
One-Write Algorithms for

Multivalued Regular and Atomic Registersy

Soma Chaudhuriz Martha J. Kosax Jennifer L. Welch{

June 1, 2001

Abstract

This paper presents an algorithm for implementing a k-valued regular register (the logical register)

using k(k� 1)=2 binary regular registers (the physical registers) that requires only one physical write per

logical write. The same algorithm using binary atomic registers implements a k-valued atomic register.

The algorithm is simple to describe and depends on properties of paths in a related graph. Two lower

bounds are given on the number of registers required by one-write implementations in the regular case.

The �rst lower bound, 2k � 1� blog kc, holds for a fairly general class of algorithms. The second lower

bound holds for a restricted class of implementations and implies that our algorithm is optimal for this

class. Both lower bounds improve on the best previously known lower bound, which was k. The two

lower bounds also hold for the atomic case under further restrictions.

Key Words: concurrent reading and writing, shared registers, regular, atomic, complexity analysis,

lower bounds.

1 Introduction

In any concurrent system, processes need to communicate with other processes. Concurrent reads and writes

of shared memory cells, or registers, are required for communication. A consistency condition speci�es what

guarantees are provided concerning the values returned in the presence of concurrent accesses. Lamport

yThis work was supported in part by NSF grant CCR-9010730, an IBM Faculty Development Award, and NSF Presidential

Young Investigator Award CCR-9158478. The work of the �rst author was also supported in part by NSF grant CCR-9308103,

and the work of the second author was also supported in part by a UNC Board of Governors Fellowship. Much of this work

was performed while the authors were with the Department of Computer Science, University of North Carolina at Chapel Hill.

zCurrent address: Department of Computer Science, Iowa State University, Ames, IA 50011
xCurrent address: Department of Computer Science, Tennessee Technological University, Cookeville, TN 38505. Contact

Author. E-mail: mjk9504@tntech.edu

{Current address: Department of Computer Science, Texas A&M University, College Station, TX 77843-3112

1

introduced three conditions, in increasing order of strength, safe, regular and atomic [6], thus de�ning three

types of registers. If the shared memory provides a stronger guarantee, then it is often easier for users to

program the system, but implementing the shared memory may be more diÆcult. Thus it is helpful to know

which types of registers can implement which other types and what the costs of these implementations are.

Many such implementations have been developed; [5] surveys many representative algorithms.

In this paper we focus on implementing a k-ary regular (respectively, atomic) register, the logical register,

out of binary regular (respectively, atomic) registers, the physical registers, for k > 2. A register is a memory

cell that supports concurrent reading and writing by a collection of processes; we assume there are several

readers but only one writer. A k-ary register can take on k di�erent values; binary means 2-ary. A read of a

regular register must return either the value of the most recent preceding write (a well-de�ned notion since

there is only one writer) or the value of an overlapping write. For an atomic register, reads must behave

like reads of regular registers; additionally, for any two nonoverlapping reads, the value returned by the read

completed �rst must not have been written for the �rst time after the value returned by the second read. 1

More speci�cally, we are interested in one-write algorithms|implementations with the property that

every WRITE to the logical register requires only one write to a physical register and no reads of physical

registers.2 Since bounds on the number of physical accesses per logical access can be converted into time

bounds for the logical access, a one-write algorithm would have time-eÆcient logical WRITEs, perhaps an

important characteristic for applications in which WRITEs outnumber READs.

In this paper, we present a one-write algorithm for implementing a k-ary regular register out of binary

regular registers. Clearly this algorithm is optimal in the number of physical writes per logical WRITE. The

best previous upper bound was dlog ke writes per WRITE, due to Chaudhuri and Welch [2]. The algorithm is

simple to describe using the complete graph whose nodes are labeled with the logical values. Its correctness

proof is based on properties of paths in this graph. The same algorithm also implements a k-ary atomic

register out of binary atomic registers.

One drawback of our algorithm is that it requires C(k; 2) = k(k � 1)=2 = O(k2) physical registers. The

best previous lower bound on the number of physical registers for a k-ary regular implementation was k

[2], for any number of physical writes per logical WRITE. Thus binary to k-ary regular implementations

are inherently expensive in the amount of \hardware" required. In this paper we show two improved lower

bounds on the number of physical registers in any one-write algorithm in which the writer does not read

physical registers. Each lower bound holds for a natural class of regular implementations. The �rst lower

bound, 2k�1�blog kc, holds for a reasonably unrestrictive class of implementations satisfying the symmetric

property: Suppose at some point the current value of the logical register is v and a logical WRITE for w

changes physical register x. Then if the next logical WRITE is for v, x is changed again (back to its previous

1The weakest guarantee, safety, only ensures that a read which does not overlap a write returns the value of the latest

preceding write; the value returned by a read that does overlap a write can be arbitrary. [2] studied one-write implementations

of k-ary safe registers out of binary safe registers and showed that �(k) physical registers are necessary and suÆcient.

2Logical operation names will be in upper case and physical operation names will be in lower case throughout this paper.

2

value). The second lower bound holds for a restricted class of implementations satisfying the toggle property:

for each unordered pair of logical values, there is one particular register that is changed when the logical

register switches between those values. This lower bound implies that our algorithm is optimal in the number

of physical registers for this class.

We developed a general transformation to convert a one-write algorithm for k values into a one-write

algorithm for k � 1 values using fewer physical registers. This transformation is used in the inductive

proof of our symmetric lower bound. In proving these two lower bounds, we have developed considerable

understanding of such one-write algorithms. We prove that, for any one-write algorithm (in which the writer

does not read physical registers), there is no advantage, in terms of number of physical registers, to be

gained if readers write, or if di�erent readers follow di�erent protocols, or if a reader's protocol depends on

its history. Furthermore, for symmetric algorithms, there is no advantage if a reader reads some physical

registers more than once. Thus our lower bound proofs are simpler, since we assume the reader does none of

the above. These results are shown with transformation techniques similar to the one mentioned previously.

Our lower bounds also apply for the two corresponding classes of atomic implementations which prohibit

readers from doing any of the above. However, in the atomic case, the restrictions on the readers are probably

unreasonably strong.

In Section 2, we present our basic de�nitions. Section 3 contains the algorithm and in Section 4 we prove

it is correct with respect to regularity and atomicity. Section 5 consists of our lower bounds. We conclude

in Section 6.

Some of the results of this paper have appeared in preliminary form in [1].

2 De�nitions

2.1 Wait-Free Register Implementations

We use a simpli�ed form of the I/O automaton model [7] to describe our system.

To implement a logical register with value set V , where jV j = k, we compose a collection of physical

registers Xj , 1 � j � m, each with value set f0; 1g, a collection of read processes RPi, 1 � i � n, and

a single write process WP. The read and write processes implement the protocols used by the readers and

writer of the logical register. Each such protocol consists of accessing certain of the physical registers and

doing some local computation.

Communication between these components takes place via actions. Each action is an output of one

component (the component that generates it) and an input to another component. Components are modeled

as state machines in which actions trigger transitions. Components have no control over when inputs occur,

and thus must have a transition for every input in every state. Components do have control over when

outputs occur; if an output labels a transition from a state, then the output is enabled in that state.

3

An execution of the implementation consists of a sequence in which state tuples (one entry for the state

of each component) and actions alternate, beginning with a tuple of initial states. For each action � in the

execution, � must be enabled in the preceding state of the component for which it is an output. In the

following state tuple, the states of the two components for which � is an input and an output must change

according to the transition functions, while the remaining components' states are unchanged.

A schedule is the sequence of actions in an execution.

The logical actions are READ(i), RETURN(i; v), WRITE(v), and ACK, 1 � i � n and v 2 V .

READ(i) is an input to RPi from the outside world and RETURN(i; v) is an output from RPi to the outside

world. WRITE(v) is an input to WP from the outside world and ACK is an output from WP to the outside

world. Although we do not explicitly model the outside world with a component, we do assume that for each

i, the outside world and RPi cooperate so that READs and RETURNs strictly alternate, beginning with a

READ, and analogously for WP.

The physical actions are readj(i), returnj(i; v), writej(v), and ackj . The subscript j is between 1 and

m; it indicates that Xj is the physical register being read or written. The parameter v is either 0 or 1 and

indicates the value being read from or written to Xj . The parameter i is between 0 and n and indicates

which of the read and write processes is reading Xj (i = 0 indicates the write process). For a �xed j, there

is no parameter i for writes and acks, since there is a unique read or write process that writes Xj .

