

An Efficient Algorithm for Finding the K Longest Testable Paths
Through Each Gate in a Combinational Circuit

Wangqi Qiu D. M. H. Walker
Department of Computer Science

Texas A&M University
College Station TX 77843-3112

Tel: (979) 862-4387
Fax: (979) 847-8578

Email: {wangqiq, walker}@cs.tamu.edu

Abstract
Testing the K longest paths through each gate (KLPG)

in a circuit detects the smallest local delay faults under
process variation. In this work a novel automatic test
pattern generation (ATPG) methodology to find the K
longest testable paths through each gate in a
combinational circuit is presented. Many techniques are
used to significantly reduce the search space. The results
on the ISCAS benchmark circuits show that this
methodology is very efficient and able to handle circuits
with an exponential number of paths, such as c6288.

1. Introduction
Delay testing detects small manufacturing defects

which do not cause functional failure but affect the speed
of integrated circuits. The path delay fault model [1] is the
most conservative of any of the classical models for delay
faults because a circuit is considered faulty if the delay of
any of its paths exceeds the specification time. The main
problem with this model is the large number of paths in
real circuits. To overcome this problem, some test methods
only cover a subset of paths, e.g. the global longest paths
in a circuit [2][3], or the longest path through each gate
[4][5][6][7][8]. A delay fault caused by a local defect, such
as a resistive open or short, can only be detected by testing
a path through it, and testing the longest path through it
can detect the smallest local delay fault. The quality of a
test set is defined as how close the minimum actually
detected delay fault sizes are to the minimum possibly
detectable fault sizes [9], according to the gate delay fault
model [10].

The problem of finding the longest path through each
gate or line in a circuit has been extensively studied
[4][5][6][7][8]. However, some delay defects are
distributed on a path, such as variation in transistor
channel length across a chip. The faults caused by this kind
of defects are termed global delay faults [11]. Timing and
power optimization tends to compress the distribution of
path delays in a circuit, so many paths are close to the
maximum delay [12]. Moreover, because process variation
occurs everywhere in an integrated circuit, even for a

single gate, it is hard to determine which path is the actual
longest path passing through it. Therefore, testing only one
path through each gate cannot guarantee the detection of
the smallest local delay faults. Testing the K longest paths
through a fault site increases the fault detection probability
under process variation, because it increases the
probability that the actual longest path is tested. A path is
said to be testable if a rising/falling transition can
propagate from the primary input to the primary output
associated with the path, under certain sensitization criteria
[1][2][13][14][15]. If a path is not testable, it is called an
untestable or false path [16]. For example, in Figure 1,
path a-c-d is a false path under the single-path sensitization
criterion [13], because to propagate a transition through the
AND gate requires line b to be logic 1 and to propagate the
transition through the OR gate requires line b to be logic 0.
In this paper the terms “untestable” and “false” are used
interchangeably.

a c
b d

Figure 1. A circuit with a false path a-c-d.

Earlier research [4][5][6][7] on generating the longest
path through each gate is either inefficient or fails to
guarantee the testability of the generated paths. The
inefficiency comes from the fact that most prior work lists
many long structural paths first, then checks their
testability. If there are subcircuits with a large number of
paths passing through them, all the long paths listed are
similar and it is possible that none of them is testable.

Many ATPGs for the global longest path generation
were studied to see if they could be extended to solve the
problem of finding the K longest testable paths through
each gate (KLPG). A fast ATPG tool NEST [17] generates
paths in a nonenumerative way, which can handle a large
number paths simultaneously, but it is only effective in
highly testable circuits, where large numbers of path delay
faults are testable. DYNAMITE [18] is very efficient in
poorly testable circuits, but in highly testable circuits many
faults are treated separately, which results in huge memory

consumption and so is not practical for large circuits.
RESIST [19] exploits the fact that many paths in a circuit
have common subpaths and sensitizes those subpaths only
once, which reduces repeated work and identifies large sets
of untestable paths. Moreover, for the first time this
research identified 99.4% of all the path delay faults as
either testable or untestable in circuit c6288, which is
known for having an exponential number of paths.
However, the test generation for c6288 is still slow.
RESIST took 1,122 CPU hours to find 12,592 paths on a
SPARC IPX 28 MIPS machine. Recent research [8]
presented an efficient method to extend the RESIST
algorithm to the problem of finding a set of longest
testable paths that cover every gate. This method takes
advantage of the relations between the longest paths
through different gates, and guarantees their testability.
However, partly because this work assumes a unit delay
model, there is no obvious way to extend it to handle the
problem of finding the K longest testable paths through
each gate, and this method fails when applied to c6288,
indicating that the advantages in the RESIST algorithm
may not be easily applied to generating paths through a
certain gate.

A timing analysis tool [3] presents another method to
efficiently identify the global longest testable paths in a
combinational circuit. Instead of generating many long
structural paths and checking their testability, this tool
grows paths from the primary inputs. In each iteration a
new gate is added and the constraints are applied to that
gate. Then instead of assigning logic values on one or
more primary inputs to satisfy the constraints on the newly
added gate, as done in VIPER [15], direct implications,
which are more efficient, are applied to find local conflicts.
If conflicts exist, the whole search space which contains
the already-grown series of gates is trimmed off. This
technique is called implicit false path elimination [13][20].
Some other false path elimination techniques, such as
forward trimming and dynamic dominators, are also
applied in this tool to identify false paths earlier. This tool
is efficient and able to handle c6288.

