Subspace Gradient Domain Mesh Deformation

Scott Schaefer
Contributions

- Framework for constrained deformation
 - Skeletal constraints
 - Volume preservation
 - Projection-based manipulation
 - Detail preservation function
 - Fast non-linear, sub-space solver
Skeletal Constraints
Constructing Bones

- User drags a line in screen space
- For each pixel
 - Find first two intersections with surface
- Fit a least squares line to all midpoints
Region of Influence

- Construct supporting planes (normal perpendicular to \(ab \)) at end-points
- Flood from intersection triangles outward until all connected
Mathematical Constraint

- For each sample point along ab
 - Compute MV coordinates with respect to vertices in region of influence
 - Close mesh by fanning to centroid on ends
Volume Preservation

with constraint

no constraint
Calculating Area

\[\frac{1}{2} \begin{vmatrix} x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} \]
Calculating Area

\[
\begin{vmatrix}
1 & x_0 & y_0 & 1 \\
\frac{1}{2} & x_1 & y_1 & 1 \\
\frac{1}{2} & x_2 & y_2 & 1
\end{vmatrix}
\]
Calculating Area

\[
\frac{1}{2} \begin{vmatrix}
 x_0 & y_0 & 1 \\
 x_1 & y_1 & 1 \\
 0 & 0 & 1 \\
\end{vmatrix}
\]
Calculating Area

\[
\text{area} = \sum_i \frac{1}{2} \begin{vmatrix} x_i & y_i \\ x_{i+1} & y_{i+1} \end{vmatrix}
\]
Calculating Volume

\[\text{volume} = \sum_{i} \frac{1}{6} \begin{vmatrix} x_{i,1} & y_{i,1} & z_{i,1} \\ x_{i,2} & y_{i,2} & z_{i,2} \\ x_{i,3} & y_{i,3} & z_{i,3} \end{vmatrix}\]
Projection-Based Manipulation
Non-linear Laplacian coordinates

\[-\kappa n \propto \sum_{i} \frac{1}{2} (\cot(\theta_{r,i}) + \cot(\theta_{l,i})) (p_i - p_0)\]
Detail Preservation

- **Non-linear Laplacian coordinates**

\[-\alpha \bar{k} n = \sum_{i} \frac{1}{2}(\cot(\theta_{r,i}) + \cot(\theta_{l,i}))(p_i - p_0)\]
Detail Preservation

- Non-linear Laplacian coordinates

\[
p_0 = \frac{\sum_i \frac{1}{2} (\cot(\theta_{r,i}) + \cot(\theta_{l,i})) p_i + \alpha \bar{k} n}{\sum_i \frac{1}{2} (\cot(\theta_{r,i}) + \cot(\theta_{l,i}))}
\]
Detail Preservation

- **Non-linear Laplacian coordinates**

\[
p_0 = \frac{\sum_i (\cot(\theta_{r,i}) + \cot(\theta_{l,i})) p_i}{\sum_i (\cot(\theta_{r,i}) + \cot(\theta_{l,i}))} + \nu
\]
Detail Preservation

- Non-linear Laplacian coordinates

\[p_0 = \frac{\sum_i (\cot(\theta_{r,i}) + \cot(\theta_{l,i})) p_i}{\sum_i (\cot(\theta_{r,i}) + \cot(\theta_{l,i}))} + v \]
Detail Preservation

- **Non-linear Laplacian coordinates**

\[
p_0 = \frac{\sum_i (\cot(\theta_{r,i}) + \cot(\theta_{l,i})) p_i}{\sum_i (\cot(\theta_{r,i}) + \cot(\theta_{l,i}))} + v
\]
Detail Preservation

- Non-linear Laplacian coordinates

\[p_0 = \frac{\sum_i (\cot(\theta_{r,i}) + \cot(\theta_{l,i})) p_i}{\sum_i (\cot(\theta_{r,i}) + \cot(\theta_{l,i}))} + v \]
Detail Preservation

- Non-linear Laplacian coordinates

\[\sum_{i} \alpha_{i} (p_{i} - p_{0}) \times (p_{i+1} - p_{0}) = v \]

Find \(\alpha_{i} \) through pseudoinverse
Non-linear Laplacian coordinates

\[
\hat{p}_0 = \sum_i \beta_i \hat{p}_i + \frac{\sum \alpha_i (\hat{p}_i - \hat{p}_0) \times (\hat{p}_{i+1} - \hat{p}_0)}{\sum \alpha_i (\hat{p}_i - \hat{p}_0) \times (\hat{p}_{i+1} - \hat{p}_0)} |\mathbf{v}|
\]
Non-linear Minimization
Subspace Solver

- Construct a low-res approximation of mesh
- Express constraints in terms of MV coordinates
Subspace Solver
Subspace Solver

- Constraints are on the high-res mesh... NOT the low-res mesh
- A variant of a multi-grid solver
- Speeds up convergence and helps stability
Subspace Solver

- Constraints are on the high-res mesh... NOT the low-res mesh
- A variant of a multi-grid solver
- Speeds up convergence and helps stability

<table>
<thead>
<tr>
<th>model</th>
<th># vertices (original mesh)</th>
<th># vertices (coarse mesh)</th>
<th>full space</th>
<th>subspace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armadillo</td>
<td>30,002</td>
<td>220</td>
<td>2.8</td>
<td>9.1</td>
</tr>
<tr>
<td>Horse</td>
<td>14,285</td>
<td>427</td>
<td>6.9</td>
<td>8.2</td>
</tr>
<tr>
<td>Tweety</td>
<td>10,240</td>
<td>286</td>
<td>12</td>
<td>23.8</td>
</tr>
<tr>
<td>Dinosaur</td>
<td>10,002</td>
<td>159</td>
<td>9.5</td>
<td>34.5</td>
</tr>
<tr>
<td>DNA</td>
<td>19,184</td>
<td>194</td>
<td>NA*</td>
<td>16.7</td>
</tr>
<tr>
<td>Santa</td>
<td>25,777</td>
<td>448</td>
<td>NA*</td>
<td>5.3</td>
</tr>
</tbody>
</table>
Resolving low-res mesh affects quality of deformation.
Results
Conclusions

- Most useful deformation constraints involve non-linear functions
- MV coordinates accelerate solving
- Don’t be afraid of non-linear optimization!!!