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Abstract 
Delay faults are an increasingly important test challenge. Traditional delay fault models are 

incomplete in that they only model a subset of delay defect behaviors. To solve this problem a 
combined delay fault (CDF) model has been developed, which models delay faults caused by 
the combination of spot defects, parametric process variation, and capacitive coupling. The 
spot defects are modeled as both resistive opens and shorts. The CDF model has been 
implemented in the CodSim delay fault simulator which gives more realistic delay fault 
coverage. The fault coverage of traditional test sets has been evaluated on the ISCAS85 
circuits. 

1. Introduction 
The 2002 International Technology Roadmap for Semiconductors (ITRS) [1] projects at-

speed testing as an increasingly difficult problem. Rising clock frequencies and the increasing 
influence of interconnect on circuit delays are making traditional functional and delay test 
approaches inadequate. 

As shown in Figure 1, spot defects and parametric process variation can cause functional 
failures, delay faults, or reliability hazards. A local delay fault is a local delay increase caused 
by a spot defect, such as a resistive open or short. The gate or transition fault model targets 
these faults. Global delay faults are slow paths due to process parameter variation such as 
transistor gate length variation. The path delay fault model targets these faults. Combined delay 
faults (CDF) are delay faults caused by a combination of spot defect and process variation. By 
considering the entire range of spot defect parameters and process variation, the CDF 
encompasses both local and global delay faults. 
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Figure 1. Fault types addressed in this work. 



The traditional delay fault models do not completely describe all realistic fault behaviors, 
and so result in incomplete fault coverage and poor diagnostic resolution. In particular they do 
not account for pattern-sensitive delay due to signal coupling and resistive shorts [2]. 
Capacitive coupling causes significant variation in path delays [3][4][5]. The behavior is even 
more complicated when resistive opens or shorts are combined with capacitive coupling [6]. 

In this research we propose to use a physically realistic yet economical combined delay fault 
model to simultaneously account for delay faults due to resistive opens and shorts, and 
parametric process variation, in the presence of capacitive coupling. At this time we do not 
consider delays due to inductive coupling, power supply noise [7] or substrate noise. 

We have implemented the CDF model in the CodSim (Combined Delay Fault Simulator) 
delay fault simulator and used it to evaluate the CDF coverage of existing test sets on the 
ISCAS85 benchmark circuits. The CDF coverage has been compared with the fault coverage 
using traditional fault models, such as the transition fault model. As was the case for Boolean 
test of resistive bridges [8], results show that the loss in coverage is primarily due to faults with 
low detection probability [8][9]. 

The remainder of the paper is organized as follows. Section 2 describes the combined delay 
fault model and its coverage metric. Section 3 describes the fault simulation algorithm and 
Section 4 includes experimental results. Section 5 concludes with directions for future research. 

2. Fault Model and Coverage Metric 
In the combined delay fault model it is assumed that there is only one spot defect in the 

circuit, and the circuit is also subject to process variation and capacitive coupling. In this model, 
fault detection is probabilistic instead of deterministic. For example, suppose there are two 
paths, P1 and P2, through an open fault site. Figure 2 shows the delays of the two paths, and the 
delays have a distribution due to process variation. tmax is the maximum specified delay of the 
circuit. ∆ is the extra delay at the fault site. A transition test [10] would test either P1 or P2 and 
100% transition fault coverage is achieved. This is valid only if ∆ is large. A gate delay test [11] 
would test P1 because P1 has a larger nominal delay. Testing P1 can detect a smaller extra delay 
than testing P2. However, in reality testing P1 only does not guarantee 100% detection, because 
when the extra delay is between ∆1 and ∆2, testing P1 may not detect the fault while testing P2 
may detect it, assuming the delays of the two paths are not perfectly correlated. A path delay 
fault test [12] tests both paths, and assumes the path delay is pattern independent. However, if 
the worst-case capacitive coupling along the path can be sensitized (the delay distribution of P1 
becomes P’1), a smaller extra delay ∆’ would escape the path delay test. 
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Figure 2. Probabilistic fault detection. 