In this paper, we present an algorithm which extends
this method to generate the KLPG test set for a
combinational circuit. It inherits the framework of [3] but
aims at particular gates one by one. This algorithm also
takes advantage of the relations between the long paths
through different gates, which are revealed in previous
research [8] and extended in this work, to reduce the
search space and avoid repeated work. Analysis shows that
these relations are very easy to apply in this framework
and their usefulness is observed in the experiments. In this
work we also determined that initially applying the global
longest path generation could cover some gates very
quickly. When the efficiency of more global paths
declines, the path generation aiming at individual gates is
performed. Experimental results show that this 2-phase
path generation saves 5-10% in execution time.

The remainder of the paper is organized as follows:
Section 2 describes our method to generate the K longest
testable paths through a particular gate. Section 3 describes
some false path elimination methods which can be applied
in the path generation to reduce the search space and avoid
repeated work. In Section 4 experimental results are shown
and analyzed. We performed experiments on the ISCAS85
and the full scan versions of the largest ISCAS89
benchmark circuits under the robust [1][2] and non-robust
[1] sensitization criteria. Instead of using the unit delay
model, we extracted buffer-to-buffer nominal delays from
circuit layouts [21], which makes the experiments more
realistic. Section 5 concludes with directions for future
research.

2. Path Generation
2.1. Preprocessing

Before the path generation, some topology information
is collected to help guide the path generation process and
trim the search space. First, the min-max delay from each
gate to any primary output is computed without
considering any logic constraint (PERT delay). A gate’s
min-max PERT delay can be simply computed using its
fanout gates’ min-max PERT delays and the rising/falling
buffer-to-buffer delays between gates.

In addition to the PERT delays, the earliest and latest
possible rising/falling transition times on the input and
output lines for each gate are computed, assuming that a
transition at any primary input can only occur at time zero.
This procedure is similar to the PERT delay computation,
with complexity linear in the circuit size. This information
is useful under some sensitization criteria [14][15] because
transitions can occur only within the earliest/latest range.
When propagating a transition which transits to a
controlling value through a gate, if a side input cannot
have a transition before the on-path transition happens, the
final value on that side input can be either a controlling or
non-controlling value (the initial value must still be non-
controlling), without blocking the on-path transition.
Without this information the search procedure may
unnecessarily require the final value on the side input to be
non-controlling.
2.2. Path Store

To find the K longest testable paths through gate gi, a
path store is established for the path generation. In the path
store, many partial paths, which may become the K
longest testable paths through gate gi, are stored. A partial
path is a path which originates from a primary input but
has not reached a primary output. Figure 2 shows an
example. The partial path starts from primary input g0, and
ends at gate gi. At the beginning, the path store contains
2nPI partial paths, where nPI is the number of primary
inputs. There are 2 partial paths from each primary input,
representing a rising or falling transition at that primary
input. Each partial path has only one node (a primary

input) initially. A partial path grows when one more gate is
added to it. When a partial path reaches a primary output,
it becomes a complete path.

A value called esperance [13] is associated with a
partial path. The min-max esperance is the sum of the
length of the partial path and the min-max PERT delay
from its last node to a primary output. In other words, the
max esperance of a partial path is the upper bound of its
delay when it grows to a complete path, and the min
esperance is the lower bound if the complete path is
testable. In Figure 2, suppose the length of the partial path
g0…gi is 5, and the PERT delays between gi and primary
outputs gr, gs, gt are 10, 8, 6, respectively. The min-max
esperance of partial path g0…gi is 11/15.

g0
gi

gj

gk

gr
gs

gt
5 5

7

9

1
1

Figure 2. A partial path and its esperance.

The partial paths are sorted by max esperance. Every
time the path generator selects the partial path with the
largest max esperance. Potentially this partial path will
grow to a complete path with maximum delay.
2.3. Path Generation

Pass justification?

K paths found?

Delete the (partial) path

End

Y

Start Preprocessing

Initialize the path store with
primary inputs

Pop the partial path with the
largest max esperance

Extend the partial path with
one more gate

Apply constraints and perform
direct implications

Conflict? Complete path?

Apply false path
elimination techniques

Update the min-max
esperance

Insert in the (sorted)
path store

N
N

Y

Y
N

N

Y

Figure 3. Path generation algorithm.

Figure 3 is the algorithm of finding the K longest
testable paths through gate gi. Before the path generation
for gate gi, all gates which are not in gi’s fanin or fanout
cone are identified because when a partial path grows, it is
impossible for any of these gates to be added (otherwise
the partial path has no chance to pass through gi). But these
gates are still useful because they are related to constraints,

such as side input constraints of a gate on the path which is
being searched. Figure 4 shows the search space.

gi

Search space

Constraints from
outside search space

Figure 4. The search space for a path through gate gi.
Each iteration of the path generation begins by popping

the first partial path from the path store, which has the
largest max esperance. The partial path is extended by
adding a fanout gate which contributes to the largest max
esperance. For example, in Figure 5, the partial path g0…gi
is extended by adding gate gj because extending to gj could
potentially keep the max esperance. If the partial path has
more than one extendable fanout, it must be saved in
another copy and in the copy the already tried fanout must
be marked “blocked” or “tried”. Then the copy gets its
esperance updated and is pushed into the path store. For
example (Figure 5), since gate gi has 2 fanouts, and
extending the partial path to gj may result in false paths
later, the partial path g0…gi must be saved because
extending it to gate gk may get a longer testable path. And
because fanout gj has been tried, in the copy the min-max
esperance becomes 11/11.

