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Abstract 
To detect the smallest delay faults at a fault site, the 

longest path(s) through it must be tested at full speed. 
Existing test generation tools are inefficient in 
automatically identifying the longest testable paths due to 
the high computational complexity. In this work a test 
generation methodology for scan-based synchronous 
sequential circuits is presented, under two at-speed test 
strategies used in industry. The two strategies are 
compared and the test generation efficiency is evaluated 
on ISCAS89 benchmark circuits and industrial designs. 
Experiments show that testing transition faults through the 
longest paths can be done in reasonable test set size. 

1. Introduction 
Delay test has been investigated for many years. At-

speed test significantly increases the delay fault coverage 
in industrial applications. The transition fault model [1], 
which is the simplest delay fault model, is usually used in 
these applications. However, the transition fault model 
targets large delay faults which cause all the sensitizable 
paths through the fault site to be slow. Recent research 
shows that resistive opens are one of the major defect 
types which cause delay faults [2], and that small delay 
faults cannot be neglected [3]. To detect the smallest delay 
fault at a fault site, the longest sensitizable paths through it 
must be tested. But (longest) path delay fault test 
generation is much more expensive than transition fault 
test generation, because a transition fault test can be 
composed by pairing stuck-at-0 and stuck-at-1 vectors [4] 
and transition fault test generation for sequential circuits 
has been extensively investigated [5][6][7]. 

Recently some research significantly decreased the cost 
of path delay fault test generation [8][9] and these 
methodologies are able to integrate some path selection 
criteria, such as the longest paths through each line. 
However, they assume the circuits are combinational, i.e. 
there is no dependence between the two test vectors or 
between two bits within a vector. These methodologies 
cannot be applied to sequential circuits directly. The 
reason is that the commonly-used design-for-testability 
(DFT) structures, such as muxed scan, rarely support 
combinational enhanced-scan, which allows the two 
vectors to be independent but requires more silicon area 

and introduces more delay. Therefore, a new automatic test 
pattern generation (ATPG) tool for path delay faults in 
sequential circuits has to be developed, to target practical 
DFT structures. 

The ATPG was developed by extending a path 
generation algorithm for combinational circuits [9] to 
handle scan-based synchronous sequential circuits. This 
tool is able to generate K longest paths through the input 
and output pins of each gate (KLPG) for both slow-to-rise 
and slow-to-fall faults. In this work test generation is 
limited to K=1 because it is assumed the industry cannot 
afford a test set much larger than a transition fault test set. 
At speed testing that utilizes scan, often called AC scan, 
uses two common approaches, “launch-on-shift” and 
“launch-on-capture”. The constraints from these 
approaches result in sequential false paths [10] which are 
combinationally testable. The delays of the longest 
combinational and sequential testable paths through each 
line are compared in the experiments. 

The remainder of the paper is organized as follows. 
Section 2 introduces the two practical test approaches to 
apply at-speed test in a scan-based circuit. Section 3 
describes the test generation algorithm using the two 
approaches. Section 4 includes experimental results on the 
ISCAS89 benchmark circuits and industrial designs. 
Section 5 concludes with directions for future research. 

2. Scan-Based At-Speed Test Approaches 
In low-cost automatic test equipment (ATE), the test 

speed is usually much slower than the functional speed of 
the circuit under test. This is not a problem to test stuck-at 
and large delay faults, but small delay faults may escape. 
Therefore at-speed test is preferred to increase the realistic 
delay fault coverage. 

However, due to the low-cost ATE speed limitation, 
the at-speed tests primarily in use in industry are built-in 
self-test (BIST) and AC scan. Evidence has shown that 
BIST can achieve very high fault coverage for stuck-at and 
transition faults [11], but it has low probability to sensitize 
enough critical paths, e.g. the longest path through each 
line. On the other hand, functional tests running at full 
speed are becoming unattractive due to the high cost of 
development and application [12]. Therefore, this paper 
focuses on high-quality delay test generation using existing 
scan designs. 