A READ(i) and its following RETURN(i; v) form a logical operation, as do a WRITE(v) and its

following ACK. Physical operations are de�ned analogously. An operation is pending if its �rst half is

present but not its second half; if both halves are present, it is completed.

We assume that the read and write processes cooperate with the physical registers so that for each i,

0 � i � n, and each j, 1 � j � m, readj(i) and returnj(i; �) alternate beginning with a read, and analogously

for writes. We also assume that no read or write process has a physical operation pending unless it has a

logical operation pending.

The read and write processes must work together to implement a logical register in a \wait-free" manner.

Informally, an implementation is wait-free if any logical operation initiated by a process can complete in a

�nite number of steps regardless of the actions of the other processes in the system. However, the wait-

free property involves fairness considerations because a process cannot complete a logical operation if it

is not allowed to take steps in its protocol. An execution is fair to a process if every physical operation

initiated by the process eventually completes and if no output action of the process is continuously enabled

without occurring. We formally de�ne an implementation to be wait-free if for any �xed process, in any

execution which is fair to that process, every logical invocation by that process has a matching response.

Our algorithms actually provide a bounded number of actions, while our lower bounds hold for algorithms

satisfying the weaker de�nition.

4

2.2 Regular and Atomic Registers

A physical register is regular if, in every execution, it satis�es:

� Regular Property. Every completed physical read operation returns a value written by an overlap-

ping write operation or by the most recent preceding write (or the initial value if there is no preceding

write).

A physical register is atomic if, in every execution e, it satis�es:

� Atomic Property. There exists a linearization [3] of all the completed physical operations and

some subset of the pending physical write operations in the execution, i.e., there is a permutation T

of these operations3 in e such that (1) the ordering of non-overlapping operations in T is the same as

their ordering in e (two operations do not overlap if the response for one occurs before the call of the

other one), and (2) each read in T returns the value written by the latest preceding write in T (or the

initial value if there is no preceding write).

An equivalent de�nition of atomicity, which we will use when convenient, is that there exists a point

somewhere between the invocation and response of each operation, called its linearization point, such

that ordering the operations according to their linearization points produces a linearization. Informally,

the linearization point is when the operation takes e�ect.

Regular and atomic logical registers are de�ned analogously, replacing physical operations with logical

operations.

2.3 One-Write Algorithms

To describe a register implementation algorithm, it is suÆcient to describe the code for the read and write

processes. An algorithm is a one-write algorithm if, in every execution, every logical WRITE uses at

most one physical write and no physical reads.

We now de�ne several terms which will be used in the discussion of one-write algorithms.

Let A be a one-write algorithm that uses m binary registers. A con�guration of A is an element C of

f0; 1g
m
; let C[i] denote the ith bit of C for i 2 f1; : : : ;mg. The distance between two con�gurations C1

and C2, denoted d(C1; C2), is the number of bits that di�er in C1 and C2. Con�gurations C1 and C2 are

neighbors if d(C1; C2) = 1. A con�guration C is initial if C[i] is the value of the ith binary register in the

initial state of A for all i 2 f1; : : : ;mg. A con�guration C is reachable if there exists a state in an execution

of A where no physical write is pending such that C[i] is the value of the ith binary register in the state for

all i 2 f1; : : : ;mg. (If a physical write is pending, the value of that physical register is ambiguous.)
3For purposes of the permutation T , a single entity read(j; i; v) to represent a read operation is created from a completed read

operation in e consisting of the matching, but separated, actions readj(i) and returnj(i; v); similarly, a single entity write(j; v)

is created from a pending or completed write operation in e starting with the action writej(v).

5

3 The Algorithm

In this section, we present our one-write algorithm.

Let V be the value set of the logical register, where jV j = k and v0 2 V is the initial value. Without

loss of generality, we can assume that V = f1; : : : ; kg and v0 = 1. Let KV be the complete graph with k

nodes and r = C(k; 2) edges in which each edge is labeled with a distinct number from the set f1; : : : ; rg

and each node is labeled with a distinct element from V . The special bit set corresponding to v 2 V is

de�ned as s(v) = fljl labels an edge incident to the node labeled v in KV g. Since KV is a complete graph,

js(v)j = k � 1 for all v 2 V .

Our algorithm uses r binary regular registers (bits). Each bit corresponds to an edge of KV . A reader

reads all r bits and returns the value of a function f applied to the con�guration obtained. The function

f is de�ned below. The writer changes a bit only when the value of the logical register changes; when the

value is changed from v to w, the bit whose label is contained in s(v) \ s(w) is changed. There is exactly

one such bit because there is exactly one edge connecting v and w in KV . Figure 1 is a formal description

of our algorithm.

We now de�ne f . For each v 2 V and con�guration C, let count(C; v) = �i2s(v)C[i]. If fvjcount(C; v) is

oddg is empty, then let f(C) = 1. Otherwise, let f(C) = maxfvjcount(C; v) is oddg. Since any con�guration

C induces a subgraph of KV consisting of all nodes and all edges corresponding to bits whose values are 1

in C, there are an even number of nodes in this subgraph with odd degree by a basic result in graph theory.

These nodes correspond to the values with odd counts in C, implying that the cardinality of fvjcount(C; v)

is oddg is even.

To explain and analyze the algorithm, it is helpful to partition con�gurations into valid and invalid.

Con�guration C is valid if either (1) count(C; v) is even for all v 2 V , or (2) count(C; 1) is odd and

count(C;w) is odd for exactly one w 6= 1. Otherwise, C is invalid.

If a con�guration C is valid, then there is a path in KV , not necessarily edge-disjoint, starting from the

node labeled with v0 = 1 and corresponding to initial con�guration 0r such that when the path is traversed

and the bit labeling an edge is changed when the edge is traversed, then the resulting con�guration is C. The

intermediate nodes in the path correspond to the sequence of logical values written in the execution fragment

leading to con�guration C. The resulting node is labeled v, where v = f(C). For each i 2 f1; : : : ; rg, C[i] is

the parity of the number of times edge i is traversed in this path. Suppose the path corresponding to valid

con�guration C does not end at the node labeled with 1. The two endpoints of the path are adjacent to an

odd number of edges in the path, while all internal nodes are adjacent to an even number. The last node

in the path is entered one more time than it is left; thus, the count for that node is odd. The �rst node in

the path is left one more time than it is entered; thus, the count for that node is odd. All other nodes are

entered and left the same number of times; thus, the counts for those nodes are even. C satis�es condition

(2) of the de�nition of valid. Suppose the path corresponding to valid con�guration C is cyclic. All nodes

6

Physical Registers (Bits): X1; : : : ; Xr, initially Xj = 0, for all j 2 f1; : : : ; rg

Reader i, 1 � i � n: local variables x1; : : : ; xr

READ(i):

for j := 1 to r do

readj(i)

returnj(i; xj)

endfor

RETURN(i; f(x1 : : : xr))

Writer: local variables x1; : : : ; xr, initially xj = 0, for all j 2 f1; : : : ; rg, and

old, initially old = 1

WRITE(v):

if v 6= old then

pick the unique i from s(v) \ s(old)

writei(xi)

acki

xi := xi

old := v

endif

ACK

Figure 1: One-Write Algorithm

in the cycle are adjacent to an even number of edges in the cycle. All nodes in the cycle are entered and

left the same number of times; thus, the counts for all the nodes are even. C satis�es condition (1) of the

de�nition of valid.

The focus in this paper is on the costs of accessing shared memory and not on the costs of local compu-

tation. The writer performs at most one shared memory access per WRITE. Each reader performs O(k2)

shared memory accesses per READ. In addition, each reader must compute f for each con�guration that it

observes. However, computing f adds no more to the asymptotic time complexity of the work performed by

each reader. READs are very expensive compared to WRITEs, but WRITEs are extremely time-eÆcient,

which may be important for applications where WRITEs outnumber READs. However, Chaudhuri and

Welch [2] proved that READs are inherently not cheap, by showing that at least k shared memory accesses

are required by any one-write algorithm.

7

4 Proofs of Correctness

We �rst prove that our algorithm implements a k-ary regular register from binary regular registers in Sub-

section 4.1. We then prove in Subsection 4.2 that our algorithm implements a k-ary atomic register from

binary atomic registers.

4.1 Proof of Regularity

Lemma 4.1 shows that any reachable con�guration is valid and is mapped by f to the value which was

written to the register by the last completed WRITE.

Lemma 4.1 Let C be a reachable con�guration resulting from a sequence of m physical writes corresponding

to the logical values v1; v2; : : : ; vm. Then C is valid, and f(C) = vm.

Proof We proceed by induction on m.

Basis: m = 0: Then C is the initial con�guration and is valid, and f(C) = 1.

