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Abstract 
Testing the K longest paths through each gate (KLPG) 

in a circuit detects the smallest local delay faults under 
process variation. In this work a novel automatic test 
pattern generation (ATPG) methodology to find the K 
longest testable paths through each gate in a 
combinational circuit is presented. Many techniques are 
used to significantly reduce the search space. The results 
on the ISCAS benchmark circuits show that this 
methodology is very efficient and able to handle circuits 
with an exponential number of paths, such as c6288. 

1. Introduction 
Delay testing detects small manufacturing defects 

which do not cause functional failure but affect the speed 
of integrated circuits. The path delay fault model [1] is the 
most conservative of any of the classical models for delay 
faults because a circuit is considered faulty if the delay of 
any of its paths exceeds the specification time. The main 
problem with this model is the large number of paths in 
real circuits. To overcome this problem, some test methods 
only cover a subset of paths, e.g. the global longest paths 
in a circuit [2][3], or the longest path through each gate 
[4][5][6][7][8]. A delay fault caused by a local defect, such 
as a resistive open or short, can only be detected by testing 
a path through it, and testing the longest path through it 
can detect the smallest local delay fault. The quality of a 
test set is defined as how close the minimum actually 
detected delay fault sizes are to the minimum possibly 
detectable fault sizes [9], according to the gate delay fault 
model [10]. 

The problem of finding the longest path through each 
gate or line in a circuit has been extensively studied 
[4][5][6][7][8]. However, some delay defects are 
distributed on a path, such as variation in transistor 
channel length across a chip. The faults caused by this kind 
of defects are termed global delay faults [11]. Timing and 
power optimization tends to compress the distribution of 
path delays in a circuit, so many paths are close to the 
maximum delay [12]. Moreover, because process variation 
occurs everywhere in an integrated circuit, even for a 

single gate, it is hard to determine which path is the actual 
longest path passing through it. Therefore, testing only one 
path through each gate cannot guarantee the detection of 
the smallest local delay faults. Testing the K longest paths 
through a fault site increases the fault detection probability 
under process variation, because it increases the 
probability that the actual longest path is tested. A path is 
said to be testable if a rising/falling transition can 
propagate from the primary input to the primary output 
associated with the path, under certain sensitization criteria 
[1][2][13][14][15]. If a path is not testable, it is called an 
untestable or false path [16]. For example, in Figure 1, 
path a-c-d is a false path under the single-path sensitization 
criterion [13], because to propagate a transition through the 
AND gate requires line b to be logic 1 and to propagate the 
transition through the OR gate requires line b to be logic 0. 
In this paper the terms “untestable” and “false” are used 
interchangeably. 
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Figure 1. A circuit with a false path a-c-d. 

Earlier research [4][5][6][7] on generating the longest 
path through each gate is either inefficient or fails to 
guarantee the testability of the generated paths. The 
inefficiency comes from the fact that most prior work lists 
many long structural paths first, then checks their 
testability. If there are subcircuits with a large number of 
paths passing through them, all the long paths listed are 
similar and it is possible that none of them is testable. 

Many ATPGs for the global longest path generation 
were studied to see if they could be extended to solve the 
problem of finding the K longest testable paths through 
each gate (KLPG). A fast ATPG tool NEST [17] generates 
paths in a nonenumerative way, which can handle a large 
number paths simultaneously, but it is only effective in 
highly testable circuits, where large numbers of path delay 
faults are testable. DYNAMITE [18] is very efficient in 
poorly testable circuits, but in highly testable circuits many 
faults are treated separately, which results in huge memory 



consumption and so is not practical for large circuits. 
RESIST [19] exploits the fact that many paths in a circuit 
have common subpaths and sensitizes those subpaths only 
once, which reduces repeated work and identifies large sets 
of untestable paths. Moreover, for the first time this 
research identified 99.4% of all the path delay faults as 
either testable or untestable in circuit c6288, which is 
known for having an exponential number of paths. 
However, the test generation for c6288 is still slow. 
RESIST took 1,122 CPU hours to find 12,592 paths on a 
SPARC IPX 28 MIPS machine. Recent research [8] 
presented an efficient method to extend the RESIST 
algorithm to the problem of finding a set of longest 
testable paths that cover every gate. This method takes 
advantage of the relations between the longest paths 
through different gates, and guarantees their testability. 
However, partly because this work assumes a unit delay 
model, there is no obvious way to extend it to handle the 
problem of finding the K longest testable paths through 
each gate, and this method fails when applied to c6288, 
indicating that the advantages in the RESIST algorithm 
may not be easily applied to generating paths through a 
certain gate. 

