CSCE 222 Homework 5 (Due Apr. 10)

1. How many combinations are there to pick r objects from $2 n$ objects numbered from 1 to $2 n$ when repetitions are allowed and it is not true that both odd-numbered objects occur odd number of times and even-numbered objects occur even number of times?
2. How many permutations can be formed from $2 n$ types of objects with n_{1} objects of each odd-numbered type and n_{2} objects of each even-numbered type and each permutation starts from an object of an odd-numbered type?
3. Find an explicit formula for the recurrence relation $a_{n}=c a_{n-1}+(c+1) a_{n-2}$ where $c \neq-2$ with initial conditions $a_{0}=2$ and $a_{1}=c$.
4. Solve the recurrence relation $f(n)=a^{3} f\left(n / a^{2}\right)+a(n+1)^{2}$ with $f(1)=1$ and $a>1$ by finding an expression for $f(n)$ in big-Oh notation.
5. Find the generating function to determine the number of ways to pick k objects from $2 n$ objects when repetitions are allowed and the i th object appears at least $\lceil i / 2\rceil$ times for $1 \leq i \leq 2 n$.