Inductive step: m > 0: Suppose the lemma is true for m�1. Now we show that it is true for m. Suppose the

sequence of logical values is v1; v2; : : : ; vm�1; vm and the sequence of corresponding reachable con�gurations

is C1; C2; : : : ; Cm�1; Cm. By the inductive hypothesis, Cm�1 is valid, and f(Cm�1) = vm�1. If vm�1 = vm,

then clearly the lemma is true. Thus, suppose that vm�1 6= vm. There are two possibilities for vm�1.

Case 1: vm�1 = 1. Then count(Cm�1; v) is even for all v 2 V . When the write for vm is performed, the

unique bit b 2 s(1)\s(vm) is changed. Thus count(Cm; 1) and count(Cm; vm) become odd, and count(Cm; v)

remains even for all v 2 V � f1; vmg. Therefore Cm is valid, and f(Cm) = vm.

Case 2: vm�1 6= 1. Then count(Cm�1; 1) and count(Cm�1; vm�1) are odd, and count(Cm�1; v) is even for

all v 2 V � f1; vm�1g. When the write for vm is performed, the unique bit b 2 s(vm�1) \ s(vm) is changed.

There are two possibilities for vm. First suppose that vm = 1. Thus count(Cm; 1) and count(Cm; vm�1)

become even, and count(Cm; v) remains even for all v 2 V �f1; vm�1g. Therefore Cm is valid, and f(Cm) =

1. Otherwise suppose that vm 6= 1. Thus count(Cm; vm) becomes odd, count(Cm; 1) remains odd, and

count(Cm; v) is even for all v 2 V � f1; vmg. Therefore Cm is valid, and f(Cm) = vm.

If a reader RETURNs value v, we must show that v was actually written to the register by some WRITE

overlapping the READ or by the last WRITE preceding the READ. This is nontrivial because a slow reader

can read either a reachable or an unreachable con�guration by noticing traces from many WRITEs to the

logical register by a fast writer. Lemma 4.2 shows that a WRITE(v) operation has occurred during or just

before an interval in an execution if a bit in s(v) is changed during that interval. Lemma 4.3 shows that if

two valid con�gurations agree in all bits of s(v) for some v and one is mapped to v by f , then the other must

be mapped to v by f . Lemma 4.4 shows that an invalid con�guration C agrees with some valid con�guration

8

in the special bits corresponding to f(C). Lemma 4.5, which shows that the reader will RETURN a correct

value of the register no matter what con�guration it reads, is the main result of this section. The proof of

Lemma 4.5 uses Lemma 4.2 initially to deduce that if a value is not written to the logical register, then its

special bit set remains unchanged. If the reader reads a reachable con�guration, then Lemma 4.3 is applied

to deduce the correctness of the value RETURNed. Otherwise, Lemmas 4.4 and 4.3 are applied to deduce

the correctness of the value RETURNed.

Lemma 4.2 For any interval in any execution, if no WRITE(v) operation overlaps the interval or occurs

as the last preceding WRITE, then the bits in s(v) are not changed during the interval.

Proof Suppose in contradiction that a bit in s(v) is changed during the interval. Then the value in the

register changed from some w to v or the value in the register changed from v to some w. This is impossible

because noWRITE(v) operation overlapped the interval or occurred as the last precedingWRITE. Therefore,

the lemma is true.

Lemma 4.3 Choose any valid con�gurations C and D. If f(D) = v and C[i] = D[i] for all i 2 s(v), then

f(C) = v.

Proof There are two cases.

Case 1: v = 1. Thus count(D;w) is even for all w 2 V . Since C[i] = D[i] for all i 2 s(1), count(C; 1) =

count(D; 1). Thus count(C;w) is even for all w 2 V because C is valid. This implies that f(C) = 1.

Case 2: v 6= 1. Thus count(D; v) is odd. Since C[i] = D[i] for all i 2 s(v), count(C; v) = count(D; v);

therefore, count(C; v) is odd. Thus count(C; 1) is odd and count(C;w) is even for all w 2 V �f1; vg because

C is valid. This implies that f(C) = v.

Lemma 4.4 Choose any invalid con�guration C. Let f(C) = v. Then there exists a valid con�guration D

such that C[i] = D[i] for all i 2 s(v) and f(D) = v.

Proof Let Vodd be the set of all values w in V such that count(C;w) is odd. Recall that jVoddj is even. Since

C is invalid, Vodd is not empty, so Vodd contains at least two values.

Case 1: 1 2 Vodd. Then Vodd = f1; v1; : : : ; v2h�1g for some h, where 1 < v1 < ::: < v2h�1. Thus,

f(C) = v2h�1. Let D be the result of starting with C and
ipping the h� 1 bits corresponding to the edges

(v1; v2); (v3; v4); : : : ; (v2h�3; v2h�2) in KV .

The result of
ipping the bit corresponding to (vi; vi+1) is to change the counts of vi and vi+1 from odd

to even, while leaving all other counts the same. Thus in D, only 1 and v2h�1 have odd counts. Clearly D

is valid. By the de�nition of f , f(D) = v2h�1.

Since f(C) = v = v2h�1, the construction guarantees that C[i] = D[i] for all i 2 s(v) and f(C) = f(D).

9

Case 2: 1 62 Vodd. Then Vodd = fv1; v2; : : : ; v2hg for some h, where 1 < v1 < v2 < : : : < v2h. Thus,

f(C) = v2h. Let D be the result of starting with C and
ipping the h bits corresponding to the edges

(1; v1); (v2; v3); : : : ; (v2h�2; v2h�1) in KV . Thus in D, only 1 and v2h have odd counts. Clearly D is valid.

By the de�nition of f , f(D) = v2h.

Since f(C) = v = v2h, the construction guarantees that C[i] = D[i] for all i 2 s(v) and f(C) = f(D).

Lemma 4.5 Let C be the con�guration obtained by a reader during some execution of the READ protocol.

Suppose f(C) = v. Then the value v was written by a WRITE which overlapped the READ or the value v

was the result of the last WRITE preceding the READ.

Proof Assume for contradiction that the value v was not written by a WRITE which overlapped the READ

and the value v was not the result of the last WRITE preceding the READ. Thus no state of the algorithm

during the READ has the physical registers in a con�guration with value v. By Lemma 4.2, the bits in s(v)

are never changed during the READ. Let D be any reachable con�guration resulting from either the last

preceding WRITE or any overlapping WRITE. D is valid by Lemma 4.1, and D[i] = C[i] for all i 2 s(v).

There are two cases.

Case 1: Suppose C is valid. Since D has the same values as C for the bits in s(v) and f(C) = v, f(D) = v

by Lemma 4.3, which is a contradiction.

Case 2: Suppose C is invalid. By Lemma 4.4, there exists a valid con�guration C 0 such that C[i] = C 0[i]

for all i 2 s(v) and f(C 0) = v. Thus C 0[i] = D[i] for all i 2 s(v). By Lemma 4.3, f(D) = v, which is a

contradiction.

The logical register is regular by Lemma 4.5. It is seen to be wait-free by inspecting the code of the read

and write processes. Thus we have:

Theorem 4.6 A one-write algorithm for implementing a k-ary regular register from binary regular registers

exists.

4.2 Proof of Atomicity

We now assume that the constituent binary registers are atomic. To show that the logical register is atomic,

we must construct a linearization of the logical operations for an arbitrary fair execution e. The WRITEs

will be linearized in the order in which they occur (remember that there is only one writer of the logical

register). To de�ne the placement of the READs, we consider them in the order in which they end, yielding

a total ordering of the READs, denoted R1; R2; : : :. For each READ, Ri, we show the existence of a WRITE

that will be considered the WRITE from which Ri reads. Then we will show how to use this WRITE to

10

WW4 5W WW1 2 3

R
first last

readread

write write write write write

Figure 2: An example of the de�nition of PRS; solid circles are linearization points of physical operations.

place Ri appropriately. The WRITE for Ri must write the same value that Ri reads. Furthermore, the

choices of the WRITEs for all the READs must be consistent so that if READ Rj precedes READ Ri, then

the WRITE for Ri does not precede the WRITE for Rj .

Lemma 4.8 shows that each READ has at least one WRITE that is a potentially correct choice. Lemma

4.9 shows that the WRITEs can be chosen from the set of potential choices in such a way as to avoid the

precedence inversion just mentioned.

We de�ne several terms which will be used in proving that our algorithm satis�es the atomic property.

Since the physical registers are atomic, there exists a linearization L of the physical operations in the

execution e. Fix such an L. De�ne the physical linearization point of WRITE W (with respect to L)

to be the linearization point of the physical write inside W if there is one; otherwise de�ne it to be the

RETURN of W .