In this paper the muxed scan design is assumed, with a 
scan enable signal selecting either serial scan data or 
functional logic data. The flip-flops are clocked with the 
system clock. Two scan-based at-speed test 
methodologies, which have found increasing usage in 
industry, will be briefly introduced in the next two 
sections. 
2.1. Launch-on-Shift (Skewed Load) 

The procedure of the launch-on-shift (or skewed load 
[13][14]) test approach is: 
1. The circuit is set to scan mode. The first test vector is 

scanned into the scan chains using the slow scan clock, 
and the values are set on primary inputs (PIs). 

2. The second test vector is obtained by shifting the scan 
chain by one bit. Usually the PIs do not change values 
due to the constraints from low-cost ATEs. 

3. The circuit is set to the functional mode by flipping the 
scan-enable signals and pulsing the system clock to 
capture the circuit values in the flip-flops. The values 
on primary outputs (POs) are captured if necessary. 

4. The circuit is set to scan mode and the values in the 
scan chains are scanned out using the slow scan clock. 
This step can be overlapped with step 1. 
The advantage of this approach is that fast test 

generation methodologies for combinational circuits can 
be applied without many modifications. Scanned flip-flops 
are considered primary inputs in the ATPG for 
combinational circuits, and the adjacent scan bit 
dependencies must be added to the existing ATPG. These 
constraints may result in some paths being untestable. 

The disadvantage of this approach is that the scan 
enable signals must operate at full speed. In addition, many 
of the sensitizable paths under the launch-on-shift 
constraints are sequential false paths, i.e. these paths are 
not sensitizable in functional mode, so some redundant 
faults would be detected. 
2.2. Launch-on-Capture (Functional Justification) 

The procedure of the launch-on-capture (or functional 
justification, broadside [15]) test approach is: 
1. Same as the launch-on-shift approach step 1. 
2. The circuit is set to functional mode. A dummy cycle is 

inserted if the scan-enable signal cannot operate at full 
speed or the system clock frequency is very high, so 
that the launch clock pulse width is too large. Figure 
1(a) shows the clock waveform. For comparison, 
Figure 1(b) shows the clock waveform if the time is 
sufficient for the scan enable signal to propagate. In 
this approach, the launch cycle is kept identical to the 
shift cycle with respect to period, rising edge, and pulse 
width. 

3. The system clock is pulsed twice. At the first clock 
pulse, the second test vector is derived from the first 
vector. At the second clock pulse, the test is performed 
and the output values are captured in the scanned flip-
flops. The values on POs are captured if necessary. 

4. Same as the launch-on-shift approach step 4. 
 

Last scan-in 
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Launch cycle Capture cycle
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Figure 1. Launch-on-capture clock waveforms. 

The advantage of this approach is that it does not 
require the scan enable signal to operate at full speed. And 
the sensitizable paths under the launch-on-capture 
constraints are also sensitizable in functional mode, unless 
the first vector represents an illegal state. 

Though the launch-on-capture approach is more 
promising and practical for industrial use [12], the launch-
on-shift approach is also included in this work because it 
may have lower data volume, it may detect some delay 
faults that are not functional, and test generation only 
requires combinational test. 

3. Test Generation 
The test generation algorithm was developed from a 

fast ATPG for combinational circuits [9]. In this section, 
the path generation engine is introduced, and the 
constraints from the launch-on-shift/capture approach are 
applied to eliminate sequential false paths from the 
combinationally testable path set, and the time frame 
expansion method is used for the launch-on-capture 
approach. 
3.1. KLPG Path Generation Engine 

Figure 2 is the algorithm used in the KLPG path 
generation engine [9]. In this paper, a launch point (of a 
path) is a primary input or scanned flip-flop, and a capture 
point is a primary output or a scanned flip-flop. In the 
preprocessing phase, static timing analysis computes the 
maximum delay from each gate to capture points, without 
considering any logic constraint. This value is termed the 
PERT delay or STA delay. In the path generation phase, 
partial paths are initialized from launch points. A partial 
path is a path which originates from a launch point but has 
not reached any capture point. A value called esperance 
[16] is associated with a partial path. The esperance is the 
sum of the delay of the partial path and the STA delay 
from its last node to a capture point. In other words, the 
esperance of a partial path is the upper bound of its delay 
when it becomes a complete path, which reaches a capture 
point. 