A timing analysis tool [3] presents another method to 
efficiently identify the global longest testable paths in a 
combinational circuit. Instead of generating many long 
structural paths and checking their testability, this tool 
grows paths from the primary inputs. In each iteration a 
new gate is added and the constraints are applied to that 
gate. Then instead of assigning logic values on one or 
more primary inputs to satisfy the constraints on the newly 
added gate, as done in VIPER [15], direct implications, 
which are more efficient, are applied to find local conflicts. 
If conflicts exist, the whole search space which contains 
the already-grown series of gates is trimmed off. This 
technique is called implicit false path elimination [13][20]. 
Some other false path elimination techniques, such as 
forward trimming and dynamic dominators, are also 
applied in this tool to identify false paths earlier. This tool 
is efficient and able to handle c6288. 

In this paper, we present an algorithm which extends 
this method to generate the KLPG test set for a 
combinational circuit. It inherits the framework of [3] but 
aims at particular gates one by one. This algorithm also 
takes advantage of the relations between the long paths 
through different gates, which are revealed in previous 
research [8] and extended in this work, to reduce the 
search space and avoid repeated work. Analysis shows that 
these relations are very easy to apply in this framework 
and their usefulness is observed in the experiments. In this 
work we also determined that initially applying the global 
longest path generation could cover some gates very 
quickly. When the efficiency of more global paths 
declines, the path generation aiming at individual gates is 
performed. Experimental results show that this 2-phase 
path generation saves 5-10% in execution time. 

The remainder of the paper is organized as follows: 
Section 2 describes our method to generate the K longest 
testable paths through a particular gate. Section 3 describes 
some false path elimination methods which can be applied 
in the path generation to reduce the search space and avoid 
repeated work. In Section 4 experimental results are shown 
and analyzed. We performed experiments on the ISCAS85 
and the full scan versions of the largest ISCAS89 
benchmark circuits under the robust [1][2] and non-robust 
[1] sensitization criteria. Instead of using the unit delay 
model, we extracted buffer-to-buffer nominal delays from 
circuit layouts [21], which makes the experiments more 
realistic. Section 5 concludes with directions for future 
research. 

2. Path Generation 
2.1. Preprocessing 

Before the path generation, some topology information 
is collected to help guide the path generation process and 
trim the search space. First, the min-max delay from each 
gate to any primary output is computed without 
considering any logic constraint (PERT delay). A gate’s 
min-max PERT delay can be simply computed using its 
fanout gates’ min-max PERT delays and the rising/falling 
buffer-to-buffer delays between gates. 

In addition to the PERT delays, the earliest and latest 
possible rising/falling transition times on the input and 
output lines for each gate are computed, assuming that a 
transition at any primary input can only occur at time zero. 
This procedure is similar to the PERT delay computation, 
with complexity linear in the circuit size. This information 
is useful under some sensitization criteria [14][15] because 
transitions can occur only within the earliest/latest range. 
When propagating a transition which transits to a 
controlling value through a gate, if a side input cannot 
have a transition before the on-path transition happens, the 
final value on that side input can be either a controlling or 
non-controlling value (the initial value must still be non-
controlling), without blocking the on-path transition. 
Without this information the search procedure may 
unnecessarily require the final value on the side input to be 
non-controlling. 
2.2. Path Store 

To find the K longest testable paths through gate gi, a 
path store is established for the path generation. In the path 
store, many partial paths, which may become the K 
longest testable paths through gate gi, are stored. A partial 
path is a path which originates from a primary input but 
has not reached a primary output. Figure 2 shows an 
example. The partial path starts from primary input g0, and 
ends at gate gi. At the beginning, the path store contains 
2nPI partial paths, where nPI is the number of primary 
inputs. There are 2 partial paths from each primary input, 
representing a rising or falling transition at that primary 
input. Each partial path has only one node (a primary 



input) initially. A partial path grows when one more gate is 
added to it. When a partial path reaches a primary output, 
it becomes a complete path. 

A value called esperance [13] is associated with a 
partial path. The min-max esperance is the sum of the 
length of the partial path and the min-max PERT delay 
from its last node to a primary output. In other words, the 
max esperance of a partial path is the upper bound of its 
delay when it grows to a complete path, and the min 
esperance is the lower bound if the complete path is 
testable. In Figure 2, suppose the length of the partial path 
g0…gi is 5, and the PERT delays between gi and primary 
outputs gr, gs, gt are 10, 8, 6, respectively. The min-max 
esperance of partial path g0…gi is 11/15. 
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Figure 2. A partial path and its esperance. 

The partial paths are sorted by max esperance. Every 
time the path generator selects the partial path with the 
largest max esperance. Potentially this partial path will 
grow to a complete path with maximum delay. 
2.3. Path Generation 
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Figure 3. Path generation algorithm. 