Thus no traditional delay fault test is able to guarantee detection of realistic faults. To 
achieve 100% fault coverage under the CDF model, all the paths which can be the longest path 
through the fault site (in this example, both P1 or P2) must be tested, with the worst-case 
capacitive coupling sensitized. Moreover, because of process variation, the coupling 



sensitization is also probabilistic. Therefore, all the test patterns which sensitize the worst-case 
coupling under every process parameter combination must be applied. 

A fault coverage metric for the CDF model is developed to evaluate the quality of existing 
test sets. In this research the notion of detection probability (DP) [8][9] for a single fault site is 
used. Suppose a test set t has been applied to the circuit. For fault site i, and the local extra 
delay ∆ caused by the spot defect [13], the DP is [14]: 

DPi,∆∆∆∆(t) = P(t detects delay fault | chip has a delay fault)    (1) 
We define “t detects delay fault” as “at least one path tested by t through fault site i is slow”, 

and for simplicity, we regard “chip has a delay fault” when ∆ > ∆0 in Figure 3, where ∆0 is the 
smallest detectable extra delay. This delay can only be detected by sensitizing the longest path 
(P0 in Figure 3) through the fault site and this path is assumed to be under the worst process 
corner. Here “longest” means “maximum delay with the worse-case coupling sensitized”. Thus 
the definition can also be written as: 

DPi,∆∆∆∆(t) =P(at least one tested path through i is slow)    (2) 
∆∆∆∆ > ∆∆∆∆0 

In Figure 3, suppose paths P1, P2 and P3 are tested by t, and P0 is not tested. When ∆0<∆<∆1, 
DPi,∆(t) is 0; when ∆>∆2, DPi,∆(t) is 100%, because the tested path P1 is definitely slow; when 
∆1<∆<∆2, DPi,∆(t) increases from 0 to 100% as ∆ increases. 
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Figure 3. Fault coverage computation. 

The fault coverage metric tells us that there are two ways to get a higher-DP test: 
1. Increase the delay of the longest tested path by either testing a longer path or sensitizing 

the worst-case coupling, to reduce the 0-DP area between ∆0 and ∆1. 
2. Test more paths whose delays are close to the longest tested path (such as P2 in Figure 3) 

or increase the delay of such paths to increase the DP between ∆1 and ∆2. Testing a short path 
(such as P3) does not increase the DP because whenever it is slow, the longest tested path P1 
must be slow too. 

The above analysis is for a given local extra delay ∆. For fault site i with an arbitrary ∆, the 
DP for site i is computed as: 

∫ >
⋅=

i0∆∆ i∆ii ∆∆tt
,

d)(p)(DP)(DP ,        (3) 

where pi(∆) is the PDF of ∆ at fault site i, and can be computed using the PDF of the open or 
bridge resistance [13]. The DP computation for resistive shorts is more complicated than that 
for resistive opens, because both shorted lines can be slowed down. The extra delays on both 
lines must be computed. 

The overall fault coverage for test set t (for both open and bridge faults) is: 
%100)(DP)(FC ×⋅= ∑i ii wtt        (4) 



where wi is the weight for fault site i (∑i wi = 1). In our experiments, for simplicity, wi is set to 
1/N, where N is the total number of open or bridge fault sites, assuming all sites are equally 
likely. 

3. Simulation Algorithm 
The goal of the combined delay fault simulation is to compute the detection probability for 

each fault site, for test set t. If the DP is high enough, the fault site can be dropped so that the 
ATPG is not required for that site. The DP’s for all the fault sites are then used to compute the 
overall fault coverage, so that the quality of the test set is evaluated. 

Figure 4 shows the three phases in the CDF simulation algorithm. In the first phase, the spot-
defect-free timing simulation is performed for each vector pair. After the simulation, the initial 
and final logic values and the nominal transition time of the last event for each line are known. 
Figure 5 shows an example. The italic numbers next to the transition symbols indicate the 
transition time, assuming the unit gate delay model is used. S1/0 indicates a stable logic value 
1/0 on the line. 

1. For each test vector pair, run spot-defect-free timing simulation and identify the 
robust/non-robust propagation paths from each line to primary outputs. 

2. Check the validation of the non-robustly sensitized paths through a line, by 
introducing a spot defect at that line and running fault simulation. 