In each iteration of the path generation phase, the 
partial path with the maximum esperance value is extended 
by adding one gate. If the last gate of the partial path has 
more than one fanout, the partial path splits. Then the 



constraints to propagate the transition on the added gate, 
such as non-controlling side input values required under 
the robust [17] or non-robust [18] sensitization criterion, 
are applied. Direct implications [16] are then used to 
propagate the constraints throughout the circuit. A direct 
implication on a gate is one where an input or output of 
that gate can be directly determined from the other values 
assigned to that gate. Figure 3 shows some examples of 
direct implications on an AND gate. The values in boxes 
are implied from the existing values. If there are any 
conflicts, the whole search space which contains the partial 
path is trimmed off. If the partial path does not reach a 
capture point, some false path elimination techniques [9] 
are applied to prevent it from growing to a false path. Then 
its esperance value is updated and it is inserted back into 
the partial path store. If a partial path becomes a complete 
path, final justification is performed to find a vector. 
Details of final justification are provided in Section 3.4. 
This process repeats until enough longest testable paths are 
generated. Because the longest path through a fault site is 
very possibly the longest path through other fault sites 
along the path, fault dropping is performed when a new 
path is generated. 
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Figure 2. Path generation algorithm. 
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Figure 3. Examples of direct implications [9]. 

In this work, the goal is to generate the K longest paths 
through the input and output pins of each gate for both 
slow-to-rise and slow-to-fall faults, termed KLPG patterns. 
So the search space is limited to the fanin and fanout cones 

of the fault site and the test generation does not stop until 
the K longest paths for both faults are generated. 
3.2. Implications on Scanned Flip-Flops 

Direct implications can be performed on scanned flip-
flops as well as regular gates to detect most local conflicts 
and eliminate sequential false paths. Since local conflicts 
are the fundamental reason for false paths in most circuits 
[16], performing direct implications as much as possible 
can identify most false paths and significantly speed up the 
test generation process. 

If the launch-on-shift approach is used, the logic values 
on neighboring scanned flip-flops are dependent on each 
other. For example, in Figure 4, the logic value of cell A in 
the first vector is the same as that of cell B in the second 
vector. The relation between cell B and C is the same. 
Therefore, if there is a rising transition assigned to cell B, 
direct implications would try to assign a logic 1 to cell A in 
the first vector and a logic 0 to cell C in the second vector, 
and propagate the new assignments throughout the circuit. 
If there are any conflicts, the partial path is a sequential 
false path under the launch-on-shift constraints. It is 
assumed that the scan chain design cannot be modified to 
reduce the dependence, such as inserting dummy cells 
between the scanned flip-flops. 
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Figure 4. Implications on scanned flip-flops. 

If the launch-on-capture approach is used, dependence 
exists between the two vectors. Even if the circuit has a 
pipeline structure, in which the two vectors are 
independent, the structure can also be seen as the general 
structure shown in Figure 4. The conversion is shown in 
Figure 5. Thus the second vector is the output of the 
combinational circuit, derived from the first vector, 
excluding the primary input and output bits. In other 
words, V2=C(V1), where V1 and V2 are the two vectors and 
C is the logic of the combinational circuit. For example, if 
it is assumed that a testable path has a rising transition 
launching from cell A and a rising transition captured on 
cell B, in Figure 4, then for the first vector, output a′ must 
be a logic 1 (then it becomes the value for input a in the 
second vector); and for the second vector, input b must be 
a logic 0 because it is derived from the first vector. Then 
more direct implications can be performed from a′ and b. 
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Figure 5. A pipeline structure. 

3.3. Constraints from Non-Scanned Memories 
If the circuit is not full scan, the non-scanned flip-flops 

may or may not be initialized after the first vector is 
scanned in. Logic simulation of the test setup sequence and 
scan procedure is done before the ATPG is performed. If a 
non-scanned flip-flop gets initialized by its set/reset signal 
during the test setup procedure, the constant value is used 
as a known value in the first vector during the ATPG. 
Logic values of the set/reset signals of each flip-flop are 
also checked by logic simulation, to ensure the set/reset 
signals are in their off state during the scan and test 
procedure. Clocks are checked in the same way. Flip-flops 
not controlled by the system clock are considered 
uncontrollable. Industrial designs also contain embedded 
memories, whose values cannot be easily initialized during 
the test for the logic. Extensive research [19][20] has been 
done to solve the initialization problem. However, there 
may still be many non-scanned flip-flops which cannot be 
initialized. These bits are considered “uncontrollable” in 
the test generation. In commercial tools, embedded 
memories are usually considered “black-boxes” as well. 