g0
gi

gj

gk

gr

gs

gt

5 5

7

9

1
1

g0
gi

gj gr

gs

5

7

9

1

g0
gi

gk gt

5 5 1

(a) Before extension

+
(b) After extension

Figure 5. Extending a partial path.
After the partial path is extended (g0…gigj in Figure 5)

the constraints to propagate the transition on the added
gate (gj) are applied. Under the non-robust sensitization
criterion [1], non-controlling final values on the side inputs
are required. Under the robust sensitization criterion [1][2],
in addition to non-controlling final values, the side inputs
must remain non-controlling if the on-path input has a
transition to the controlling value. Then direct implications
are used to propagate the constraints throughout the circuit.
A direct implication on a gate is one where an input or

output of that gate can be directly determined from the
other values assigned to that gate. Figure 6 shows some
examples of direct implications on an AND gate. The
values in boxes are implied from the existing values,
which are not in boxes. Figure 6(a) is an example of
forward implication, and (b)(c) are examples of backward
implications. If a conflict happens during direct
implications, the partial path is false. In other words, any
path including this partial path is a false path. For example
(Figure 5), if extending partial path g0…gi to gate gj results
in a conflict (Figure 7 shows an example), both path g0…gr
and g0…gs are determined to be false. Therefore, the
partial path is deleted from the path store so that the whole
search space which contains this partial path is trimmed
off. Previous research [13] showed that most false paths
can be eliminated by direct implications, and this is also
observed in our experiments.

X
0

0
1
1

1
1
0

0

(a) (b) (c)
Figure 6. Examples of direct implications.

gi

gj

gk

0

1

Conflict

Figure 7. Conflict after applying direct implications.

If the extended partial path reaches a primary output, it
becomes a complete path. In this case, a final justification
process (a FAN [22] style decision tree based justification
algorithm) is performed on the path. One reason to do final
justification is to find a vector pair which sensitizes this
path. The other reason is that some false paths do not have
any conflict in the direct implications during the growth
procedure. Figure 8 shows an example [13]. Suppose both
AND gates need their side inputs to be logic 1, and direct
implications stop at the two OR gates because neither input
must be logic 0 or 1, assuming the algorithm does not
know the two inputs are tied together. This path does not
fail the direct implications but it is a false path. Since most
false paths cannot pass the direct implications, it is not
often that a complete path fails the final justification.

1
1 ? ?

? ?

Figure 8. A path which passes direct implications but
fails final justification.

If the extended partial path is not a complete path,
some false path elimination techniques, which will be

discussed in detail in the next section, are applied to it, to
more efficiently prevent the new partial path from
becoming a false path. Then the min-max esperance of the
partial path is updated and it is inserted into the path store.
Since its max esperance may decrease and min esperance
may increase after extension, it may not be inserted at the
top of the path store. If this happens, in the next iteration
another partial path will be selected for extension. For
example (Figure 5), after extending partial path g0…gi to
gate gj, the min-max esperance changes from 11/15 to
13/15. If path gj…gr is blocked, which means path g0… gr
is a false path, after applying the false path elimination
techniques, the min-max esperance is 13/13.

Because each partial path consumes memory, and the
path store cannot have an infinite size, when the number of
partial paths exceeds the path store size limit, some partial
paths with low max esperance are removed from the path
store. The maximum esperance of the removed partial
paths is recorded. In the future any partial path with max
esperance below that value must be removed from the path
store because it may not truly be one of the K longest
testable paths. Therefore it may happen that K paths have
not been found when the path store is empty. However,
since a partial path is represented as a sequence of gates,
usually it consumes less than 1 KB memory. Thus the path
store can have a large number of partial paths so that in
most cases the algorithm does not abort unless none of the
structural paths through the gate is testable.

The path generation iteration does not stop until the K
longest testable paths through gate gi are found or the path
store is empty. Since the K longest testable paths through
different gates may overlap, every time a new path is
generated, it must be checked to see if it has already been
generated during the path generation for another gate.

3. Refined Implicit False Path Elimination
3.1. Forward Trimming

When a partial path grows, in some cases after the
constraints are applied and the direct implications are
performed, the possibility to continue extending the partial
path to the primary outputs may be reduced. In the extreme
case there is no way to continue extending the partial path
(completely blocked).

gi

1
gj

0
1

Logic
Block

Figure 9. Application of forward trimming.

Figure 9 shows an example where the path through the
logic block cannot propagate to the output [3]. In this
example the partial path has grown to the NAND gate gi,
and the side input must be a logic 1 if the single-path
sensitization constraints [13] are considered. This value

propagates forward through the inverter and becomes a
controlling value on one of the inputs of the NAND gate
gj. This condition prevents propagation from gi to gj
through any paths within the logic block. With forward
trimming the entire logic block is trimmed off and the
search process is guided toward an unblocked path (the
upper inverter) earlier. Without forward trimming the
search process might be much less efficient. Since the
paths through the logic block are not blocked until the final
gate gj, the search process may attempt to traverse through
the logic block until it reaches gj and learn that the path is
blocked. This may be done for each possible path through
the logic block.

During the circuit preprocessing the PERT delays are
computed assuming no path is blocked. With the growth of
a partial path, more and more information is known
because more constraints are applied. Forward trimming
recomputes the min-max PERT delay from the end of the
partial path, based on the structure and the current value
assignments. In this case blocked extension choices are not
considered in the computation and false paths can be
eliminated earlier so that the search can be guided more
accurately toward a testable path. If the search space is
partially trimmed off, the partial path still has a chance to
become a testable complete path, but its esperance may be
reduced according to its PERT delay reduction. In the next
iteration of path generation, a more promising partial path
may be selected.
3.2. Smart-PERT Delay

If the PERT delays are used, a local conflict in the
unexplored search space is not detected until the partial
path grows to that site, because the PERT delays are
computed without considering any logic constraint.