3. Run fault simulation considering coupling for the selected long paths for each fault 
site. 

Figure 4. CDF simulation algorithm. 
Then the robust/non-robust propagation paths [12][15] from each line to primary outputs are 

identified. A line’s robust propagation paths can be computed using its immediate fanout lines’ 
robust propagation paths. In Figure 5, suppose line d has a robust propagation path P1 with 
length 6, and line e has path P2 with length 7. The robust propagation paths for line b are 
computed by checking the final logic values on the side inputs of gate G1 and G2. Then two 
paths are identified: b-P1 with length 7 and b-P2 with length 8. Because the propagation paths 
are robust, the slow signal is able to propagate through these paths independent of the delays on 
the side inputs to the paths. Therefore the extra delay ∆ on a line must be detected if ttrans + ∆ + 
lprop > tmax, where ttrans and lprop are the transition time and propagation path length associated 
with that line, respectively. In the simulation, since ttrans and lprop are statistical values (with 
PDFs), the computed ∆ is a statistical value too. For resistive shorts, the sensitization condition, 
i.e. the opposite logic value on the other shorted line, must be checked. 
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Figure 5. Robust propagation path indentification. 
The non-robust propagation paths can be identified in a similar way. The difference is that if 

there is no transition on a line, the non-robust propagation paths from that line must also be 
computed. Line g in Figure 6 is an example. The reason is that a spot defect on line d may 
generate a glitch on g, and the computation of the non-robust propagation paths from d uses g’s 



propagation paths. The complexity of phase 1 is O(V·C), where V is the number of vectors and 
C is the circuit size (number of lines in the circuit). 
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Figure 6. Non-robust propagation path identification. 

A problem with the non-robust propagation paths is that the fault detection through these 
paths is dependent on the delays on the side inputs to the path. In Figure 6, an extra delay on 
line b does not affect the transition time on line h, even though line b has a non-robust 
propagation path. Therefore, the validation of these paths must be checked (phase 2). After 
phase 1, each line has a few non-robust propagation paths. The validation check can be 
performed by introducing an extra delay ∆ on the line, where ∆ = tmax – ttrans – lprop, and running 
fault simulation for the vector which sensitizes this path, to check if the slow signal can be 
detected at any primary output. This procedure starts from the smallest ∆. If a small ∆ can be 
detected through a non-robust propagation path, the validation check for the paths which can 
only detect large ∆ is not necessary, because testing those paths, such as P3 in Figure 3, does 
not increase the fault coverage. Experiments show that normally only a few paths must be 
checked for each line. 

It is possible that some functional sensitizable paths [16] are missed. However, because these 
paths always appear in pairs and the delay is determined by the shorter one, in most cases they 
do not contribute to the fault coverage. Thus these paths are not checked unless there is no long 
robust or non-robust propagation path through the fault site. 

In phase 3, the extra delay due to coupling is computed. Similar to phase 2, phase 3 
introduces an extra delay ∆ at the fault site, where ∆ can cause one propagation path (either 
robust or validated non-robust) to be slow, and runs the fault simulation considering coupling 
for the vector sensitizing the path. The reason why ∆ should be introduced is because the 
coupling alignment is dependent on ∆. Handling capacitive coupling is a classic “chicken and 
egg” problem, because the victim’s transition time depends on the aggressor’s timing window, 
which could depend on the victim’s output [17]. We solve this problem by iterative simulation, 
which is similar to the algorithm used in [17]. Similarly, phase 3 is only performed for the long 
paths. 

4. Simulation Results 
A combined delay fault simulator CodSim was developed in Visual C++ and run on 

Windows 2000 with a 450 MHz Pentium III processor. In the experiments, random coupling 
net pairs with realistic coupling capacitance values are included. Buffer-to-buffer delays are 
assumed to have a normal distribution with 3σ = 15% of the nominal delay. The smallest 
detectable open resistance is computed using the longest sensitizable path through the fault site 
[18], and it is assumed that the path delay would increase by 3% if the worst-case coupling is 
sensitized [4]. For shorts, different cases for the two shorted lines are analyzed and the largest 
detectable resistance is computed. 