Figure 3 is the algorithm of finding the K longest 
testable paths through gate gi. Before the path generation 
for gate gi, all gates which are not in gi’s fanin or fanout 
cone are identified because when a partial path grows, it is 
impossible for any of these gates to be added (otherwise 
the partial path has no chance to pass through gi). But these 
gates are still useful because they are related to constraints, 

such as side input constraints of a gate on the path which is 
being searched. Figure 4 shows the search space. 

gi 

Search space 

Constraints from 
outside search space  

Figure 4. The search space for a path through gate gi. 
Each iteration of the path generation begins by popping 

the first partial path from the path store, which has the 
largest max esperance. The partial path is extended by 
adding a fanout gate which contributes to the largest max 
esperance. For example, in Figure 5, the partial path g0…gi 
is extended by adding gate gj because extending to gj could 
potentially keep the max esperance. If the partial path has 
more than one extendable fanout, it must be saved in 
another copy and in the copy the already tried fanout must 
be marked “blocked” or “tried”. Then the copy gets its 
esperance updated and is pushed into the path store. For 
example (Figure 5), since gate gi has 2 fanouts, and 
extending the partial path to gj may result in false paths 
later, the partial path g0…gi must be saved because 
extending it to gate gk may get a longer testable path. And 
because fanout gj has been tried, in the copy the min-max 
esperance becomes 11/11. 
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Figure 5. Extending a partial path. 
After the partial path is extended (g0…gigj in Figure 5) 

the constraints to propagate the transition on the added 
gate (gj) are applied. Under the non-robust sensitization 
criterion [1], non-controlling final values on the side inputs 
are required. Under the robust sensitization criterion [1][2], 
in addition to non-controlling final values, the side inputs 
must remain non-controlling if the on-path input has a 
transition to the controlling value. Then direct implications 
are used to propagate the constraints throughout the circuit. 
A direct implication on a gate is one where an input or 



output of that gate can be directly determined from the 
other values assigned to that gate. Figure 6 shows some 
examples of direct implications on an AND gate. The 
values in boxes are implied from the existing values, 
which are not in boxes. Figure 6(a) is an example of 
forward implication, and (b)(c) are examples of backward 
implications. If a conflict happens during direct 
implications, the partial path is false. In other words, any 
path including this partial path is a false path. For example 
(Figure 5), if extending partial path g0…gi to gate gj results 
in a conflict (Figure 7 shows an example), both path g0…gr 
and g0…gs are determined to be false. Therefore, the 
partial path is deleted from the path store so that the whole 
search space which contains this partial path is trimmed 
off. Previous research [13] showed that most false paths 
can be eliminated by direct implications, and this is also 
observed in our experiments. 
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Figure 6. Examples of direct implications. 
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Figure 7. Conflict after applying direct implications. 

If the extended partial path reaches a primary output, it 
becomes a complete path. In this case, a final justification 
process (a FAN [22] style decision tree based justification 
algorithm) is performed on the path. One reason to do final 
justification is to find a vector pair which sensitizes this 
path. The other reason is that some false paths do not have 
any conflict in the direct implications during the growth 
procedure. Figure 8 shows an example [13]. Suppose both 
AND gates need their side inputs to be logic 1, and direct 
implications stop at the two OR gates because neither input 
must be logic 0 or 1, assuming the algorithm does not 
know the two inputs are tied together. This path does not 
fail the direct implications but it is a false path. Since most 
false paths cannot pass the direct implications, it is not 
often that a complete path fails the final justification. 

1 
1 ? ? 

? ? 
 

Figure 8. A path which passes direct implications but 
fails final justification. 

If the extended partial path is not a complete path, 
some false path elimination techniques, which will be 

discussed in detail in the next section, are applied to it, to 
more efficiently prevent the new partial path from 
becoming a false path. Then the min-max esperance of the 
partial path is updated and it is inserted into the path store. 
Since its max esperance may decrease and min esperance 
may increase after extension, it may not be inserted at the 
top of the path store. If this happens, in the next iteration 
another partial path will be selected for extension. For 
example (Figure 5), after extending partial path g0…gi to 
gate gj, the min-max esperance changes from 11/15 to 
13/15. If path gj…gr is blocked, which means path g0… gr 
is a false path, after applying the false path elimination 
techniques, the min-max esperance is 13/13. 

Because each partial path consumes memory, and the 
path store cannot have an infinite size, when the number of 
partial paths exceeds the path store size limit, some partial 
paths with low max esperance are removed from the path 
store. The maximum esperance of the removed partial 
paths is recorded. In the future any partial path with max 
esperance below that value must be removed from the path 
store because it may not truly be one of the K longest 
testable paths. Therefore it may happen that K paths have 
not been found when the path store is empty. However, 
since a partial path is represented as a sequence of gates, 
usually it consumes less than 1 KB memory. Thus the path 
store can have a large number of partial paths so that in 
most cases the algorithm does not abort unless none of the 
structural paths through the gate is testable. 