We have developed a heuristic to exclude untestable
subpaths due to local conflicts when computing the PERT
delay for a gate. We call the new values Smart-PERT
delays, or S-PERT. For simplicity only maximum PERT
and S-PERT delays are discussed. Because some
untestable subpaths are not included in the S-PERT
computation, a gate’s S-PERT delay is always less than or
equal to its PERT delay. Moreover, compared to the PERT
delay, the S-PERT delay is closer to the delay of the
longest testable path from that gate to a primary output.

A gate’s PERT delay can be computed using its fanout
gates’ PERT delays. If the unit delay model is used,
PERT(gi) = max {PERT(gj) | gj is a fanout gate of gi} + 1.
Figure 10(a) shows an example, assuming PERT(g3) = 8
and PERT(g4) = 6 are known. In this example, PERT(g0) =
10 is computed using PERT(g1) and PERT(g2).

When S-PERT(gi) is computed, a user-defined variable
S-PERT depth is used. If the S-PERT depth is set to d, then
S-PERT(gi) is computed using S-PERT(gj) where gj is d
gates from gi in gi’s fanout tree. For example, in Figure
10(b), if d is set to 2, then S-PERT(g0) is computed using
S-PERT(g3) and S-PERT(g4).

The heuristic works as follows. Suppose S-PERT(gi) is
being computed. G = {gj | gj is d gates from gi in gi’s
fanout tree}, and G is sorted by S-PERT(gj) in decreasing
order. The heuristic pops the first gate gj in G and attempts
to propagate a transition from gi to gj. If there is no conflict
(the transition successfully reaches gj, with all the
constraints applied), S-PERT(gi) is set to S-PERT(gj) + d.
Otherwise, it pops the second gate in G and repeats the
same procedure. In Figure 10(b), for example, at first the
heuristic tries to propagate a transition from g0 to g3, but
finds it is impossible to set the side inputs of g1 and g3 both
to non-controlling values. Then it tries g4 and does not
meet any conflict. So S-PERT(g0) is 8. It is obvious that
increasing the S-PERT depth can make the S-PERT delays
closer to the delay of the longest testable path from that
gate to a primary output, but its cost increases
exponentially. Therefore, there must be some trade-off.

g0

g1

g2

g3

g4

8

6

9

7

10

(a)

g0

g1

g2

g3

g4

8

6

9

7

8

(b)
Figure 10. Computation of PERT delay (a)

and S-PERT delay (b).
Since most conflicts are local, with S-PERT delays, the

path generation is well guided to a testable path, with
many fewer conflicts, because most of the non-solution
space is trimmed off during the preprocessing phase.

The usefulness of this technique is highly dependent on
the structure of the circuit. The most benefit would be
derived from a path with d gates, each of which has fanout
f and each fanout reconverges at a later gate (Figure 11).
This results in f d possible paths which must be traversed.
The worst case is that all of them are false paths but
conflicts do not occur until the partial path grows very
long. With the use of S-PERT delays, the path generation
extends to a shorter structural path P2 (Figure 11) because
it has larger esperance, and the traversal of all the false
paths with equal length from g1 to g4 is avoided. As our
experimental results show, this technique helps exclude
many false paths in circuit c6288.

conflict

Path extension direction

g4g3 g2g1

P1 P2

Figure 11. A circuit with exponential number of false

paths.

3.3. Relations between Gates
There are tight relations between long testable paths

through different gates because a long testable path
through a gate is possibly a long testable path through
another gate. Some rules in previous research [8] are
extended in this work and they are very easy to apply to
the path generation algorithm.

Each gate in the circuit has two arrays: Lub[1…K] and
Llb[1…K], which indicate the upper and lower bound of
the lengths of the K longest testable paths through this
gate. The two arrays are sorted. Initially the values in
Lub[1…K] are all set to the length of the longest structural
path through the gate, and the values in Llb[1…K] are all 0.

When the K longest testable paths are found for gate gi,
Lub[1…K] and Llb[1…K] for gi are updated and both of
them are set to the actual lengths of the K longest testable
paths. Suppose a newly found path for gate gi also contains
gate gj, which means this path passes through both gi and
gj. If the length of this path is greater than that of a
previously found path for gj, Llb[1…K] for gj is updated by
inserting a link to the newly found path and deleting the
link to the shortest path found. This process may increase
the values in Llb[1…K] for all the gates contained in the
newly found path. Figure 12 shows an example. Assuming
K=3, at some point Llb[1…3] for gate gj is {22,18,15},
which means the lengths of the 3 longest paths through gj
found by the path generator are at least 22, 18 and 15.
Suppose the length of a newly found path for gate gi is 20.
Then Llb[1…3] for gate gj is updated to {22,20,18}.

gi
gj

gj : Llb[1…3] = {22,18,15}→{22,20,18}

A newly found path (for gi, with length 20)

Primary
input

Primary
output

Figure 12. Updating Llb[1…K].

On the other hand, the values in Lub[1…K] for some
gates decrease when a new path is found. Suppose gate gi
has f fanin gates, and ∪faninLub[1…K] indicates the union of
the Lub[1…K] arrays of its fanin gates and it is sorted in
decreasing order. The upper bound of the lengths of the K
longest testable paths through gate gi cannot exceed the
first K values in ∪faninLub[1…K], because all the paths
through gi must also pass through one of its fanin gates.
Figure 13 shows an example. Assuming K=3, and gate gi
has two fanin gates, with Lub[1…3]={17,16,11} and
{20,18,12}. Then the values in Lub[1…3] for gi must be no
more than {20,18,17}. The same analysis can be
performed using the fanout gates or absolute dominators
[3] of gate gi.