 0 1 x u 0/u 1/u x/u 
0 0 0 0 0 0 0 0 
1 0 1 x u 0/u 1/u u 
x 0 x x 0/u 0/u x/u x/u 
u 0 u 0/u u 0/u u 0/u 

0/u 0 0/u 0/u 0/u 0/u 0/u 0/u 
1/u 0 1/u x/u u 0/u 1/u x/u 
x/u 0 u x/u 0/u 0/u x/u x/u 

Figure 6. Truth table of an AND gate. 
The algebra used in this work includes seven values: 

logic 0/1, x (unknown/unassigned), u (uncontrollable), 0/u 
(0 or uncontrollable), 1/u (1 or uncontrollable) and x/u 
(unknown or uncontrollable). At the beginning of test 
generation, the lines from the non-scanned memories are u 
and all the other lines are x. Both u and x have “don’t 
know” values but x may be assigned a value in the test 
generation process (assuming controllable). Figure 6 
shows the truth table of a 2-input AND gate. For example, 
if one input is x and the other is u, the output is 0/u because 
if the input with x is assigned a logic 0 the output becomes 
0, but if this input is assigned a logic 1 the output becomes 
uncontrollable. Before the test generation, logic simulation 
is performed throughout the circuit to reduce the number 
of x’s. Figure 7 shows two examples, assuming M1 is a 

non-scanned memory cell and M2 is a scanned flip-flop. 
The logic values assigned by simulation are shown. If the 
conventional 3-value algebra is used, all the lines are 
assigned x’s. 

Using this 7-value algebra significantly speeds up the 
test generation because it divides unknown values into 
controllable and uncontrollable categories. In the example 
shown in Figure 7(a), since the logic value on line n3 can 
never be a logic 1, all the paths through line n4 are false. 
Thus the test generation stops growing partial paths at line 
n4 and all the gates in the fanout cone of line n4 are pruned. 
If the conventional 3-value algebra is used, the test 
generation may have to generate all the paths through line 
n4 and find there is no test pattern for any of them. 
Moreover, by looking at the logic values on line n5, it can 
be learned that it is impossible to intentionally make a 
transition on this line because logic 1 is not achievable, 
therefore both slow-to-rise and slow-to-fall faults on this 
line are untestable. Since all the paths through line n4 must 
contain line n5, it can also be known that both delay faults 
on line n4 are untestable. In summary, many faults can be 
proven untestable by simple analysis, before the test 
generation is performed, and non-solution search space is 
more efficiently pruned during the test generation. 

Figure 7(b) shows another example. When a partial 
path reaches gate g2, the value of the second vector on side 
input n3 is set to logic 0 (non-controlling value, for both 
robust and non-robust test requirement). Then direct 
implications are performed backward. The value of the 
second vector on line n2 is set to 0 and further direct 
implications for the first vector can be performed from M2 
(see the previous section). Thus conflicts can be found 
earlier. If the conventional 3-value logic is used, direct 
implications stop at gate g1. Some conflicts may be hidden. 
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Figure 7. Application of 7-value algebra. 

3.4. Final Justification 
A PODEM [21] based justification process is 

performed to find a vector pair when a complete path is 
found. Because most conflicts are eliminated by direct 
implications, this process is likely to succeed. Since the 



two vectors are dependent, whenever a decision (a logic 
value on any bit in either vector) is made at a primary 
input or scanned flip-flop, direct implications have to be 
performed to trim the search space. For the launch-on-shift 
approach, both vectors can be justified in this way. 

For the launch-on-capture approach, because the 
second vector is derived as the circuit response to the first 
vector, one time frame expansion is used. In Figure 8, both 
the circuit and scan chains are duplicated. The first vector 
V1 can be generated within one time frame, but since the 
second vector V2=C(V1′), the goal is to find a satisfying 
V1′. Because V1 and V1′ are identical excluding the “don’t 
care” bits, in the justification process there must be no 
conflicts between V1 and V1′, i.e. a bit is logic 1 in V1 but 0 
in V1′ (it is consistent if one of them is a “don’t care”). 
Similarly, whenever a decision is made on any bit in either 
vector, direct implications must be performed to keep the 
logic assignments on any line in the two identical circuits 
consistent. 