The path generation iteration does not stop until the K 
longest testable paths through gate gi are found or the path 
store is empty. Since the K longest testable paths through 
different gates may overlap, every time a new path is 
generated, it must be checked to see if it has already been 
generated during the path generation for another gate. 

3. Refined Implicit False Path Elimination 
3.1. Forward Trimming 

When a partial path grows, in some cases after the 
constraints are applied and the direct implications are 
performed, the possibility to continue extending the partial 
path to the primary outputs may be reduced. In the extreme 
case there is no way to continue extending the partial path 
(completely blocked). 
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Figure 9. Application of forward trimming. 

Figure 9 shows an example where the path through the 
logic block cannot propagate to the output [3]. In this 
example the partial path has grown to the NAND gate gi, 
and the side input must be a logic 1 if the single-path 
sensitization constraints [13] are considered. This value 



propagates forward through the inverter and becomes a 
controlling value on one of the inputs of the NAND gate 
gj. This condition prevents propagation from gi to gj 
through any paths within the logic block. With forward 
trimming the entire logic block is trimmed off and the 
search process is guided toward an unblocked path (the 
upper inverter) earlier. Without forward trimming the 
search process might be much less efficient. Since the 
paths through the logic block are not blocked until the final 
gate gj, the search process may attempt to traverse through 
the logic block until it reaches gj and learn that the path is 
blocked. This may be done for each possible path through 
the logic block. 

During the circuit preprocessing the PERT delays are 
computed assuming no path is blocked. With the growth of 
a partial path, more and more information is known 
because more constraints are applied. Forward trimming 
recomputes the min-max PERT delay from the end of the 
partial path, based on the structure and the current value 
assignments. In this case blocked extension choices are not 
considered in the computation and false paths can be 
eliminated earlier so that the search can be guided more 
accurately toward a testable path. If the search space is 
partially trimmed off, the partial path still has a chance to 
become a testable complete path, but its esperance may be 
reduced according to its PERT delay reduction. In the next 
iteration of path generation, a more promising partial path 
may be selected. 
3.2. Smart-PERT Delay 

If the PERT delays are used, a local conflict in the 
unexplored search space is not detected until the partial 
path grows to that site, because the PERT delays are 
computed without considering any logic constraint. 

We have developed a heuristic to exclude untestable 
subpaths due to local conflicts when computing the PERT 
delay for a gate. We call the new values Smart-PERT 
delays, or S-PERT. For simplicity only maximum PERT 
and S-PERT delays are discussed. Because some 
untestable subpaths are not included in the S-PERT 
computation, a gate’s S-PERT delay is always less than or 
equal to its PERT delay. Moreover, compared to the PERT 
delay, the S-PERT delay is closer to the delay of the 
longest testable path from that gate to a primary output. 

A gate’s PERT delay can be computed using its fanout 
gates’ PERT delays. If the unit delay model is used, 
PERT(gi) = max {PERT(gj) | gj is a fanout gate of gi} + 1. 
Figure 10(a) shows an example, assuming PERT(g3) = 8 
and PERT(g4) = 6 are known. In this example, PERT(g0) = 
10 is computed using PERT(g1) and PERT(g2). 

When S-PERT(gi) is computed, a user-defined variable 
S-PERT depth is used. If the S-PERT depth is set to d, then 
S-PERT(gi) is computed using S-PERT(gj) where gj is d 
gates from gi in gi’s fanout tree. For example, in Figure 
10(b), if d is set to 2, then S-PERT(g0) is computed using 
S-PERT(g3) and S-PERT(g4). 

The heuristic works as follows. Suppose S-PERT(gi) is 
being computed. G = {gj | gj is d gates from gi in gi’s 
fanout tree}, and G is sorted by S-PERT(gj) in decreasing 
order. The heuristic pops the first gate gj in G and attempts 
to propagate a transition from gi to gj. If there is no conflict 
(the transition successfully reaches gj, with all the 
constraints applied), S-PERT(gi) is set to S-PERT(gj) + d. 
Otherwise, it pops the second gate in G and repeats the 
same procedure. In Figure 10(b), for example, at first the 
heuristic tries to propagate a transition from g0 to g3, but 
finds it is impossible to set the side inputs of g1 and g3 both 
to non-controlling values. Then it tries g4 and does not 
meet any conflict. So S-PERT(g0) is 8. It is obvious that 
increasing the S-PERT depth can make the S-PERT delays 
closer to the delay of the longest testable path from that 
gate to a primary output, but its cost increases 
exponentially. Therefore, there must be some trade-off. 

g0

g1

g2

g3

g4

8

6

9

7

10

(a)

g0 

g1 

g2 

g3

g4

8

6

9

7

8 

(b)  
Figure 10. Computation of PERT delay (a) 

and S-PERT delay (b). 
Since most conflicts are local, with S-PERT delays, the 

path generation is well guided to a testable path, with 
many fewer conflicts, because most of the non-solution 
space is trimmed off during the preprocessing phase. 