The possible writes-to-read set for READ R, denoted PRS(R), is the set of all WRITES W whose

physical linearization points are between (with respect to L) the �rst and last physical reads of R. In

addition, PRS(R) contains the WRITE whose physical linearization point immediately precedes the �rst

physical read in R. Without loss of generality, we assume that each execution has a special initializing

WRITE, containing a physical write, which precedes all other operations in the execution. Thus, PRS(R) is

always nonempty.

Note that PRS(R) is a consecutive sequence of WRITEs in the execution e. Furthermore, PRS(R) is a,

possibly proper, subset of the set of all WRITEs that overlap or immediately precede R. An example of

this situation is given in Figure 2, in which fW1; : : : ;W5g is the set of WRITEs that immediately precede

or overlap R, while PRS(R) = fW2;W3g. In general, a pre�x and a suÆx of the sequence of WRITEs that

immediately precede or overlap a READ R might be missing from PRS(R). Therefore, we can say that

PRS(R) is the set of WRITEs that overlap or immediately precede R in a more restricted sense: it only

includes the WRITEs whose physical linearization points are between physical reads of R, or immediately

precedes a physical read of R.

The next lemma shows an important relationship between the PRS sets of two non-overlapping READs.

Lemma 4.7 If READ R �nishes before READ R0 begins, then the last WRITE of PRS(R) either is the �rst

WRITE of PRS(R0) or precedes the �rst WRITE of PRS(R0).

11

R R’

W

first last first last
read read readread

write

Figure 3: Situation in Proof of Lemma 4.7; solid circles are linearization points of physical operations.

Proof Consider the last WRITEW of PRS(R). The physical linearization point forW must precede the last

read in R and therefore must precede the �rst read in R0. If there is no WRITE whose physical linearization

point is between W 's physical linearization point and the �rst read in R0, then W is the �rst WRITE of

PRS(R0), as shown in Figure 3. Otherwise, W precedes the �rst WRITE of PRS(R0).

If W is a logical WRITE, then value(W) = v if the call for W is WRITE(v). If R is a logical READ,

then value(R) = v if the response for R is RETURN(i; v) for some i. The same value set for READ R,

denoted by SVS(R), is fW 2 PRS(R)j value(W) = value(R)g. A useful property of SVS(R) is described in

the following lemma.

Lemma 4.8 SVS(R) is nonempty, for every READ R.

Proof To prove that SVS(R) is non-empty, it is suÆcient to prove that there exists a WRITE in PRS(R)

whose value is value(R). Lemma 4.5 states that there exists a WRITE among the WRITEs that immediately

precede or overlap R whose value is value(R). But since PRS(R) might be a proper subset of the set of

WRITEs that immediately precede or overlap R, we cannot immediately conclude that W is in PRS(R).

However, a careful look shows that the proof for Lemma 4.5 and the proofs of its supporting lemmas hold

with the more restricted de�nition of overlap that we use in de�ning PRS. Therefore, Lemma 4.5 proves that

there exists a WRITE W in PRS(R) whose value is value(R). This implies that SVS(R) is non-empty.

The next lemma shows that we can choose an appropriate WRITE in SVS(Ri) to avoid precedence

inversions.

Lemma 4.9 There exists a function � from the READs in e to the WRITEs in e such that for all i � 1,

the following are true.

1. �(Ri) is in SVS(Ri).

2. For all j < i, if Rj precedes Ri in e, then �(Ri) does not precede �(Rj) in e.

Proof We de�ne � by induction on i, the index of the READs.

12

Basis: i = 1. Lemma 4.8 implies that SVS(R1) is not empty. Choose any WRITE in SVS(R1) as �(R1).

Condition 2 is vacuously true since R1 is the �rst READ to end.

Inductive step: i > 1. Assume � has been de�ned for R1; : : : ; Ri�1. Again, Lemma 4.8 states that

SVS(Ri) is not empty.

Consider all READs Rj such that Rj precedes Ri. Thus j < i and �(Rj) =Wj has already been de�ned

for all such j. Let W 0 be the latest WRITE among all the Wj 's and choose k such that �(Rk) = W 0. We

must show that there is someW in SVS(Ri) that does not precede W
0 (and thus does not precede any Wj 's)

and thus can be chosen as �(Ri).

Lemma 4.7 shows that the last WRITE of PRS(Rk) is or precedes the �rst WRITE of PRS(Ri). Since

W 0 2 PRS(Rk) and SVS(Ri) � PRS(Ri), W
0 is either equal to or precedes the �rst WRITE in SVS(Ri).

Therefore, no WRITE in SVS(Ri) can precede W 0 and the feared precedence inversion cannot occur.

We can use Lemma 4.9 to determine where to place each READ in our proposed linearization. As usual,

we consider the READs in the order in which they end. De�ne �i inductively as follows. Let �0 be the

sequence of WRITEs in e, in order. For i > 0, let �i be obtained from �i�1 by placing Ri immediately

before the �rst WRITE following �(Ri). (If no WRITE follows �(Ri), then place Ri at the end of �i�1.)

If e contains a �nite number of READs, say m, then let T = �m. Otherwise, let T = limi!1 �i:

To see that the linearization T is well-de�ned, we need to check that there is only a �nite number of

READs linearized before any given WRITE. Suppose not. Then there is a pair of consecutive WRITEs W1

and W2 in T such that W1 = �(Ri) for an in�nite number of READs Ri. In e, each of these READs must

start before W2 ends, implying that in e there is an in�nite number of READs which start within a �nite

time. This is impossible since we have a �nite number of readers and e is a sequence.

The following theorem proves that our algorithm satis�es the atomic property. Its proof follows simply

from the construction of the linearization.

Theorem 4.10 T is a linearization of e.

5 Lower Bounds on Number of Registers

We have proven the existence of a one-write algorithm for implementing a k-ary regular (respectively, atomic)

register from binary regular (respectively, atomic) registers. The number of registers used by our algorithm

is very large, C(k; 2) = O(k2). The best previously known lower bound on the number of registers for this

problem is k, shown by Chaudhuri and Welch [2].

In this section we show two improved lower bounds for the problem, under certain restrictions. We

primarily consider regular registers; the implications of these results for atomic registers are discussed in

Section 5.5.

13

We begin, in Section 5.1, by proving that any one-write algorithm (in the regular case) can be converted

to a convenient normal form. Section 5.2 presents the key de�nitions and lemma needed in our lower bounds.

Our main result, in Section 5.3, is a lower bound of 2k � 1� blog kc on the number of registers required by

a class of algorithms we call \symmetric." The restriction to symmetric algorithms allows us to strengthen

some of the de�nitions and to assume, without loss of generality, that readers do not read the same binary

register more than once during a READ. An even more restrictive class of algorithms is de�ned in Section 5.4;

our algorithm is shown to be tight for this class.

In three places in this section (Theorem 5.1, Theorem 5.3, and Lemma 5.5), we discuss how to convert

one algorithm into another by replacing some of the accesses to physical registers with accesses to local

variables in the read or write processes' local states. We also describe how to map an execution of the

new algorithm back to an execution of the original algorithm; this mapping requires being able to identify

accesses to local state variables during transitions, in order to convert them to accesses to physical registers.

To tie the use of local state variables to the formal model of Section 2, imagine that the state of a process

consists of a set of local variables and each state transition is described using an imperative programming

language to manipulate the local variables. Such a convention is consistent with the description of the

algorithm in Section 3. When an action occurs at a point in an execution, it triggers an application of the

process' transition function based on the current state of the process. Then the code describing the transition

function is executed, which accesses the local variables.

5.1 Conversion to Normal Form

An algorithm with the following properties is a normal form algorithm:

1. no reader performs a physical write,

2. every reader has the same program, and

3. every reader starts in the same state at the beginning of every READ.

In this subsection, we show how any regular one-write algorithm can be converted to a normal form

regular one-write algorithm without increasing the number of physical registers. Assuming normal form

algorithms simpli�es our lower bound proofs.

Theorem 5.1 Any regular one-write algorithm A using m physical registers can be converted to a normal

form regular one-write algorithm A0 which uses at most m physical registers.

Proof Each reader's protocol in algorithm A0 is the same as reader 1's protocol in algorithm A, starting

in reader 1's initial state, except that the readers in algorithm A0 do not perform any physical writes. We

handle the missing physical writes in the following way. Consider the set of physical registers MR that are

14

written to by the readers in algorithm A. Each reader contains a local variable ci corresponding to each

physical register i in MR, and initialized with the same value. Now, whenever a reader accesses one of these

registers i in algorithm A, it accesses the corresponding local bit ci in algorithm A0 instead. The writer's

protocol in algorithm A0 is the same as the writer's protocol in algorithm A. Since the writer does no physical

reads in algorithm A, it never accesses the registers in MR.