 

C C′ 

scan chains V1 V2 V1′ 

 
Figure 8. Time frame expansion for final justification 

using launch-on-capture. 

4. Experimental Results 
The proposed ATPG has been implemented in Visual 

C++ and run on Windows 2000 with a 2.6 GHz Pentium 4 
processor and 2 GB of memory. Experiments are 
performed on the full scan versions of the largest ISCAS89 
benchmark circuits and two industrial designs, controller1 
and controller2, which are partial scan. Muxed scan is 
used in all the designs. The nominal SDF model is used for 
computing path delays for controller2. The unit delay 
model is used for the ISCAS89 circuits and controller1 
because SDF models are not available. 

4.1. Robust Test 
Table 1 shows the results for generating the longest 

robustly-testable path [17] for each fault, under the launch-
on-capture and launch-on-shift constraints. It is assumed 
that at each fault site there are slow-to-rise and slow-to-fall 
delay faults. The number of faults is twice the number of 
lines in a circuit, and the same as the number of transition 
faults. Column 3 shows the upper bound of detectable 
faults. This number is less than the total number of faults, 
because it is also assumed that the primary inputs cannot 
change their logic values, and the primary outputs are 
masked (not observed), due to the constraints from low-
cost ATEs. Therefore no transition can happen at some of 
the fault sites and some transitions are not observable. 
Columns 4 and 5 show the number of primary inputs and 
scan flip-flops for each circuit. Control signals, such as 
clock and scan enable, are added into the standard 
ISCAS89 circuits, as primary inputs. It is assumed that the 
ISCAS89 circuits are full scan and there is only one scan 
chain for each circuit, in random order. The industrial 
design controller1 contains 4 scan chains and controller2 
contains 16 scan chains. Both designs are partial scan. 
There are 38 non-scanned memory cells in controller1 and 
5 557 in controller2. Columns 6-8 show the results for the 
launch-on-capture approach and columns 9-11 for the 
launch-on-shift approach. Columns 6 and 9 show the 
number of paths generated by the ATPG. Before test 
compaction, each generated path has a test pattern. The 
number of patterns after compaction is shown in columns 7 
and 10. The test patterns are compacted by a simple greedy 
static compaction algorithm, in which each new pattern is 
combined with the first compatible existing pattern. 
Columns 8 and 11 show the CPU time. It can be seen that 
dealing with uncontrollable signals from non-scanned flip-
flops and embedded memories significantly increases the 
CPU time. However, without using the 7-value algebra, the 
test generation for controller1 did not finish within 24 
hours and resulted in many more aborts. 

 
Table 1. Robust test generation summary. 

Launch-on-Capture Launch-on-Shift 
Circuit # Lines 

UB # 
Detectable 

Faults 

# Primary 
Inputs 

# Scan 
Flip-Flops # Paths 

Generated
# Test 

Patterns 
CPU Time 

(m:s) 
# Paths 

Generated 
# Test 

Patterns 
CPU Time 

(m:s) 
s1423      1 423        2 420   20        74        395     215     0:13        666      191     0:07 
s1488      1 488        1 310   11          6        192       87     0:01        206        81     0:01 
s1494      1 494        1 324   11          6        193       85     0:02        204        79     0:01 
s5378      5 378        7 564   38      179     1 799     406     0:07     1 110        94     0:04 
s9234      9 234      16 166   39      211     2 376     790     3:59     3 608      681     2:52 
s13207    13 207      22 886   65      638     3 220     909     2:25     6 469   1 635     1:03 
s15850    15 850      24 338   80      534     2 637     472     2:35     5 828      645     1:08 
s35932    35 932      59 246   38   1 728     9 762       36   14:31   12 194        44     8:15 
s38417    38 417      74 926   31   1 636   14 905     949   14:21   17 554      655     2:46 
s38584    38 584      59 454   41   1 426     9 723     526   11:20   21 047      679     4:28 
controller1    86 612    130 692   38   3 503   12 275   2 275 130:10   19 626      657 102:41 
controller2 1 966 204 1 815 222 201 57 352 493 779 70 670 132 hrs* 714 116 43 289 57 hrs 

*A commercial ATPG tool took >48 hours for transition fault test generation using launch-on-capture for controller2. 
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Figure 9. Fault coverage (percentage of robustly tested faults) comparison. 