As more paths are found, the values in Lub[1…K] and
Llb[1…K] for gate gi, for which the path generation has not
been performed, get closer. If they are close enough, say
the difference is less than 1%, it can be assumed that the K
longest testable paths for gate gi have been found so that

the path generation for it can be skipped. Many gates can
be skipped if a unit delay model is used [8].

If gate gi cannot avoid path generation, during its path
generation process, if the max esperance of the partial path
being processed is less than its Llb[v] (1<v≤K) value, then
the first v paths already found for gi are proved to be the v
longest paths through gi, because the partial paths in the
path store have no chance to grow to a complete path with
larger length. So Lub[u] (u=1,…,v) are updated accordingly
(set to Llb[u]). On the other hand, when the vth longest path
through gate gi is being searched, and the min esperance of
a partial path is greater than Lub[v], the partial path can be
deleted immediately because when it becomes a complete
path, this path is either a false path or already found.

gi

Lub[1…3] = {20,18,12}

Lub[1…3] = {17,16,11}

Lub[1…3] ≤ {20,18,17}

Figure 13. Updating Lub[1…K].

The Lub[1] values of other gates can also be taken
advantage of during the path generation process for gate gi.
Suppose a partial path grows to gate gj. If the max
esperance of the partial path is greater than the Lub[1] value
for gj, it must be reduced to Lub[1] for gj, because it is
impossible for this partial path to grow to a complete path
with length greater than Lub[1] for gj, otherwise this path
would also be a testable path through gj, which invalidates
Lub[1] for gj. When the partial path continues to grow, its
min esperance may increase, and if it becomes larger than
its max esperance, the partial path is deleted because it
must eventually grow to a false path.
3.4. Global Longest Path Generation

 The global longest paths are the longest paths
throughout the circuit, regardless of which gates they pass
through. The global longest path generation algorithm is a
slight modification to the path generation algorithm for a
particular gate (Figure 3). If no gate is eliminated from
being added to a partial path (gates which are not in gate
gi’s fanin and fanout cones are eliminated for the path
generation for gi), the complete paths generated from the
path generation are the global longest paths.

The advantage of finding the global longest paths is: If
there are p global longest paths covering gate gi, these
paths must be the p longest paths through gi. Therefore, at
the beginning, the global longest path generation can cover
many gates. For comparison, if no global longest path
generation were performed, gate gi would also get some
potential longest path through it during the path generation

process for other gates, but in most cases they would not
be “verified” until the path generation for gi is performed.

However, as the global longest path generation finds
more paths, the possibility that more gates get covered
falls. The worst case is that almost all the global long paths
only pass through a very small subset of the gates.
Therefore, at the beginning the global longest path
generation is useful but after a certain number of paths it is
necessary to apply the path generation aiming at individual
gates.

In this work a 2-phase strategy is used: Run the global
longest path generation until no more gates benefit. Then
run the path generation for individual gates which are not
fully covered during the global path generation.

The benefits from the global longest path generation
are not only that it drops some gates from the individual
path generation, it also speeds up the individual path
generation for the gates which are not dropped. Suppose
the length of the last generated global longest path is L.
During the individual path generation all the partial paths
with min esperance greater than L can be removed because
all the testable paths whose length is greater than L have
already been generated. This technique is especially useful
when a circuit contains many long false paths.

4. Experimental Results
A path generation tool has been implemented in Visual

C++ and run on Windows 2000 with a 2.2 GHz Pentium 4
processor and 256 MB memory. Buffer-to-buffer nominal
delays are extracted from circuit layouts [21] and used in
the experiments.

In our experiments, K=1 means the path generation
tries to find the longest path (one path) with either rising or
falling transition on the target gate output. It does not
cover both slow-to-rise and slow-to-fall transition faults
for the target gate output. Recent research [23] shows that
most delay faults are due to resistive opens that affect both
transitions. Therefore a resistive open fault can be detected
by testing either transition.

Table 1 shows the results for generating the five
longest paths through each gate (K=5) for the ISCAS85
and the full scan versions of the largest ISCAS89
benchmark circuits, under the robust and non-robust
sensitization criteria. Under each criterion, the number of
testable paths generated (not including the paths which fail
final justification) and the execution time are listed. The
size of the path store was set to 3 000. Experiments
showed that for most circuits, the K longest testable paths
for more than 90% of the gates can be found using a path
store with this size even when K=50. In the experiments a
gate is aborted if the path store is empty or the number of
iterations exceeds 50 000 (in each iteration a gate is added
to a partial path). In the experiments the number of
backtracks in the final justification process is set to 100,
because it is observed in our experiments that more than
90% of the generated paths can be justified within this

number of backtracks and a higher backtrack limit
provides little benefit. The number of gates in each circuit
is given in the second column in Table 1. Clearly the upper
bound of the total number of generated paths is K times the
number of gates in the circuit. It can be seen that the actual
number is much smaller than the upper bound, indicating
that many gates share the same paths. For all the circuits
except c6288, the five longest testable paths through each
gate were found or it was proved that the number of
testable paths through a gate is less than K, e.g. there is no
transition fault test for the gate, or the number of structural
paths through the gate is less than K/2. For circuit c6288,
our algorithm aborts on 20 gates (out of 2 416 gates) which
have transition tests [24]. There will be more discussion on
c6288 at the end of this section.

Table 1. Path generation results for generating the five
longest paths (K=5) through each gate.