The usefulness of this technique is highly dependent on 
the structure of the circuit. The most benefit would be 
derived from a path with d gates, each of which has fanout 
f and each fanout reconverges at a later gate (Figure 11). 
This results in f d possible paths which must be traversed. 
The worst case is that all of them are false paths but 
conflicts do not occur until the partial path grows very 
long. With the use of S-PERT delays, the path generation 
extends to a shorter structural path P2 (Figure 11) because 
it has larger esperance, and the traversal of all the false 
paths with equal length from g1 to g4 is avoided. As our 
experimental results show, this technique helps exclude 
many false paths in circuit c6288. 

conflict

Path extension direction 

g4g3 g2g1

P1 P2 

 
Figure 11. A circuit with exponential number of false 

paths. 



3.3. Relations between Gates 
There are tight relations between long testable paths 

through different gates because a long testable path 
through a gate is possibly a long testable path through 
another gate. Some rules in previous research [8] are 
extended in this work and they are very easy to apply to 
the path generation algorithm. 

Each gate in the circuit has two arrays: Lub[1…K] and 
Llb[1…K], which indicate the upper and lower bound of 
the lengths of the K longest testable paths through this 
gate. The two arrays are sorted. Initially the values in 
Lub[1…K] are all set to the length of the longest structural 
path through the gate, and the values in Llb[1…K] are all 0. 

When the K longest testable paths are found for gate gi, 
Lub[1…K] and Llb[1…K] for gi are updated and both of 
them are set to the actual lengths of the K longest testable 
paths. Suppose a newly found path for gate gi also contains 
gate gj, which means this path passes through both gi and 
gj. If the length of this path is greater than that of a 
previously found path for gj, Llb[1…K] for gj is updated by 
inserting a link to the newly found path and deleting the 
link to the shortest path found. This process may increase 
the values in Llb[1…K] for all the gates contained in the 
newly found path. Figure 12 shows an example. Assuming 
K=3, at some point Llb[1…3] for gate gj is {22,18,15}, 
which means the lengths of the 3 longest paths through gj 
found by the path generator are at least 22, 18 and 15. 
Suppose the length of a newly found path for gate gi is 20. 
Then Llb[1…3] for gate gj is updated to {22,20,18}. 

gi 
gj 

gj : Llb[1…3] = {22,18,15}→{22,20,18} 

A newly found path (for gi, with length 20) 

Primary 
input 

Primary 
output 

 
Figure 12. Updating Llb[1…K]. 

On the other hand, the values in Lub[1…K] for some 
gates decrease when a new path is found. Suppose gate gi 
has f fanin gates, and ∪faninLub[1…K] indicates the union of 
the Lub[1…K] arrays of its fanin gates and it is sorted in 
decreasing order. The upper bound of the lengths of the K 
longest testable paths through gate gi cannot exceed the 
first K values in ∪faninLub[1…K], because all the paths 
through gi must also pass through one of its fanin gates. 
Figure 13 shows an example. Assuming K=3, and gate gi 
has two fanin gates, with Lub[1…3]={17,16,11} and 
{20,18,12}. Then the values in Lub[1…3] for gi must be no 
more than {20,18,17}. The same analysis can be 
performed using the fanout gates or absolute dominators 
[3] of gate gi. 

As more paths are found, the values in Lub[1…K] and 
Llb[1…K] for gate gi, for which the path generation has not 
been performed, get closer. If they are close enough, say 
the difference is less than 1%, it can be assumed that the K 
longest testable paths for gate gi have been found so that 

the path generation for it can be skipped. Many gates can 
be skipped if a unit delay model is used [8]. 

If gate gi cannot avoid path generation, during its path 
generation process, if the max esperance of the partial path 
being processed is less than its Llb[v] (1<v≤K) value, then 
the first v paths already found for gi are proved to be the v 
longest paths through gi, because the partial paths in the 
path store have no chance to grow to a complete path with 
larger length. So Lub[u] (u=1,…,v) are updated accordingly 
(set to Llb[u]). On the other hand, when the vth longest path 
through gate gi is being searched, and the min esperance of 
a partial path is greater than Lub[v], the partial path can be 
deleted immediately because when it becomes a complete 
path, this path is either a false path or already found. 

 

gi 

 

Lub[1…3] = {20,18,12}

Lub[1…3] = {17,16,11}

Lub[1…3] ≤ {20,18,17}

 
Figure 13. Updating Lub[1…K]. 

