Intersecting Simple Surfaces

Dr. Scott Schaefer
Types of Surfaces

- Infinite Planes
- Polygons
 - Convex
 - Ray Shooting
 - Winding Number
- Spheres
- Cylinders
Infinite Planes

- Defined by a **unit** normal n and a point o

 $$n \cdot (x - o) = 0$$
Infinite Planes

- Defined by a **unit** normal n and a point o

 $n \cdot (x - o) = 0$

 $L(t) = p + v t$
Infinite Planes

- Defined by a unit normal n and a point o

$$n \cdot (x - o) = 0$$

$$L(t) = p + vt$$

$$n \cdot (p + vt - o) = 0$$
Infinite Planes

- Defined by a **unit** normal n and a point o

\[n \cdot (x - o) = 0 \]

\[L(t) = p + vt \]

\[n \cdot vt = n \cdot (o - p) \]
Infinite Planes

- Defined by a unit normal \(n \) and a point \(o \)

\[
n \cdot (x - o) = 0
\]

\[
L(t) = p + vt
\]

\[
t = \frac{n \cdot (o - p)}{n \cdot v}
\]
Infinite Planes

- Defined by a **unit** normal n and a point o

\[n \cdot (x - o) = 0 \]

\[L(t) = p + vt \]

\[p + v \frac{n \cdot (o - p)}{n \cdot v} \]
Polygons

- Intersect infinite plane containing polygon
- Determine if point is inside polygon
Polygons

- Intersect infinite plane containing polygon
- Determine if point is inside polygon

- How do we know if a point is inside a polygon?
Point Inside Convex Polygon
Point Inside Convex Polygon

- Check if point on same side of all edges
Point Inside Convex Polygon

- Check if point on same side of all edges
Point Inside Convex Polygon

- Check if point on same side of all edges
Point Inside Convex Polygon

- Check if point on same side of all edges
Point Inside Convex Polygon

- Check if point on same side of all edges
Point Inside Convex Polygon

- Check if point on same side of all edges
Point Inside Convex Polygon

- Check if point on same side of all edges
Point Inside Convex Polygon

- Check if point on same side of all edges
Point Inside Convex Polygon

- Check if point on same side of all edges
Point Inside Convex Polygon

- Check if point on same side of all edges
Point Inside Convex Polygon

\[
\begin{vmatrix}
N^T \\
(P_i - X)^T \\
(P_{i+1} - X)^T
\end{vmatrix}
\text{ must be same sign}
\]
Point Inside Polygon Test

- Given a point, determine if it lies inside a polygon or not
Ray Test

- Fire ray from point
- Count intersections
 - Odd = inside polygon
 - Even = outside polygon
Problems With Rays

- Fire ray from point
- Count intersections
 - Odd = inside polygon
 - Even = outside polygon
- Problems
 - Ray through vertex
Problems With Rays

- Fire ray from point
- Count intersections
 - Odd = inside polygon
 - Even = outside polygon
- Problems
 - Ray through vertex
Problems With Rays

- Fire ray from point
- Count intersections
 - Odd = inside polygon
 - Even = outside polygon
- Problems
 - Ray through vertex
 - Ray parallel to edge
A Better Way

- One winding = inside
A Better Way

- zero winding = outside
Requirements

- Oriented edges
- Edges can be processed in any order
Computing Winding Number

- Given unit normal n
- $\theta = 0$
- For each edge (p_1, p_2)

$$\theta^+ = \frac{n \cdot ((p_1 - x) \times (p_2 - x))}{|(p_1 - x) \times (p_2 - x)|} \cos^{-1}\left(\frac{(p_1 - x) \cdot (p_2 - x)}{|p_1 - x||p_2 - x|}\right)$$

- If $|\theta| > \pi$, then inside
Advantages

- Extends to 3D!
- Numerically stable
- Even works on models with holes (sort of)
- No ray casting
Intersecting Spheres

- Three possible cases
 - Zero intersections: miss the sphere
 - One intersection: hit tangent to sphere
 - Two intersections: hit sphere on front and back side

- How do we distinguish these cases?
Intersecting Spheres

\[F(x) = (x - c) \cdot (x - c) - r^2 = 0 \]
Intersecting Spheres

\[F(x) = (x - c) \cdot (x - c) - r^2 = 0 \]

\[F(L(t)) = (p + vt - c) \cdot (p + vt - c) - r^2 = 0 \]
Intersecting Spheres

\[F(x) = (x - c) \cdot (x - c) - r^2 = 0 \]

\[F(L(t)) = (p + vt - c) \cdot (p + vt - c) - r^2 = 0 \]

\[F(L(t)) = (v \cdot v)t^2 + 2v \cdot (p - c)t + (p - c) \cdot (p - c) - r^2 = 0 \]
Intersecting Spheres

- $F(L(t)) = 0$ is quadratic in t

$$F(L(t)) = (v \cdot v)t^2 + 2v \cdot (p - c)t + (p - c) \cdot (p - c) - r^2 = 0$$
Intersecting Spheres

- $F(L(t)) = 0$ is quadratic in t

\[F(L(t)) = (v \cdot v)t^2 + 2v \cdot (p - c)t + (p - c) \cdot (p - c) - r^2 = 0 \]

- Solve for t using quadratic equation

\[t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

- If $b^2 - 4ac < 0$, no intersection

- If $b^2 - 4ac = 0$, one intersection

- Otherwise, two intersections
Normals of Spheres

\[F(x) = (x - c) \cdot (x - c) - r^2 = 0 \]

\[\nabla F(x) = x - c \]
Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r
Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r
Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r

1. Perform an orthogonal projection to the plane defined by C, A on the line $L(t)$ and intersect with circle in 2D
Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r

2. Substitute t parameters from 2D intersection to 3D line equation
Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r

3. Normal of 2D circle is the same normal of cylinder at point of intersection
Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r
Infinite Cylinders

- Defined by a center point C, a unit axis direction A and a radius r

\[
N = \frac{P - C - ((P - C) \cdot A)A}{r}
\]