(t)$ is monotonic, we can compute a simple piecewise linear approximation
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Schaefer et al. 2005 showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
[Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Attractors

- [Schaefer et al. 2005] showed that curves generated by subdivision are attractors.
Future Work

- Other types of averaging rules (non-analytic)
 - lofting curve networks
- Extensions to surfaces
 - Extraordinary points
- Slowing varying non-linear maps