 
Figure 9 shows the fault coverage (percentage of faults 

which have at least one path robustly tested) using the 
launch-on-capture or launch-on-shift approach only, or 
both. The data in column 3 in Table 1 is used as the total 
number of detectable faults. For most circuits, the launch-
on-shift approach can detect more faults robustly than the 
launch-on-capture approach, except for circuit s5378, in 
which the launch-on-capture approach does better. The 
fault coverage assuming combinational enhanced-scan is 
shown for comparison. In combinational enhanced-scan, 
two independent vectors can be stored in the scan chain, so 
the fault coverage for this method is an upper bound. 
Again in this mode it is assumed that the primary inputs 
hold their logic values from the first vector to the second 
vector, and the primary outputs are masked. Thus the 
coverage loss is purely due to the launch-on-capture and 
launch-on-shift constraints and uncontrollable values. 
Although the faults that the launch-on-capture approach 
cannot detect must be sequentially redundant in functional 
mode, the test patterns are still useful because these 
sequentially redundant faults may cause reliability 
problems. 

Figure 10 is the comparison for robustly testable path 
length using the launch-on-capture and launch-on-shift 
approaches, for circuit s15850. The faults are indexed so 
that the length of the longest testable path for each fault, 
under the launch-on-capture constraints, is in increasing 
order. The longest robustly testable path for each fault 
assuming combinational enhanced-scan is also generated 
for comparison. Because the primary inputs hold and the 
primary outputs are masked, some faults have no coverage 
even if the circuit uses combinational enhanced-scan. For 
most faults, the maximum path length using the launch-on-
shift approach is close to the upper bound, but this is not 
true for the launch-on-capture approach. All the other 
circuits have similar plots except for circuit s5378. This 
phenomenon indicates that the constraints from the launch-

on-capture approach are stronger than the constraints from 
the launch-on-shift approach for most circuits. 

 
Figure 10. Path length comparison. 

4.2. Comparison to Transition Fault Tests 
According to the combined delay fault model [22][23], 

a delay fault can be caused by the combination of a spot 
defect and process variation. A spot defect can be modeled 
as a slow-to-rise or slow-to-fall (local delay) fault at a 
certain site and process variation can cause small 
distributed delay fault along a path through the spot defect. 
For a local delay fault, our test strategy is to test the 
longest paths with a rising or falling transition at the fault 
site, so the smallest combination of local and distributed 
delay faults can be detected. In short, the fault space of this 
delay fault model is the same as that of the transition fault 
model, but it models smaller delay faults. Process variation 
can be handled by testing multiple (K) longest paths 
through each fault site, not only one. However, to keep the 
test set size comparable to the transition fault test set size, 
K is set to one in this work, and the resulting test set is 
termed a KLPG-1 test set. 

The KLPG-1 test set is constructed as follows: If a 
fault (slow-to-rise or slow-to-fall) has robustly testable 



paths, the longest one is selected, because the delay fault 
can always be detected regardless of the delay of the other 
gates or interconnects in the circuit, though this may not be 
the longest sensitizable path. The results for robust tests 
are shown in the previous section. In Figure 9 it is shown 
that the fault coverage for robust test is low using the 
launch-on-capture approach. This indicates that many 
faults have no robust test. To construct a test set whose 
quality is higher than the transition fault test, these faults 
must be tested. 

If a fault does not have a robust test, the longest 
restricted non-robustly testable path is selected, if it exists. 
The path selection has the following restrictions: 

1. The path must be non-robustly testable [18]; 
2. It must have the required transition at the fault site; 
3. The local delay fault must be detected at some 

capture points, if there is no other delay fault. 
In short, if a test is a restricted non-robust test for a 

fault, it must also be a transition fault test. 
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Figure 11. Restricted non-robust test. 

For example, path n1-n2-n3-n5 is a non-robustly testable 
path in Figure 11. It is a valid non-robust test for line n2 
and n3. However, it is not a valid non-robust test for line n5 
because the glitch (or transition) may not happen if the 
delay of path n1-n4 is greater than the delay of path n1-n2-n3 
(violation of restriction 2). Similarly, it is not a valid non-
robust test for line n1 because the slow-to-rise fault may 
not be detected even if there are no other delay faults 
(violation of restriction 3). 
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Figure 12. Transition fault test. 