A0 is therefore a normal form one-write algorithm. We now prove the regularity of A0. Consider any

execution e0 of algorithm A0. Let s0 be the schedule of e0. We consider each completed READ ri in e
0 in turn

and show that it RETURNs a value that satis�es regularity. For ri, we build a sequence of actions, si, which

will be shown to be a schedule of a possible execution of algorithm A. We obtain si from s0 by removing all

READs other than ri along with their associated physical actions (the reason for doing so is given below).

We also change ri to be a READ by process 1. We now consider each action aij within ri in turn. First, aij

itself is placed in si. Then, for each read or write to a local variable cl that occurs in e0 when aij executes,

we place the corresponding physical actions (invocation and response) to physical register l after aij .

We now argue that there is an execution ei of algorithm A with schedule si. Since the set of physical

registers MR are only accessed by the single READ ri (the writer never accesses them), they basically

function as local variables in si (this would not be true in the presence of multiple readers). Also, the fact

that read process 1 is in its initial state at the beginning of ri is consistent with algorithm A since this is its

�rst READ (this would not be true if there were multiple READs). Therefore, schedule s0 of algorithm A0

translates to a valid schedule si of algorithm A.

Suppose ri in e
0 RETURNs value v. Then the corresponding READ in execution ei of algorithm A also

RETURNs value v. By the assumption about A, ei satis�es the regular property. Thus, in ei, v is the value

of an overlapping WRITE, the value of the last preceding WRITE, or the initial value of A (also, of A0).

It follows that v is a proper value for ri to RETURN in e0 because the sequences of WRITEs in ei and

e0 are the same, and ei's READ and ri have the same relationship with the WRITEs. Also, the fact that

ei does not include the actions of the other READs in e0 is irrelevant since regularity (unlike atomicity) is

not a�ected by the relationship between READs. Thus, ri RETURNs a correct value. Since all completed

READs in e0 are regular and e0 is an arbitrary execution, A0 satis�es the regular property.

5.2 Constructibility

If normal form one-write algorithm A uses m binary registers, A has 2m con�gurations. These con�gurations

are nodes in a directed m-dimensional hypercube HA. If con�gurations C1 and C2 are neighbors, then both

(C1; C2) and (C2; C1) are edges of HA. An edge (C1; C2) of HA is an algorithm edge if C1 is a reachable

con�guration and C2 can be derived from C1 after one WRITE operation. An edge (C1; C2) of HA is labeled

with i, where i is the bit in which C1 and C2 di�er.

In our lower bound proofs, we want to deduce the value which must be RETURNed by a reader given

a particular con�guration. This mapping from con�gurations to values is given by a \value extraction

15

function," such as the function f from our algorithm in Section 3.

We now de�ne the value extraction function fA : f0; 1gm ! V for an arbitrary normal form one-write

algorithm A that implements a k-ary regular register from m binary regular registers. We �rst de�ne bit i to

be consistent with con�guration C if the value of bit i is C[i]. fA(C) is de�ned to be the value RETURNed

by a reader according to A if all the bits that the reader reads are consistent with con�guration C and if

the reader never sees two di�erent values for the same bit during the READ. If no reader ever reads bits

consistent with con�guration C, then fA(C) is unde�ned. Thus fA is a partial function.

We now discuss why fA is well-de�ned. Consider two logical READs. Suppose the reader performing the

�rst logical READ reads a subset S1 of the physical registers, RETURNing v1, and the reader performing the

second logical READ reads a di�erent subset S2 of the physical registers, RETURNing v2, where v1 6= v2.

Suppose all bits in S1 [S2 are consistent with C. This is impossible because the readers have the same

program and start their READs in the same initial state. For the readers to read two di�erent sets of

physical registers, there must be some physical register for which the �rst reader obtained 1 and the second

reader obtained 0 (or vice versa). Thus one of the readers did not read bits consistent with con�guration C.

Therefore, fA is well-de�ned.

We now de�ne terms which will be used in the formalization of our general technique for \fooling the

reader," which is Lemma 5.2 below. Let A be a normal form one-write algorithm for implementing a k-

ary regular register from m binary regular registers. Let S be a set of reachable con�gurations and C be

a con�guration. C is constructible from S if for each i 2 f1; : : : ;mg, there exists a C 0 2 S such that

C 0[i] = C[i]. (A similar de�nition was given in [4].) Let fA(S) = ffA(C)jC 2 Sg. S is strongly connected

if for all distinct D;E 2 S, there exists a directed path from D to E in HA consisting only of algorithm

edges in which every con�guration on the path is an element of S.

Given a con�guration C which is constructible from a strongly connected set of con�gurations S,

Lemma 5.2 states that fA(C) must be in fA(S); otherwise, the reader could be fooled into returning a

wrong value. In our lower bound proofs, we obtain a contradiction to Lemma 5.2 by identifying a strongly

connected set S of con�gurations and showing how there is a constructible C with a wrong value.

Lemma 5.2 Let A be a normal form one-write algorithm. For every con�guration C and every strongly

connected set S of reachable con�gurations, if C is constructible from S, then fA(C) 2 fA(S).

Proof Suppose in contradiction that fA(C) =2 fA(S). Consider the following execution of A. First the writer

executes a sequence of WRITEs so that the resulting con�guration is in S. This sequence exists because

every con�guration in S is reachable. Then a logical READ starts. For all i, whenever the reader is about

to read bit i, the writer executes a sequence of WRITEs with the following properties: (1) the con�guration

after each WRITE is in S, and (2) the �nal con�guration D is such that C[i] = D[i]. Since S is strongly

connected, this sequence exists. Thus the reader returns fA(C), which violates the regular property because

fA(C) was not the value of any overlapping WRITE or of the preceding WRITE.

16

5.3 Symmetric Property

A normal form one-write algorithm A has the symmetric property if, for all con�gurations C1 and C2

that are neighbors, (C1; C2) is an algorithm edge of HA if and only if (C2; C1) is an algorithm edge of HA.

In other words, suppose the writer enters con�guration C1 due to writing logical value v and then goes to

con�guration C2 due to writing logical value w. If the next logical value to be written is v again, then the

writer must return to con�guration C1.

If A satis�es the symmetric property, the two directed edges connecting any pair of neighboring con-

�gurations are either both algorithm edges or both non-algorithm edges. Thus the two directed edges can

be replaced by one edge which is either an algorithm edge or a non-algorithm edge. Therefore, HA can be

considered an undirected graph.

As a result, the statement of Lemma 5.2 can be simpli�ed to refer to connected sets instead of strongly

connected sets.

We begin by showing how an arbitrary symmetric algorithm can be transformed into a symmetric al-

gorithm using no more registers in which every reader reads each physical register at most once during a

READ. Thus we can assume without loss of generality that in a symmetric algorithm every reader reads

each physical register at most once during a READ.

5.3.1 Conversion to No Repeated Reads

Theorem 5.3 Any regular one-write symmetric algorithm A using m physical registers can be converted to

a regular one-write symmetric algorithm A0 using at most m physical registers in which every reader reads

each physical register at most once.

Proof Since the transformation of Theorem 5.1 does not change the writer's protocol, it follows that the

transformation preserves symmetry. Therefore, we can assume that A is a normal form one-write symmetric

algorithm.

We show how the writer can force the reader to always read the same value from a given physical register

during a READ without a�ecting the values of other physical registers which may be read later. Whenever the

reader is about to reread a physical register, the writer retraces its steps backwards to the latest con�guration

in which the physical register had the value returned by the original read. The symmetric property makes

this possible. After the repeated read, the writer retraces its steps forwards to the con�guration just before

the repeated read.

The writer's protocol in A0 is the same as the writer's protocol in A. The same set of physical registers

M used in A is used in A0. The local state of the reader's protocol in A0 contains local bits ci and ai

corresponding to each physical register i in M . Local variable ci, which holds a copy of physical register i,

is initialized with the same value as physical register i; local variable ai, which is a
ag indicating if physical

17

register i has been accessed yet during the current READ, is initialized with 0. The reader's protocol in A0

is the same as the reader's protocol in A, with the following exception. The reader in A0 reads ai before

reading physical register i. If ai contains 0, then the reader reads physical register i, copies the value read

into ci, and writes 1 to ai. Otherwise, the reader reads ci.