The Lub[1] values of other gates can also be taken 
advantage of during the path generation process for gate gi. 
Suppose a partial path grows to gate gj. If the max 
esperance of the partial path is greater than the Lub[1] value 
for gj, it must be reduced to Lub[1] for gj, because it is 
impossible for this partial path to grow to a complete path 
with length greater than Lub[1] for gj, otherwise this path 
would also be a testable path through gj, which invalidates 
Lub[1] for gj. When the partial path continues to grow, its 
min esperance may increase, and if it becomes larger than 
its max esperance, the partial path is deleted because it 
must eventually grow to a false path. 
3.4. Global Longest Path Generation 

 The global longest paths are the longest paths 
throughout the circuit, regardless of which gates they pass 
through. The global longest path generation algorithm is a 
slight modification to the path generation algorithm for a 
particular gate (Figure 3). If no gate is eliminated from 
being added to a partial path (gates which are not in gate 
gi’s fanin and fanout cones are eliminated for the path 
generation for gi), the complete paths generated from the 
path generation are the global longest paths. 

The advantage of finding the global longest paths is: If 
there are p global longest paths covering gate gi, these 
paths must be the p longest paths through gi. Therefore, at 
the beginning, the global longest path generation can cover 
many gates. For comparison, if no global longest path 
generation were performed, gate gi would also get some 
potential longest path through it during the path generation 



process for other gates, but in most cases they would not 
be “verified” until the path generation for gi is performed. 

However, as the global longest path generation finds 
more paths, the possibility that more gates get covered 
falls. The worst case is that almost all the global long paths 
only pass through a very small subset of the gates. 
Therefore, at the beginning the global longest path 
generation is useful but after a certain number of paths it is 
necessary to apply the path generation aiming at individual 
gates. 

In this work a 2-phase strategy is used: Run the global 
longest path generation until no more gates benefit. Then 
run the path generation for individual gates which are not 
fully covered during the global path generation. 

The benefits from the global longest path generation 
are not only that it drops some gates from the individual 
path generation, it also speeds up the individual path 
generation for the gates which are not dropped. Suppose 
the length of the last generated global longest path is L. 
During the individual path generation all the partial paths 
with min esperance greater than L can be removed because 
all the testable paths whose length is greater than L have 
already been generated. This technique is especially useful 
when a circuit contains many long false paths. 

4. Experimental Results 
A path generation tool has been implemented in Visual 

C++ and run on Windows 2000 with a 2.2 GHz Pentium 4 
processor and 256 MB memory. Buffer-to-buffer nominal 
delays are extracted from circuit layouts [21] and used in 
the experiments. 

In our experiments, K=1 means the path generation 
tries to find the longest path (one path) with either rising or 
falling transition on the target gate output. It does not 
cover both slow-to-rise and slow-to-fall transition faults 
for the target gate output. Recent research [23] shows that 
most delay faults are due to resistive opens that affect both 
transitions. Therefore a resistive open fault can be detected 
by testing either transition. 

Table 1 shows the results for generating the five 
longest paths through each gate (K=5) for the ISCAS85 
and the full scan versions of the largest ISCAS89 
benchmark circuits, under the robust and non-robust 
sensitization criteria. Under each criterion, the number of 
testable paths generated (not including the paths which fail 
final justification) and the execution time are listed. The 
size of the path store was set to 3 000. Experiments 
showed that for most circuits, the K longest testable paths 
for more than 90% of the gates can be found using a path 
store with this size even when K=50. In the experiments a 
gate is aborted if the path store is empty or the number of 
iterations exceeds 50 000 (in each iteration a gate is added 
to a partial path). In the experiments the number of 
backtracks in the final justification process is set to 100, 
because it is observed in our experiments that more than 
90% of the generated paths can be justified within this 

number of backtracks and a higher backtrack limit 
provides little benefit. The number of gates in each circuit 
is given in the second column in Table 1. Clearly the upper 
bound of the total number of generated paths is K times the 
number of gates in the circuit. It can be seen that the actual 
number is much smaller than the upper bound, indicating 
that many gates share the same paths. For all the circuits 
except c6288, the five longest testable paths through each 
gate were found or it was proved that the number of 
testable paths through a gate is less than K, e.g. there is no 
transition fault test for the gate, or the number of structural 
paths through the gate is less than K/2. For circuit c6288, 
our algorithm aborts on 20 gates (out of 2 416 gates) which 
have transition tests [24]. There will be more discussion on 
c6288 at the end of this section. 

Table 1. Path generation results for generating the five 
longest paths (K=5) through each gate. 