Table I shows the open fault coverage for the ISCAS85 circuits, simulated using 10 000 
random vectors and transition tests, which are generated by FastScan using a backtrack limit of 



200. Circuit c2670 is not included due to a circuit layout extraction problem. In this work, it is 
assumed that 80% of the open faults have infinite resistance, while 20% are resistive, with 
log(R) uniformly distributed, where R is the open resistance [19]. 

Table I. Fault simulation results for resistive opens. 

10 000 Random Vectors Transition Test 
Circuit Open 

Sites Tran. 
FC (%) 

CDF 
Cov. (%) 

Sim. 
Time (s)

# of 
Vec. 

Tran. 
FC (%)

CDF 
Cov. (%) 

Sim. 
Time (s)

c432    432 99.2 99.1/97.6   1.9 182 99.4 98.8/96.6 0.1 
c499    499 99.1 98.9/94.0   3.0 184 99.4 98.6/93.6 0.1 
c880    880 100 99.3/96.0   6.2 182 100 98.8/96.2 0.1 
c1355 1 355 99.5 98.6/94.0   7.5 550 99.8 96.4/93.4 0.6 
c1908 1 908 95.8 94.9/92.4 12.1 500 99.7 98.4/96.3 1.2 
c3540 3 540 91.8 91.1/88.6 22.1 608 96.3 94.9/93.0 1.8 
c5315 5 315 94.9 94.7/92.7 49.1 402 99.5 99.0/98.4 2.7 
c6288 6 288 99.1 96.1/93.6 44.6 190 99.2 96.2/94.2 1.1 
c7552 7 552 92.1 91.9/89.7 70.7 696 98.4 98.1/96.4 5.8 

Column 2 shows the number of open fault sites, assuming an open may happen on the inputs 
and output of any gate in a circuit. Columns 3 and 7 show the fault coverage using the transition 
fault model, in which the local delays are assumed to be large. Recent research [20] shows that 
real delay fault coverage is slightly higher, since most delay faults are due to resistive opens 
that affect both transitions. The fault coverage using the CDF model is listed in columns 4 and 
8, assuming a full-speed/half-speed test is applied. For the long random test set, the fault 
coverage using a full-speed test is close to its transition fault coverage (<1% difference), 
because a fault site has high probability to have many long paths tested. The CDF coverage loss 
for the random test set is primarily due to the faults which have zero detection probability, i.e. 
no path through the fault is tested. The transition test ensures that at least one path through each 
non-redundant fault site is tested, therefore the CDF coverage loss is primarily due to the fact 
that not enough long paths through the fault site are tested. Circuit c6288 is an interesting case 
because the CDF coverage is not close to the transition fault coverage. The reason is that for 
this circuit, it is very easy to sensitize one path through each gate/line but it is very hard to 
sensitize a long path through a gate/line. The CDF coverage for testing the 10 longest non-
robustly testable paths through each gate (10-LPEG test) [18] is 99.9%+, if the redundant open 
faults are removed. The number of vectors is listed in Table III. 

Table II. Fault simulation results for resistive shorts. 

10 000 Random Vectors Transition Test 
Circuit Bridge 

Sites 0 Ω 
FC (%) 

CDF 
Cov. (%) 

Sim. 
Time (s)

# of 
Vec. 

0 Ω 
FC (%)

CDF 
Cov. (%) 

Sim. 
Time (s)

c432      821 99.4 88.1/84.4   1.4 182 93.3 81.4/81.0 0.1 
c499   1 102 99.9 93.5/89.4   2.2 184 96.5 86.7/81.3 0.1 
c880   1 421 99.6 90.9/86.2   2.4 182 95.7 85.3/83.5 0.1 
c1355   2 488 99.5 88.6/84.2   7.0 550 97.3 84.8/81.6 0.3 
c1908   4 007 98.3 92.0/91.9   5.1 500 96.8 88.4/88.1 0.4 
c3540   8 919 96.8 87.0/86.7 17.9 608 93.6 80.3/80.0 1.4 
c5315 12 168 98.0 94.3/94.0 18.6 402 97.1 89.4/89.1 1.3 
c6288 14 170 99.2 91.6/91.4 22.5 190 92.9 78.8/78.6 1.0 
c7552 12 156 94.2 87.2/86.6 25.7 696 95.8 82.8/81.9 2.8 