We now prove the regularity of A0. Consider any execution e0 of algorithm A0. We consider each READ

in e0 separately and show that the value it returns is correct, according to the de�nition of regularity. Since

the de�nition of a regular register is not concerned with the relationship between values returned by di�erent

READs, this simpli�cation is possible.

Choose any read Ri in e
0 and let j be the process performing the READ. We will construct an execution

ei of the original algorithm A from execution e0 as follows.

Let s0 be the schedule of e0. Let si be the result of removing from s0 all actions except those of the writer

and those belonging to Ri. We now consider each action a that is part of Ri. (The possibilities for a are the

invocation and response for Ri itself and for the reads of the physical registers contained within it.) We will

insert a series of actions after a in si. For each read of a local bit cl that occurs in e0 during the execution

of a, we do the following in order:

1. Let b be the value read from cl.

2. Place actions in si to complete the pending WRITE W (if it exists).

3. Let Ct be the latest con�guration in e
0 preceding a such that Ct[l] = b. In other words, physical register

l has the same value in Ct that was read from local bit cl, which is the value returned by the �rst (and

only) read by process j from register l within the current READ in e0.

4. Let ws be the sequence of values written to the logical register since Ct (not including the pending

WRITE W from step 2).

5. Place in si logical WRITEs (along with the associated physical writes) for the values in ws, in reverse

order. By the symmetric property, after those WRITEs, the con�guration of the physical registers will

be Ct.

6. Place in si the actions readl(j) and returnl(j; b).

7. Place in si logical WRITEs (along with the associated physical writes) for the values in ws, in order.

8. If there was a pending WRITE W in step 2, then place in si a repeat of the actions of W preceding

action a. As a result, another copy of W will now be pending and the con�guration of the physical

registers will be the same as at the beginning of a.

By induction, there exists some execution ei of A with schedule si.

18

Let v be the value RETURNed by READ Ri. Note that this is the same in e
0 and in ei. By assumption

on A, ei satis�es the regular property and thus v is the value of a WRITE that either immediately precedes

or overlaps Ri in ei. By the way ei was constructed from e0, every WRITE that immediately precedes or

overlaps Ri in ei has the value of some WRITE that immediately precedes or overlaps Ri in e
0, since every

such WRITE in ei either is some WRITE in e0 or is a repetition of some WRITE in e0. That is, while there

may be additional WRITEs in ei, no additional logical values are written in ei. Thus, v is also a correct

value to be returned by Ri in e
0.

Since the above argument holds for every READ in every execution, A0 satis�es the regular property.

5.3.2 Main Result

Choose any k � 4. (See Section 5.4 for a discussion of the case when k = 3.)

Let SYM(k) be the set of all one-write algorithms which implement a k-ary regular register from binary

regular registers and satisfy the symmetric property.

Let R(k) be the minimum number of binary registers required by any algorithm in SYM(k). The main

result of this section is Theorem 5.10, which states that R(k) > 2k�2�blogkc. Theorems 5.1 and 5.3 imply

that we can assume that every algorithm in SYM(k) is normal form and readers do not read twice, since no

algorithm without those properties can use fewer registers.

The proof of Theorem 5.10 is inductive. Lemma 5.4, which shows that 4 binary regular registers cannot

implement a 4-ary regular register, forms the base case for the proof. In the inductive step, either k is a power

of 2, or k is not a power of 2. If k is a power of 2, then Lemma 5.6, which proves that R(k) � R(k�1)+1, is

used. If k is not a power of 2, then Lemma 5.7, which proves that R(k) � R(k� 1) + 2, is used. Then some

algebraic manipulations enable us to derive the desired lower bound. The proofs of Lemmas 5.6 and 5.7

use Lemma 5.5, which gives conditions under which a one-write algorithm can be converted into a one-write

algorithm for fewer logical values using fewer physical registers. The proof of Lemma 5.5 consists of a general

algorithm transformation. The notation RA indicates the number of binary registers used by algorithm A.

Lemma 5.4 R(4) > 4.

Proof Suppose in contradiction that there exists an algorithm A in SYM(k) such that RA = 4. Suppose

without loss of generality that V = fR;G;B; Y g, the initial con�guration is 0000, fA(0000) = R, fA(1000) =

G, fA(0100) = B, and fA(0010) = Y . The con�guration 0000 must have neighbors with the three other colors

because A is a one-write algorithm. We now attempt to assign values to the remaining 12 con�gurations.

Figure 4 shows the current assignment of values to con�gurations and the possibilities for some currently

unassigned con�gurations. Because A is a one-write algorithm, we only need to consider con�gurations which

di�er in one bit from the last assigned con�guration 1000. We cannot assign two di�erent values to the same

con�guration. Thus, we have six choices to consider:

19

1100
1010
1001

1100
1010
1001

0000
R

1000 0010
G B Y

B Y

0100

Figure 4: First Set of Choices in the Proof of Lemma 5.4

1. fA(1010) = B and fA(1100) = Y .

2. fA(1010) = B and fA(1001) = Y .

3. fA(1001) = B and fA(1100) = Y .

4. fA(1100) = B and fA(1010) = Y .

5. fA(1100) = B and fA(1001) = Y .

6. fA(1001) = B and fA(1010) = Y .

We can eliminate choices 1 and 2 by showing that fA(1010) 6= B. fA(1010) 6= B because otherwise 0010 is

constructible from the connected set f0000; 1000; 1010g and fA(0010) = Y is not in fA(f0000; 1000; 1010g) =

fR;G;Bg, contradicting Lemma 5.2. We can eliminate choice 3 by showing that fA(1100) 6= Y . fA(1100) 6=

Y because otherwise 0100 is constructible from the connected set f0000; 1000; 1100g and fA(0100) = B is

not in fA(f0000; 1000; 1100g) = fR;G; Y g, contradicting Lemma 5.2.

We now show how to eliminate choices 4, 5, and 6. We consider each of the three choices in turn.

Case 4. Figure 5(a) shows the current assignment of values to con�gurations and the possibilities for

some currently unassigned con�gurations. fA(0110) 6= G because otherwise 0110 is constructible from the

connected set f0000; 0010; 0100g and fA(0110) is not in fA(f0000; 0010; 0100g) = fR;B; Y g, contradicting

Lemma 5.2.

Thus, we only have one choice to consider: fA(0101) = G and fA(0110) = Y . Figure 5(b) shows the cur-

rent assignment of values to con�gurations and the possibilities for some currently unassigned con�gurations.

fA cannot map 0011 to both G and B. This case leads to a dead end.

Case 5. Figure 6(a) shows the current assignment of values to con�gurations and the possibilities for

some currently unassigned con�gurations. As in Choice 4, fA(0110) 6= G and thus fA(0101) = G and

fA(0110) = Y . Figure 6(b) shows the current assignment of values to con�gurations and the possibili-

ties for some currently unassigned con�gurations. fA(1010) 6= B because otherwise 1000 is constructible

20

0000
R

1000 0100 0010
G B Y

B Y G Y
1100 1010 0110

0101
0110
0101

0000
R

1000 0100 0010
G B Y

B Y
1100 1010

G Y
01100101

G B
0011 0011

(b)(a)

Figure 5: Choices in Case 4 of the Proof of Lemma 5.4

0000
R

1000 0100 0010
G B Y

B Y
1100 1001

G Y
01100101

G B

0011
10101010

0011

0000
R

1000 0100 0010
G B Y

B Y G Y
1100 1001 0110

0101
0110
0101

0000
R

1000 0100 0010
G B Y

B Y
1100 1001

G Y
01100101

G B
1010 0011

R Y
1110
1101

1110
1101

(a) (b) (c)

Figure 6: Choices in Case 5 of the Proof of Lemma 5.4

from the connected set f0000; 0010; 1010g and fA(1000) = G is not in fA(f0000; 0010; 1010g) = fR;B; Y g,

contradicting Lemma 5.2.

Thus, we only have one choice to consider: fA(1010) = G and fA(0011) = B. Figure 6(c) shows the cur-

rent assignment of values to con�gurations and the possibilities for some currently unassigned con�gurations.

fA(1101) 6= R because otherwise 1001 is constructible from the connected set f0000; 1000; 1100; 1101g and

fA(1001) = Y is not in fA(f0000; 1000; 1100; 1101g) = fR;G;Bg, contradicting Lemma 5.2. fA(1110) 6= R

because otherwise 0110 is constructible from the connected set f0000; 1000; 1100; 1110g and f(0110) = Y is

not in fA(f0000; 1000; 1100; 1110g) = fR;G;Bg, contradicting Lemma 5.2. This case leads to a dead end.