Robust Non-Robust
Circuit # Gates # Testable

Paths
CPU Time

(m:s)
Testable

Paths
CPU Time

(m:s)
c432 160 235 0:01 252 0:01
c499 202 423 0:01 430 0:01
c880 383 737 0:02 737 0:02
c1355 546 828 0:04 835 0:06
c1908 880 1 287 0:25 1 269 0:33
c2670 1 269 2 124 0:13 2 251 0:19
c3540 1 669 2 764 0:58 2 796 0:56
c5315 2 307 3 921 0:26 4 101 0:23
c6288 2 416 3 679 38:10 3 458 32:29
c7552 3 513 5 462 0:59 5 815 1:16
s9234 5 597 5 002 1:17 5 283 1:31
s13207 7 951 7 643 1:52 7 711 2:10
s15850 9 772 8 957 2:39 9 377 2:31
s38417 22 179 25 175 6:43 29 446 8:09
s38584 19 253 28 435 10:49 31 095 11:23

Table 2 shows the execution time if some of the
implicit false path elimination techniques are not used,
assuming K=5 and the robust sensitization criterion is
used. The results assuming the forward trimming (FT) or
smart-PERT (SP) technique is not used are listed in
columns 2 and 3. Column 4 lists the execution time if
neither the relations between gates nor the global longest
path generation (R&G) is used. Column 5, using all the
techniques, is copied from Table 1 for comparison. It can
be seen that the forward trimming technique significantly
reduces the execution time; the smart-PERT technique is
not very useful for most circuits, and using it sometimes
results in slightly longer execution time, but it significantly
helps c2670 and c6288. The reason is because in most
cases, the local conflicts do not cause an exponential
number of false paths and these local conflicts can be
efficiently removed by forward trimming. Moreover, for
most circuits the cost of using the smart-PERT technique is
greater than the benefits, while for circuits with many
reconvergences and long untestable paths, such as c2670

and c6288, applying this technique results in huge benefits.
Without it, c6288 cannot even finish the path generation in
a reasonable time (12 hours).

If neither the relations between gates technique nor the
global longest path generation (R&G) is used, the path
generation slows down significantly for some circuits. But
if only one of the techniques is not used, only a 5-10%
slowdown is observed. This phenomenon indicates that the
benefits from the two techniques greatly overlap for most
circuits. If we look at c2670 and c6288, it can be found
that most global long structural paths are untestable. If the
global longest path generation is applied, these untestable
paths are recognized and during the path generation for a
particular gate, none of these paths need to be recognized
again. Similarly, if the relations between gates are applied,
these long untestable paths are also recognized only once.
For a short untestable path p, the effects are limited
because this path may be a long path through gate gi,
assuming all the paths through gi are short paths, but it is
not likely to be a long path through another gate gj. Thus,
during the path generation for gj, it is very possible that the
K longest testable paths through it have already been found
before considering path p. Therefore, the more untestable
global long paths, the more benefits from applying the two
techniques.

Table 2. Execution time comparison, assuming some of
the implicit false path elimination techniques are not
used (K=5, robust).

CPU Time (m:s) Circuit No FT No SP No R&G Table 1
c432 0:01 0:01 0:02 0:01
c499 0:02 0:01 0:01 0:01
c880 0:04 0:02 0:03 0:02
c1355 0:08 0:04 0:08 0:04
c1908 2:25 0:23 0:36 0:25
c2670 0:21 1:07 0:43 0:13
c3540 3:49 0:57 1:45 0:58
c5315 0:37 0:26 0:46 0:26
c6288 58:13 × 62:38 38:10
c7552 1:21 0:55 1:42 0:59
s9234 1:48 1:11 5:04 1:17
s13207 2:24 2:49 4:13 1:52
s15850 3:12 2:33 6:25 2:39
s38417 8:20 6:35 15:26 6:43
s38584 14:31 10:42 20:09 10:49

“×” means the path generation did not finish within 12 hours.

Another interesting phenomenon is that the forward
trimming technique is more efficient for the ISCAS85
circuits while the relations between gates technique and
the global longest path generation (R&G) are more
efficient for the ISCAS89 circuits. The reason is because
in most ISCAS89 circuits more than half of the gates are
inverters and buffers. Since these gates have only one
input, no path gets blocked if a logic value is assigned to
their inputs. Thus the efficiency of the forward trimming

technique decreases. However, the efficiency of the R&G
increases because the inverters and buffers have only one
fanin gate. If the K longest testable paths have been found
for the only fanin gate and all these paths go through the
inverter or buffer, which is very likely, then the path
generation for this inverter or buffer can be skipped.

From the analysis it can be concluded that the forward
trimming and smart-PERT techniques reduce the search
space and guide the path generation more accurately to
generate a testable path, while the relations between gates
and the global longest path generation mainly help avoid
repeated work.

Table 3 shows the execution time when K is increased.
It can be seen that the execution time is approximately
linear in K, and the execution time increases much more
slowly than K. For c7552, for example, there are 1 196
paths generated when K=1 and 19 888 paths when K=20.
The number of generated paths when K=20 is more than
16 times that of K=1, but the execution time increases less
than 87%. The reason is that when the first longest path
through a gate is generated, in the path store there are
many partial paths almost reaching a primary output.
Therefore the cost of generating more paths is small. Large
K values, such as 500, have been tried and it is observed
that the execution time is still linear in K. However, in
practice K would not be that large because the test set
would be too large.