If a fault has no non-robust test either, a transition fault 
test which can detect a small local delay fault is generated. 
In other words, this test has higher quality than the 
traditional transition fault test because the traditional one 
assumes large local delay and propagates the fault through 
any path (usually a short path). In our test generation, this 
case usually happens when the local delay fault can only 
be activated or propagated through multiple paths, such as 
the slow-to-fall fault on line n2 in Figure 12. The test 
quality is determined by the length of the shortest paths in 
the activating or propagating path set. The longer the 
shortest path is, the smaller the local delay fault that can be 
detected. The best transition fault test, in terms of the 
detected local delay fault size, cannot be guaranteed to be 
generated by our tool but it should be better than the 
traditional transition fault test. If no high quality test can 

be found, a transition fault test is generated. This happens 
for fewer than 0.05% of the faults in our test cases. 

The KLPG-1 test set is composed of these 3 types of 
path delay fault tests, as shown in Figure 13. It has the 
same transition fault coverage as the commercial transition 
fault test set, but has higher quality, in terms of the 
detected delay fault size. 

 
Robust test 

Non-robust test

Transition fault test  
Figure 13. Test composition. 

Table 2 shows the comparison of test set size (number 
of test patterns) between KLPG-1 test sets and the 
commercial transition fault test sets, using the launch-on-
capture approach. Columns 2-4 show the number of 
statically compacted robust/non-robust/ transition fault test 
patterns in KLPG-1 test sets. Column 5 shows the total 
number of compacted KLPG-1 patterns. If longest paths 
are not required, some KLPG-1 patterns can be dropped 
but the transition fault coverage remains the same. Column 
6 shows the number of transition fault effective patterns, 
which detect unique transition faults, out of the KLPG-1 
test sets. The number of transition fault test patterns 
generated and dynamically compacted by the commercial 
tool is listed in column 7. 
Table 2. Comparison of test size (Launch-on-capture). 

Circuit Robust Non-
Robust

Tran-
sition Total Effect-

ive 
Comm-
ercial 

s1423      215      35     12      262      208        95
s1488        87      40       2      129      119      102
s1494        85      41       2      128      116      101
s5378      406        2       2      410      341      194
s9234      790      69       6      865      697      465
s13207      909      32   117   1 058      612      382
s15850      472      31       4      507      397      231
s35932        36        3       1        39        37        68
s38417      949       51       1   1 001      724      365
s38584      526    443     50   1 019      945      528
controller1   2 275    825   311   3 411   2 600   1 900
controller2 70 670 1 856 4 025 76 551 16 284 11 702

 

For most circuits, the KLPG-1 test sets are 2-3x larger 
than the commercial transition fault test sets. The KLPG-1 
test set for circuit s35932 is smaller, but the KLPG-1 test 
set for controller2 is significantly larger. On the other 
hand, for controller2, the number of patterns which have 
unique transition fault detection is not much larger than the 
commercial transition fault test set. This phenomenon 
indicates that many transition faults in controller2 are 
easy-to-detect but testing them through the longest paths 
results in many more necessary assignments and lower 
compaction rate. This is likely due to the fact that the 
average path contains 40 gates. 
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Figure 14. Robust/non-robust/transition fault coverage of KLPG-1 test sets (launch-on-capture). 

 
Figure 14 shows the robust/non-robust/transition fault 

coverage of the KLPG-1 test sets, using launch-on-capture. 
For example, for circuit s1423, 60.66% of the faults are 
robustly tested, and 19.01% of the faults are non-robustly 
only tested. If the launch-on-shift or combinational 
enhanced-scan approach is used, adding a few transition 
fault test patterns to the robust test sets results in the same 
transition fault coverage as the commercial transition fault 
test sets, for most ISCAS89 circuits. But this is not true for 
the launch-on-capture approach. The strong constraints 
from this approach prevent many faults from having 
robustly testable paths. For the industrial designs 
controller1 and controller2, robustly detected faults are 
even fewer due to the constraints from non-scanned 
memory cells. Figure 14 shows that many more faults are 
only non-robustly detected or can only be detected through 
multiple paths (detected by the transition fault test only). 
For example, in circuit s5378, 354 faults are non-robustly 
detected but not robustly detected. The number of non-
robust test patterns included in the test set is 2. This does 
not indicate that these 2 test patterns detect the 354 faults, 
because the 460 robust test patterns also non-robustly 
detect some other faults by luck. Because the unit delay 
model is used for the ISCAS89 circuits in the experiments, 
many paths are of equal length and any of the longest 
restricted non-robustly testable paths can be the best non-
robust test for the fault. Thus, the 2 non-robust test patterns 
for this circuit can be seen as a cleanup phase. 
4.3. Compaction 