Case 6. Figure 7 shows the current assignment of values to con�gurations and the possibilities for some

currently unassigned con�gurations.

fA(0110) 6= G because otherwise 1010 is constructible from the connected set f0000; 1000; 0100; 0110g and

fA(1010) = Y is not in fA(f0000; 1000; 0100; 0110g) = fR;G;Bg, contradicting Lemma 5.2. fA(1100) 6= Y

because otherwise 1000 is constructible from the connected set f0000; 0100; 1100g and fA(1000) = G is not

in fA(f0000; 0100; 1100g) = fR;B; Y g, contradicting Lemma 5.2. Thus, we have three choices to consider:

6.1. fA(1100) = G and fA(0110) = Y .

6.2. fA(1100) = G and fA(0101) = Y .

21

1100
0110
0101

1100
0110
0101

0000
R

1000 0100 0010
G B Y

B Y G Y
1001 1010

Figure 7: Case 6 and Second Set of Choices in the Proof of Lemma 5.4

0000
R

1000 0100 0010
G B Y

B Y
1001 1010

G Y
1100

G B
0110 0011 0011

0000
R

1000 0100 0010
G B Y

B Y
1001 1010

G Y
1100

G B

0011 0011
0101 0110 0110

0000
R

1000 0100 0010
G B Y

B Y
1001 1010

G Y
0101

G B
0110 0011 0011

(a) (b) (c)

Figure 8: Subcases of Case 6 in the Proof of Lemma 5.4: (a) Case 6.1; (b) Case 6.2; (c) Case 6.3.

6.3. fA(0101) = G and fA(0110) = Y .

We consider each of the three choices in turn.

Case 6.1. Figure 8(a) shows the current assignment of values to con�gurations and the possibilities for

some currently unassigned con�gurations. fA cannot map 0011 to both G and B. This choice leads to a

dead end.

Case 6.2. Figure 8(b) shows the current assignment of values to con�gurations and the possibilities for

some currently unassigned con�gurations. fA(0110) 6= G because otherwise 0100 is constructible from

the connected set f0000; 0010; 0110g and fA(0100) = B is not in fA(f0000; 0010; 0110g) = fR;G; Y g,

contradicting Lemma 5.2. fA(0011) 6= G because otherwise 1001 is constructible from the connected set

f0000; 1000; 0010; 0011g and fA(1001) = B is not in fA(f0000; 1000; 0010; 0011g) = fR;G; Y g, contradicting

Lemma 5.2. This case leads to a dead end.

Case 6.3. Figure 8(c) shows the current assignment of values to con�gurations and the possibilities for

some currently unassigned con�gurations. fA cannot map 0011 to both G and B. We have nowhere else to

backtrack.

Thus, R(4) > 4.

Lemma 5.5 Consider any A 2 SYM(k) with RA = m. Suppose there exists a reachable con�guration C

22

and a value w 6= fA(C) such that C has p neighbors D with fA(D) = w. Then there exists an algorithm

A0 2 SYM(k � 1) with RA0 � m� p.

Proof We show how to construct A0 given A. A0 will implement a logical register with value set V � fwg,

where V is the value set of the logical register implemented by A, and initial value v0 2 V � fwg.

Let fC1; C2; : : : ; Cpg be the p neighbors of C such that fA(Ci) = w, for each i 2 f1; : : : ; pg. For each

i, let bi be the bit in which C and Ci di�er. Consider the set S of all con�gurations reachable from C by

a path of algorithm edges in which no con�guration X with fA(X) = w appears in the path. Let Z be

the subgraph of HA in which the node set is S and the edge set is the set of all edges in S � S that are

algorithm edges in HA. No edge in Z is labeled with any bit in fb1; b2; : : : ; bpg because otherwise some Ci is

constructible from S, which is connected, and fA(Ci) = w is not in fA(S), contradicting Lemma 5.2.

Algorithm A0 will use m � p binary regular registers: the same m registers used in algorithm A except

for the p registers fb1; b2; : : : ; bpg. We now describe the reachable con�gurations of A0. Assume without loss

of generality that b1 through bp are the last p bits and they are all 0 in C. Thus, b1 through bp are all 0

in every con�guration in S. Given D 2 S, de�ne �(D) to be the pre�x of D consisting of all but the last p

bits. These will be the reachable con�gurations of A0. If fA(C) = v0, let D0 = C. Otherwise, let D0 be the

neighbor of C in Z such that fA(D0) = v0. Clearly D0 exists. We de�ne the initial con�guration of A0 to

be �(D0).

We now describe the reader's protocol in algorithm A0. The reader's protocol in algorithm A0 is the same

as the reader's protocol in algorithm A, except that the reader in A0 has local bits c1; : : : ; cp corresponding

to shared bits b1; : : : ; bp in A. The value of bit ci is 0 for each i 2 f1; : : : ; pg at all times. Whenever reader

j in A reads shared bit bi, the reader in A
0 reads its local bit ci.

We now describe the writer's protocol in algorithm A0. If the current con�guration of the physical

registers (well-de�ned because readers do not write) is �(E) for some E 2 S and if WRITE(x), for x not the

current value of the logical register, is the next operation, then the writer changes bit b, where b labels the

algorithm edge (E;D) in Z and fA(D) = x. Since x 6= w, none of the bits in fb1; : : : ; bpg are changed, so

we end up in con�guration �(D). An easy induction shows that in every state of every execution of A0 the

physical registers always form a con�guration E such that E = �(E) for some E 2 S.

Now we must show that algorithm A0 implements a (k � 1)-ary regular register. Algorithm A0 clearly

holds (k � 1) values and satis�es the wait-free property. We now show that the regular property holds.

Consider any execution e0 of algorithm A0. We build a corresponding execution e of algorithm A as follows.

We construct a sequence of actions of A by starting with a sequence of logical WRITEs (called the initial

WRITEs) to ensure that the con�guration of the physical registers is D0. We then consider each action in

the execution of A0 in turn. Let j be the process performing the action. First, the action is placed in the

sequence. Then, for each read of a local bit ci that occurs in e
0 during the execution of this action, we place

the actions readbi(j) and returnbi(j; 0). Note that there are no writes into a local bit ci in any execution of

A0.

23

By induction, there exists an execution e of A with the sequence of actions just constructed. By the

assumption aboutA, e satis�es the regular property. Suppose a READ by reader j in execution e0 of algorithm

A0 RETURNs value v. Then the corresponding READ in the constructed execution e of algorithm A also

RETURNs value v. We must prove that v is a proper value to RETURN in e0. In e, v is the value of an

overlapping WRITE, the value of the last preceding WRITE, or the initial value of A. We consider each

possibility in turn. If in e, v is the value of an overlapping WRITE, then WRITE(v) overlaps the original

READ in e0. Thus v is a proper value to RETURN in e0. If in e, v is the value of the last preceding WRITE

W , then there are two possibilities to consider, depending onW . If W is not an initial WRITE, it must have

a corresponding WRITE(v) in e0, and v is a proper value to RETURN in e0. If W is an initial WRITE, it

must in fact be the last initial WRITE, writing v0, the initial value for A
0. In this case there is no WRITE

that precedes the READ in e0, and the READ RETURNs v0, which is the proper value. If in e, v is the

initial value of A and no WRITE precedes the READ, then the initial value of A is also v0 (there are no

initial WRITEs) and the READ in e0 has no preceding WRITE. Thus v is a proper value to RETURN in

e0. Therefore algorithm A0 satis�es the regular property.

A0 satis�es the symmetric property because A satis�es the symmetric property, and RA0 � m� p.

Lemma 5.6 R(k � 1) � R(k)� 1.

Proof Let R(k) = m and choose any A 2 SYM(k) with RA = R(k). Let C be a reachable con�guration

of A. Since A is a one-write algorithm, C has a neighbor D such that fA(D) 6= fA(C). By Lemma 5.5

with p = 1, there exists an A0 2 SYM(k � 1) with RA0 � m � 1. Thus R(k � 1) � m � 1, implying that

R(k � 1) � R(k)� 1.

Lemma 5.7 If k is not a power of 2, then R(k � 1) � R(k)� 2.

Proof Let R(k) = m, where k is not a power of 2, and choose any A 2 SYM(k) with RA = R(k). We need to

show that there exists a reachable con�guration C, some w 6= fA(C), and at least two neighbors D1 and D2

of C such that fA(D1) = fA(D2) = w. The result would then follow from Lemma 5.5, substituting 2 for p.

The rest of this proof is devoted to showing that such a con�guration exists. Assume for contradiction that

for every reachable con�guration C and every w 6= fA(C), C has at most one neighbor D with fA(D) = w.