Table 3. Execution time for different K values (robust).
CPU Time (m:s) Circuit K=1 K=5 K=10 K=20

c432 0:01 0:01 0:01 0:02
c499 0:01 0:01 0:01 0:01
c880 0:02 0:02 0:03 0:03
c1355 0:04 0:04 0:05 0:06
c1908 0:22 0:25 0:26 0:28
c2670 0:12 0:13 0:14 0:16
c3540 0:46 0:58 1:06 1:28
c5315 0:22 0:26 0:29 0:36
c6288 30:53 38:10 40:33 45:04
c7552 0:45 0:59 1:06 1:24
s9234 1:07 1:17 1:29 1:45
s13207 1:30 1:52 2:21 3:19
s15850 2:06 2:39 3:17 4:15
s38417 5:30 6:43 7:48 9:47
s38584 7:09 10:49 13:16 16:44

The ISCAS85 circuit c6288 is a special case because it
contains an exponential number of false paths. Figure 14
[25] shows the structure of circuit c6288, which is a 16×16
bit multiplier. The circuit contains 240 adders, among
which 16 are half adders, which are shaded. P31...P0 are the
32-bit outputs. Each floating line, including P0, is fed by
an AND gate, whose inputs are connected to two primary
inputs. Figure 15 [25] shows the structure of a full adder in
c6288 and Figure 16 [25] shows the block diagram. The 15
top-row half adders in Figure 14 lack the Cin input. Each of

them has two inverters at locations V in Figure 15. The
single half adder in the bottom row lacks the B input, and it
has two inverters at locations W.

P30

A11 B0

P0

P2

P1

P15
P16

P14

P31
Figure 14. ISCAS85 circuit c6288 16×16 multiplier.
The longest structural paths through a particular gate or

adder in c6288, e.g. the black one in Figure 14, are
highlighted. All these paths have equal length and include
the longest structural paths within the adders. However,
the longest structural paths from the input A or Cin to the
output Cout in the adders are not robustly testable [26]. This
is the main feature which causes most false paths in this
circuit. In our experiments the S-PERT depth is set to 6
and this type of local conflict is identified in the
preprocessing phase. However, this value is set manually
after looking into the circuit structure of c6288. We are
developing a heuristic which is able to automatically and
dynamically set the S-PERT depth.

V

V

W

W

A
Cin

B

Cout

S
L

Figure 15. Full adder module in c6288 (schematic).

Full
Adder

A Cin

Cout

B

S

Full
Adder

A Cin

Cout B

S
Figure 16. Full adder module in c6288 (symbolic).

5. Conclusions and Future Work
We have proposed a novel algorithm which generates

the K longest testable paths through each gate (KLPG test
set) in a combinational circuit. This was achieved by
growing partial paths from the primary inputs, and during
the procedure, implicit false path elimination techniques
are used to trim the search space and guide the search more
accurately toward a testable path. Based on the fact that
many gates share long paths, the relations between gates
and the global longest path generation are efficiently used
to reduce repeated work. Experimental results show that
the path generation is very efficient, and to our knowledge,
this tool is faster than any existing tools solving similar
problems, and it is the first tool that efficiently generates
the longest testable path through each gate in c6288.

A process variation model is being developed for the
path generation. So far we assume that there is no
correlation between path delays. This model results in
large K values for some gates if all the possible longest
paths must be identified (the maximum K value can be
500+ if ±10% delay variation is assumed). Our preliminary
results show that after path pruning using process
correlation, the average number of possible longest paths
per gate is 2-3 and almost all of these are in the top 10
nominal paths, so path generation time can be greatly
reduced by incrementally generating and pruning paths.

Recent research also focuses on the path delay
variation caused by capacitive coupling [27][28][29]. The
delay of a path may be larger than its nominal delay due to
capacitive coupling. Sometimes the delay increase cannot
be ignored, and with technology scaling, the effect is
becoming more significant. Considering that only a small
fraction of lines have necessary assignments, in the
justification process for a path, when a justification goal
can be achieved by different means, the choice which
causes larger path delay due to capacitive coupling is
selected. It has also been observed that the vector pairs
generated by our tool contain many “don’t care” bits.
Therefore the vectors can be compacted or proper
transitions can be assigned on these free bits to increase
the path delay.

Acknowledgements
This research was funded by the Semiconductor

Research Corporation under contract 2000-TJ-844 and the
National Science Foundation under contract CCR-
1109413.

References

[1] G. L. Smith, “Model for Delay Faults Based Upon Paths,”

IEEE Int’l Test Conf., Philadelphia, PA, Oct. 1985, pp. 342-
349.

[2] C. J. Lin and S. M. Reddy, “On Delay Fault Testing in
Logic Circuits,” IEEE Trans. on Computer-Aided Design,
vol. 6, no. 9, Sept. 1987, pp. 694-701.

[3] J. A. Bell, “Timing Analysis of Logic-Level Digital Circuits
Using Uncertainty Intervals,” M. S. Thesis, Department of
Computer Science, Texas A&M University, 1996.

[4] W. N. Li, S. M. Reddy and S. K. Sahni, “On Path Selection
in Combinational Logic Circuits,” IEEE Trans. on
Computer-Aided Design, vol. 8, no. 1, Jan. 1989, pp. 56-63.

[5] A. K. Majhi, V. D. Agrawal, J. Jacob and L. M. Patnaik,
“Line Coverage of Path Delay Faults,” IEEE Trans. on VLSI
Systems, vol. 8, no. 5, Oct. 2000, pp. 610-613.

[6] A. Murakami, S. Kajihara, T. Sasao, R. Pomeranz and S. M.
Reddy, “Selection of Potentially Testable Path Delay Faults
for Test Generation,” IEEE Int’l Test Conf., Atlantic City,
NJ, Oct. 2000, pp. 376-384.

[7] Y. Shao, S. M. Reddy, I. Pomeranz and S. Kajihara, “On
Selecting Testable Paths in Scan Designs,” IEEE European
Test Workshop, Corfu, Greece, May 2002, pp. 53-58.