Though KLPG-1 test has higher quality, in some cases 
a larger test set is not affordable. Then trade-offs between 
test quality and test size are necessary in compaction. 

There are two factors which affect the test quality. One 
is the number of transition faults which are covered by the 
test set. The other is the path delay through the transition 
fault sites [23]. For a fault which has long sensitizable 
paths, testing a short path is not able to detect a small delay 

fault. So a long path whose delay is close to the longest 
sensitizable path through the fault must be tested. 
Therefore, the patterns which test long paths are “must 
keep” patterns. For a fault which has only short paths, 
relative to the critical paths, the coverage loss can be 
neglected if one path, not necessarily the longest one, is 
tested. The reason is that the probability of a delay fault 
large enough to cause the longest short path to fail but 
small enough to cause the short path to pass is small. Thus, 
for these faults, transition fault tests are good enough if a 
small test size is required. Given a maximum test set size, 
first the “must keep” patterns, which test long paths, are 
selected. Then the remaining patterns are selected based on 
the number of faults they detect. Most of the remaining 
transition faults can be detected by randomly filling the 
don’t care bits in the selected patterns. 

If the test size is fixed at 6 000 for circuit controller2, 
and all the paths whose delay exceeds 85% of the longest 
sensitizable path are kept, 3.02% of the non-redundant 
transition faults are not detected, assuming the commercial 
tool detects all non-redundant transition faults. This 
indicates that the transition fault coverage curve must have 
a long tail. The average care bit density of the compacted 
test set is 10.2% before randomly filling. Experiments 
show that if more long paths (with delay >75% of the 
longest sensitizable path) are kept, 3.05% of the non-
redundant transition faults become undetected (an 
additional 0.03%). Trade-offs between transition fault 
coverage and path delays can be made accordingly. 

5. Conclusions and Future Work 
We have proposed a KLPG test pattern generation tool 

for scan-based synchronous sequential circuits, using the 
launch-on-shift and launch-on-capture at-speed test 
approaches. The generated test patterns can be applied to 
the commonly-used scan designs, and at-speed test can be 
performed using low-cost automatic test equipment. A 7-
value algebra has been developed to handle non-scanned 



flip-flops and embedded memories whose logic values 
cannot be initialized by the scan operation. Experiments 
have shown that this algebra significantly speeds up the 
test generation procedure. 

Experiments have shown that for most circuits, the 
launch-on-capture approach results in stronger constraints 
and tighter dependence between the two vectors in a test 
pattern, than the launch-on-shift approach. The test quality 
using the launch-on-shift approach is close to the upper 
bound, in terms of the maximum path delay through each 
fault site. However, the launch-on-capture approach can 
eliminate most of the sequentially redundant faults in 
functional mode [24]. 

If the launch-on-shift or combinational enhanced-scan 
approach is used, adding a few transition fault test patterns 
to the robust test sets results in the same transition fault 
coverage as the commercial transition fault test sets, for 
most ISCAS89 circuits. However, due to the strong 
constraints from the launch-on-capture approach, robust 
tests alone do not achieve high transition fault coverage. 
We have constructed KLPG-1 test sets which include the 
robust/non-robust/transition fault test patterns for each 
fault and have the same transition fault coverage as the 
commercial transition fault test sets. Since KLPG-1 test 
sets test long paths through each fault site, smaller delay 
faults must be detected, compared to the commercial 
transition fault tests. We are currently evaluating our test 
sets on real chips to quantify this benefit. 

This work is being extended to handle circuits which 
have more complicated timing features, such as clock 
gating and multi-cycle paths. 
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