Robust Non-Robust 
Circuit # Gates # Testable 

Paths 
CPU Time 

(m:s) 
# Testable 

Paths 
CPU Time 

(m:s) 
c432      160      235   0:01      252   0:01 
c499      202      423   0:01      430   0:01 
c880      383      737   0:02      737   0:02 
c1355      546      828   0:04      835   0:06 
c1908      880   1 287   0:25   1 269   0:33 
c2670   1 269   2 124   0:13   2 251   0:19 
c3540   1 669   2 764   0:58   2 796   0:56 
c5315   2 307   3 921   0:26   4 101   0:23 
c6288   2 416   3 679 38:10   3 458 32:29 
c7552   3 513   5 462   0:59   5 815   1:16 
s9234   5 597   5 002   1:17   5 283   1:31 
s13207   7 951   7 643   1:52   7 711   2:10 
s15850   9 772   8 957   2:39   9 377   2:31 
s38417 22 179 25 175   6:43 29 446   8:09 
s38584 19 253 28 435 10:49 31 095 11:23 

Table 2 shows the execution time if some of the 
implicit false path elimination techniques are not used, 
assuming K=5 and the robust sensitization criterion is 
used. The results assuming the forward trimming (FT) or 
smart-PERT (SP) technique is not used are listed in 
columns 2 and 3. Column 4 lists the execution time if 
neither the relations between gates nor the global longest 
path generation (R&G) is used. Column 5, using all the 
techniques, is copied from Table 1 for comparison. It can 
be seen that the forward trimming technique significantly 
reduces the execution time; the smart-PERT technique is 
not very useful for most circuits, and using it sometimes 
results in slightly longer execution time, but it significantly 
helps c2670 and c6288. The reason is because in most 
cases, the local conflicts do not cause an exponential 
number of false paths and these local conflicts can be 
efficiently removed by forward trimming. Moreover, for 
most circuits the cost of using the smart-PERT technique is 
greater than the benefits, while for circuits with many 
reconvergences and long untestable paths, such as c2670 



and c6288, applying this technique results in huge benefits. 
Without it, c6288 cannot even finish the path generation in 
a reasonable time (12 hours). 

If neither the relations between gates technique nor the 
global longest path generation (R&G) is used, the path 
generation slows down significantly for some circuits. But 
if only one of the techniques is not used, only a 5-10% 
slowdown is observed. This phenomenon indicates that the 
benefits from the two techniques greatly overlap for most 
circuits. If we look at c2670 and c6288, it can be found 
that most global long structural paths are untestable. If the 
global longest path generation is applied, these untestable 
paths are recognized and during the path generation for a 
particular gate, none of these paths need to be recognized 
again. Similarly, if the relations between gates are applied, 
these long untestable paths are also recognized only once. 
For a short untestable path p, the effects are limited 
because this path may be a long path through gate gi, 
assuming all the paths through gi are short paths, but it is 
not likely to be a long path through another gate gj. Thus, 
during the path generation for gj, it is very possible that the 
K longest testable paths through it have already been found 
before considering path p. Therefore, the more untestable 
global long paths, the more benefits from applying the two 
techniques. 

Table 2. Execution time comparison, assuming some of 
the implicit false path elimination techniques are not 
used (K=5, robust). 

CPU Time (m:s) Circuit No FT No SP No R&G Table 1 
c432   0:01   0:01   0:02   0:01 
c499   0:02   0:01   0:01   0:01 
c880   0:04   0:02   0:03   0:02 
c1355   0:08   0:04   0:08   0:04 
c1908   2:25   0:23   0:36   0:25 
c2670   0:21   1:07   0:43   0:13 
c3540   3:49   0:57   1:45   0:58 
c5315   0:37   0:26   0:46   0:26 
c6288 58:13 × 62:38 38:10 
c7552   1:21   0:55   1:42   0:59 
s9234   1:48   1:11   5:04   1:17 
s13207   2:24   2:49   4:13   1:52 
s15850   3:12   2:33   6:25   2:39 
s38417   8:20   6:35 15:26   6:43 
s38584 14:31 10:42 20:09 10:49 

“×” means the path generation did not finish within 12 hours. 

Another interesting phenomenon is that the forward 
trimming technique is more efficient for the ISCAS85 
circuits while the relations between gates technique and 
the global longest path generation (R&G) are more 
efficient for the ISCAS89 circuits. The reason is because 
in most ISCAS89 circuits more than half of the gates are 
inverters and buffers. Since these gates have only one 
input, no path gets blocked if a logic value is assigned to 
their inputs. Thus the efficiency of the forward trimming 

technique decreases. However, the efficiency of the R&G 
increases because the inverters and buffers have only one 
fanin gate. If the K longest testable paths have been found 
for the only fanin gate and all these paths go through the 
inverter or buffer, which is very likely, then the path 
generation for this inverter or buffer can be skipped. 

From the analysis it can be concluded that the forward 
trimming and smart-PERT techniques reduce the search 
space and guide the path generation more accurately to 
generate a testable path, while the relations between gates 
and the global longest path generation mainly help avoid 
repeated work. 