Table II shows the resistive bridge fault coverage for the ISCAS85 circuits. Random non-
feedback shorts are used. The number of shorts is approximately twice the number of lines in 
the circuits. Shorts between lines feeding the same gate are not included. Shorts between the 
signal lines and power/ground grid are not considered because they are more likely to behave as 
stuck-at or transition faults. The bridge resistance is assumed to be uniformly distributed 
between 0 Ω and 40 kΩ [21]. 

Columns 3 and 7 show the fault coverage using the 0 Ω bridge fault model. For both random 
and transition test sets, there is a large CDF coverage loss, and it can be seen that the CDF 
coverage does not increase much if the test speed is increased. Figures 7a and 7b explain the 
phenomenon. The delay caused by most resistive shorts can be plotted as shown in Figure 7 
[13]. For most shorts, the slack of the longest sensitizable path through either shorted line is not 
very tight (Figure 7a), therefore the coverage loss, which is the range between the two dotted 
vertical lines, is small, even if a half-speed test is applied. However, for some shorts with one 
shorted line on a critical path, a large coverage loss occurs if the longest sensitizable path 
through that line is not tested (Figure 7b). 
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Figure 7. Delay vs. Bridge resistance. 

It can also be seen from Table II that the long random test sets do not result in many 0-DP 
bridge faults though they cause many 0-DP open faults. This is because a bridge fault can be 
detected by either shorted line in most cases. However, since large bridge resistance can be 
detected only through the line with weaker drivers, high 0 Ω bridge fault coverage does not 
necessarily indicate high CDF coverage for resistive shorts. Transition tests have low CDF 
coverage because they do not have high probability to set the opposite logic value on the other 
shorted line when a transition occurs on the line with weaker drivers. 

Table III. Results for resistive shorts using 10-LPEG tests. 

Circuit # of Vectors Full-speed 
Test FC(%)

Sim. Time 
(s) 

c432      840 97.4   0.2 
c499   3 064 98.4   0.8 
c880   2 046 98.5   0.6 
c1355   3 922 97.6   2.9 
c1908   3 108 99.5   2.0 
c3540   7 784 99.7 13.6 
c5315   8 720 99.6 18.2 
c6288 14 448 99.1 35.7 
c7552 11 976 98.4 30.2 



Table III shows the results for resistive shorts using the 10-LPEG tests generated in [18]. 
Column 2 shows the number of vectors. The vectors are not compacted so one vector pair 
targets one path. Column 3 shows the fault coverage using full-speed tests. It can be seen that 
by testing the 10 longest paths through each gate, higher CDF coverage for resistive shorts is 
achieved. Though the tests do not aim at the bridge faults, by testing the shorted line with 
weaker drivers at least 10 times, it is likely that at least one test vector sets the opposite logic 
value on the other shorted line. And since the fault is propagated through many long paths, the 
coverage loss is small, and primarily due to the fact that the worst-case coupling for those paths 
is not sensitized. 

5. Conclusions and Future Work 
In this work we have described a physically realistic combined delay fault model 

incorporating the delay effects of spot defects, parametric process variation and capacitive 
coupling. The CDF model uses the accurate delay models we have developed [13]. We have 
implemented the CDF model and a fault coverage metric in the CodSim delay fault simulator. 

Experiments show that full-speed tests are able to detect most open faults, while the bridge 
fault coverage is not high, using some traditional test sets. The reason is because for some 
bridge faults, large coverage loss occurs if the longest true paths through them are not tested. 
Due to this reason, testing the K longest paths through each gate results in high CDF coverage 
for resistive shorts. 

The future direction of our work is to use the CodSim simulator in the CodGen delay test 
ATPG framework [18]. So far CodGen only generates the K longest paths through each gate. In 
order to maximize the CDF coverage for resistive shorts, CodGen should target the bridge 
faults and maximize the delay due to coupling. On the other hand, it must incorporate spatial 
process correlation to reduce the test size without coverage loss. 
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