[8] M. Sharma and J. H. Patel, “Finding a Small Set of Longest
Testable Paths that Cover Every Gate,” IEEE Int’l Test
Conf., Baltimore, MD, Oct. 2002, pp. 974-982.

[9] V. Iyengar, B. K. Rosen and I. Spillinger, “Delay Test
Generation 1 – Concepts and Coverage Metrics,” IEEE Int’l
Test Conf., Washington, DC, Sept. 1988, pp. 857-866.

[10] J. L. Carter, V. S. Iyengar and B. K. Rosen, “Efficient Test
Coverage Determination for Delay Faults,” IEEE Int’l Test
Conf., Washington, DC, Sept. 1987, pp. 418-427.

[11] G. M. Luong and D. M. H. Walker, “Test Generation for
Global Delay Faults,” IEEE Int’l Test Conf., Washington,
DC, Oct. 1996, pp. 433-442.

[12] T. W. Williams, B. Underwood and M. R. Mercer, “The
Interdependence Between Delay-Optimization of
Synthesized Networks and Testing,” ACM/IEEE Design
Automation Conf., San Francisco, CA, June 1991, pp. 87-92.

[13] J. Benkoski, E. V. Meersch, L. J. M. Claesen and H. D.
Man, “Timing Verification Using Statically Sensitizable
Paths,” IEEE Trans. on Computer-Aided Design, vol. 9, no.
10, Oct. 1990, pp. 1073-1084.

[14] P. McGeer and R. K. Brayton, “Efficient Algorithms for
Computing the Longest Viable Path in a Combinational
Network,” ACM/IEEE Design Automation Conf., Las Vegas,
NV, June 1989, pp. 561-567.

[15] H. Chang and J. A. Abraham, “VIPER: An Efficient
Vigorously Sensitizable Path Extractor,” ACM/IEEE Design
Automation Conf., Dallas, TX, June 1993, pp. 112-117.

[16] J. J. Liou. A. Krstic, Li-C. Wang and K. T. Cheng, “False-
Path-Aware Statistical Timing Analysis and Efficient Path
Selection for Delay Testing and Timing Validation,”
ACM/IEEE Design Automation Conf., New Orleans, LA,
June 2002, pp. 566-569.

[17] I. Pomeranz, S. M. Reddy and P. Uppaluri, “NEST: A

Nonenumerative Test Generation Method for Path Delay
Faults in Combinational Circuits,” IEEE Trans. on
Computer-Aided Design, vol. 14, no. 12, Dec. 1995, pp.
1505-1515.

[18] K. Fuchs, F. Fink and M. H. Schulz, “DYNAMITE: An
Efficient Automatic Test Pattern Generation System for Path
Delay Faults,” IEEE Trans. on Computer-Aided Design, vol.
10, no. 10, Oct. 1991, pp. 1323-1355.

[19] K. Fuchs, M. Pabst and T. Rossel, “RESIST: A Recursive
Test Pattern Generation Algorithm for Path Delay Faults
Considering Various Test Classes,” IEEE Trans. on
Computer-Aided Design, vol. 13, no. 12, Dec. 1994, pp.
1550-1562.

[20] R. Stewart and J. Benkoski, “Static Timing Analysis Using
Interval Constraints,” IEEE Int’l Conf. on Computer-Aided
Design, Santa Clara, CA, June 1991, pp. 308-311.

[21] Z. Li, X. Lu, W. Qiu, W. Shi and D. M. H. Walker, “A
Circuit Level Fault Model for Resistive Opens and Bridges,”
IEEE VLSI Test Symp., Napa Valley, CA, April-May 2003,
pp. 379-384.

[22] H. Fujiwara and T. Shimono, “On the Acceleration of Test
Generation Algorithms,” IEEE Trans. on Computers, vol.
32, no. 12, Dec. 1983, pp. 215-222.

[23] B. R. Benware, R. Madge, C. Lu and R. Daasch,
“Effectiveness Comparisons of Outlier Screening Methods
for Frequency Dependent Defects on Complex ASICs,”
IEEE VLSI Test Symp., Napa Valley, CA, April-May 2003,
pp. 39-46.

[24] X. Liu, M. S. Hsiao, S. Chakravarty and P. J. Thadikaran,
“Novel ATPG Algorithms for Transition Faults,” IEEE
European Test Workshop, Corfu, Greece, May 2002, pp. 47-
52.

[25] M. Hansen, H. Yalcin and J. P. Hayes, “Unveiling the
ISCAS-85 Benchmarks: A Case Study in Reverse
Engineering,” IEEE Design & Test of Computers, vol. 16,
no. 3, July-Sept. 1999, pp. 72-80.

[26] W. Qiu and D. M. H. Walker, “Testing the Path Delay
Faults for ISCAS85 Circuit c6288,” IEEE Int’l Workshop on
Microprocessor Test and Verification, Austin, TX, May
2003, pp. 38-43.

[27] W. Y. Chen, S. K. Gupta and M. A. Breuer, “Test
Generation for Crosstalk-Induced Delay in Integrated
Circuits,” IEEE Int’l Test Conf., Atlantic City, NJ, Sept.
1999, pp. 191-200.

[28] B. Choi and D. M. H. Walker, “Timing Analysis of
Combinational Circuits Including Capacitive Coupling and
Statistical Process Variation,” IEEE VLSI Test Symp.,
Montreal, Canada, April 2000, pp. 49-54.

[29] A. Krstic, J. J. Liou, Y. M. Jiang and K. T. Cheng, “Delay
Testing Considering Crosstalk-Induced Effects,” IEEE Int'l
Test Conf., Baltimore, MD, Oct. 2001, pp. 558-567.