Table 3 shows the execution time when K is increased. 
It can be seen that the execution time is approximately 
linear in K, and the execution time increases much more 
slowly than K. For c7552, for example, there are 1 196 
paths generated when K=1 and 19 888 paths when K=20. 
The number of generated paths when K=20 is more than 
16 times that of K=1, but the execution time increases less 
than 87%. The reason is that when the first longest path 
through a gate is generated, in the path store there are 
many partial paths almost reaching a primary output. 
Therefore the cost of generating more paths is small. Large 
K values, such as 500, have been tried and it is observed 
that the execution time is still linear in K. However, in 
practice K would not be that large because the test set 
would be too large. 

Table 3. Execution time for different K values (robust). 
CPU Time (m:s) Circuit K=1 K=5 K=10 K=20 

c432   0:01   0:01   0:01   0:02 
c499   0:01   0:01   0:01   0:01 
c880   0:02   0:02   0:03   0:03 
c1355   0:04   0:04   0:05   0:06 
c1908   0:22   0:25   0:26   0:28 
c2670   0:12   0:13   0:14   0:16 
c3540   0:46   0:58   1:06   1:28 
c5315   0:22   0:26   0:29   0:36 
c6288 30:53 38:10 40:33 45:04 
c7552   0:45   0:59   1:06   1:24 
s9234   1:07   1:17   1:29   1:45 
s13207   1:30   1:52   2:21   3:19 
s15850   2:06   2:39   3:17   4:15 
s38417   5:30   6:43   7:48   9:47 
s38584   7:09 10:49 13:16 16:44 

The ISCAS85 circuit c6288 is a special case because it 
contains an exponential number of false paths. Figure 14 
[25] shows the structure of circuit c6288, which is a 16×16 
bit multiplier. The circuit contains 240 adders, among 
which 16 are half adders, which are shaded. P31...P0 are the 
32-bit outputs. Each floating line, including P0, is fed by 
an AND gate, whose inputs are connected to two primary 
inputs. Figure 15 [25] shows the structure of a full adder in 
c6288 and Figure 16 [25] shows the block diagram. The 15 
top-row half adders in Figure 14 lack the Cin input. Each of 



them has two inverters at locations V in Figure 15. The 
single half adder in the bottom row lacks the B input, and it 
has two inverters at locations W. 

P30

A11 B0 

P0

P2

P1

P15
P16

P14 

P31  
Figure 14. ISCAS85 circuit c6288 16×16 multiplier. 
The longest structural paths through a particular gate or 

adder in c6288, e.g. the black one in Figure 14, are 
highlighted. All these paths have equal length and include 
the longest structural paths within the adders. However, 
the longest structural paths from the input A or Cin to the 
output Cout in the adders are not robustly testable [26]. This 
is the main feature which causes most false paths in this 
circuit. In our experiments the S-PERT depth is set to 6 
and this type of local conflict is identified in the 
preprocessing phase. However, this value is set manually 
after looking into the circuit structure of c6288. We are 
developing a heuristic which is able to automatically and 
dynamically set the S-PERT depth. 
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Figure 15. Full adder module in c6288 (schematic). 
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Figure 16. Full adder module in c6288 (symbolic). 

5. Conclusions and Future Work 
We have proposed a novel algorithm which generates 

the K longest testable paths through each gate (KLPG test 
set) in a combinational circuit. This was achieved by 
growing partial paths from the primary inputs, and during 
the procedure, implicit false path elimination techniques 
are used to trim the search space and guide the search more 
accurately toward a testable path. Based on the fact that 
many gates share long paths, the relations between gates 
and the global longest path generation are efficiently used 
to reduce repeated work. Experimental results show that 
the path generation is very efficient, and to our knowledge, 
this tool is faster than any existing tools solving similar 
problems, and it is the first tool that efficiently generates 
the longest testable path through each gate in c6288. 

A process variation model is being developed for the 
path generation. So far we assume that there is no 
correlation between path delays. This model results in 
large K values for some gates if all the possible longest 
paths must be identified (the maximum K value can be 
500+ if ±10% delay variation is assumed). Our preliminary 
results show that after path pruning using process 
correlation, the average number of possible longest paths 
per gate is 2-3 and almost all of these are in the top 10 
nominal paths, so path generation time can be greatly 
reduced by incrementally generating and pruning paths. 

Recent research also focuses on the path delay 
variation caused by capacitive coupling [27][28][29]. The 
delay of a path may be larger than its nominal delay due to 
capacitive coupling. Sometimes the delay increase cannot 
be ignored, and with technology scaling, the effect is 
becoming more significant. Considering that only a small 
fraction of lines have necessary assignments, in the 
justification process for a path, when a justification goal 
can be achieved by different means, the choice which 
causes larger path delay due to capacitive coupling is 
selected. It has also been observed that the vector pairs 
generated by our tool contain many “don’t care” bits. 
Therefore the vectors can be compacted or proper 
transitions can be assigned on these free bits to increase 
the path delay. 
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