For sake of clarity, we call this the one-neighbor assumption.

Claim 5.8 For any reachable C, fA maps all unreachable neighbors of C to fA(C).

Proof Suppose in contradiction that C has one unreachable neighbor E such that fA(E) 6=

fA(C). C already has a reachable neighbor D with fA(D) = fA(E) because A is a one-write

algorithm. This means that C has at least two neighbors mapped by fA to fA(E), a contradiction

to the one-neighbor assumption.

End of Claim

24

D0

C0

i

C1 : : :
b1 b2 bJ

CJ

E

i

Figure 9: Relationships Among the Con�gurations in the Chain from C0 to E

Claim 5.9 All con�gurations are reachable.

Proof Suppose in contradiction that there exists an unreachable con�guration. Then there

exists a reachable con�guration C0 that has an unreachable neighbor D0. fA(D0) = fA(C0) by

Claim 5.8. Suppose D0 and C0 di�er only in bit i. Since we are assuming that the minimum

number of binary regular registers is used, there exists some reachable con�guration E such that

E and C0 di�er in bit i and bit i labels the last edge in some path of algorithm edges in HA

connecting C0 and E. The length of the path from C0 to E must be at least 2. Let the bits

that changed in the path from C0 to E be b1; b2; : : : ; bJ ; i, in that order and let the sequence of

con�gurations in the path be C0; C1; C2; : : : ; CJ ; E. Then CJ and E di�er only in bit i. Figure 9

shows the relationships among these con�gurations where double lines denote algorithm edges

and single lines denote non-algorithm edges. For all j, 1 � j � J , let Dj be the neighbor of Cj

that di�ers from Cj in bit i. Notice that D0 is unreachable, and DJ = E, which is reachable.

Since D0; D1; : : : ; DJ = E is the sequence of con�gurations in some path (the bits that change in

this path are b1; b2; : : : ; bJ , in that order), there exists a j such that Dj�1 is unreachable and Dj is

reachable. Figure 10 shows the relationships among Cj�1, Cj , Dj�1; andDj . Dashed lines denote

edges that are not known to be either algorithm or non-algorithm edges. Let fA(Cj�1) = v1.

fA(Cj) 6= v1 because (Cj�1; Cj) is an algorithm edge. Since Dj�1 is an unreachable neighbor of

reachable Cj�1, fA(Dj�1) = fA(Cj�1) = v1 by Claim 5.8. Similarly, sinceDj�1 is an unreachable

neighbor of reachable Dj , fA(Dj) = fA(Dj�1) = v1 by Claim 5.8. Thus Cj has two neighbors

Cj�1 and Dj mapped by fA to v1, a contradiction to the one-neighbor assumption.

End of Claim

Choose some v 2 V . Let b be the number of con�gurations C with fA(C) = v. Let B be the set of edges

(C;D) such that either fA(C) = v and fA(D) 6= v or fA(C) 6= v and fA(D) = v.

25

DjDj�1

Cj�1 Cj

bj

bj

i j

Figure 10: Relationships Among Cj�1, Cj , Dj�1; and Dj

For any con�guration C, we know that C is reachable by Claim 5.9. Now, by the one-neighbor assumption,

for every w 6= fA(C), C has at most one neighbor D with fA(D) = w. Since A is a one-write algorithm,

it follows that C has exactly one neighbor D with fA(D) = w for every w 6= fA(C). Therefore, for each

con�guration C such that fA(C) = v, C has exactly k � 1 neighbors D with fA(D) 6= v. This implies that

jBj = b(k � 1). Also, for each con�guration C such that fA(C) 6= v, C has exactly one neighbor D with

fA(D) = v. This implies that jBj = 2m � b. Then 2m � b = b(k � 1), which implies that 2m = kb, which

means that k is a power of 2. This contradicts the fact that k is not a power of 2.

Theorem 5.10 For all k � 4, R(k) > 2k � 2� blog kc.

Proof We proceed by induction on k.

Basis: k = 4: 2k � 2� blog kc = 4. By Lemma 5.4, R(4) > 4.

Inductive step: k > 4: Suppose the lemma is true for k � 1. Now we show that it is true for k. There are

two possibilities for k. Either k is a power of 2, or k is not a power of 2.

Case 1: k is a power of 2.

R(k) � R(k � 1) + 1 by Lemma 5.6

> 2(k � 1)� 2� blog(k � 1)c+ 1 by the inductive hypothesis

= 2k � 2� 2� (blog kc � 1) + 1 because k is a power of 2

= 2k � 2� blog kc:

Case 2: k is not a power of 2.

R(k) � R(k � 1) + 2 by Lemma 5.7

> 2(k � 1)� 2� blog(k � 1)c+ 2 by the inductive hypothesis

= 2(k � 1)� 2� blog kc+ 2 because k is not a power of 2

= 2k � 2� blog kc:

26

5.4 Toggle Property

A normal form one-write algorithm has the toggle property if for each pair of distinct v; w 2 V , there

exists a bit l such that whenever the value of the logical register is changed from v to w or from w to v, bit l

is written. A one-write algorithm satisfying the toggle property clearly satis�es the symmetric property and

thus the undirected version of Lemma 5.2 holds.

Our algorithm satis�es the toggle property. We will show that our algorithm is optimal in the class of

algorithms satisfying this property with respect to the number of physical registers.

Every algorithm A with the toggle property can be represented by the complete graph on k nodes, in

which each node is labeled with a distinct element from V and the edge between v and w is labeled with

some l 2 f1; : : : ;mg (when the value of the logical register is changed from v to w or vice versa, bit l is

changed), where m is the number of binary registers used by A. Call this graph GA.

When k = 3, our algorithm is optimal in the number of binary regular registers used because C(k; 2)

matches the lower bound of k from [2]. Theorem 5.11 below shows that C(k; 2) binary regular registers are

necessary for any k � 4.

Theorem 5.11 For all normal form one-write algorithms A for implementing a k-ary (k � 4) regular

register from binary regular registers, if A has the toggle property, then the number of binary regular registers

used by A is at least C(k; 2).

Proof Suppose that A is a one-write algorithm for implementing a k-ary regular register from binary regular

registers, where A has the toggle property and the number of registers used by A is less than C(k; 2). Then

there is some register i such that i is the label of at least two edges in GA, say (v1; v2) and (v3; v4). Suppose

the edges have a common endpoint. Without loss of generality, assume v1 = v3. Then v2 6= v4 because

otherwise the edges would be the same. If the current value of the logical register is v1 and bit i is changed,

the new value of the logical register is both v2 and v4, which is ambiguous. Thus the edges are disjoint;

v1; v2; v3, and v4 are distinct.

Let j, where j 6= i, label the edge (v1; v3) of GA. Let C1 be any con�guration such that fA(C1) = v1. Let

C2 be the con�guration that di�ers from C1 only in bit i. Let C3 be the con�guration that di�ers from C1

only in bit j. Let C4 be the con�guration that di�ers from C1 only in bits i and j. By the de�nition of GA,

C2, C3, and C4 are reachable con�gurations, and fA(C2) = v2, fA(C3) = v3, and fA(C4) = v4. Figure 11

shows the relationships among C1, C2, C3, and C4. C2 is constructible from the connected set fC1; C3; C4g.

But fA(C2) = v2 is not in fA(fC1; C3; C4g) = fv1; v3; v4g, contradicting Lemma 5.2.

5.5 Atomicity

In this subsection we establish lower bounds on the number of registers required by two classes of atomic

one-write algorithms. Since atomicity is a stronger property than regularity, we may not be able to transform

27

C2

C3

C4

C1

j

ij

i

i = 0

j = 0

i = 0

j = 1

i = 1

j = 1

i = 1

j = 0

Figure 11: Relationships Among the Four Con�gurations in the Proof of Theorem 5.11

an arbitrary atomic one-write algorithm to a normal form one-write algorithm. It may help for readers to

communicate with each other and the writer by writing to binary registers. Similarly, we may not be able to

transform an arbitrary atomic one-write algorithm to one in which the reader does not read registers more

than once. Since atomicity implies regularity, Theorems 5.10 and 5.11 are true for normal form one-write

atomic algorithms in which readers read registers only once. The proofs for the atomic case are identical to

the proofs of Theorems 5.10 and 5.11.

6 Conclusion

We have proven the existence of a one-write algorithm for implementing a k-ary regular register from binary

regular registers. The same algorithm implements a k-ary atomic register from binary atomic registers. The

algorithm we have developed uses k(k�1)=2 binary registers. It is optimal in the number of binary registers

used with respect to all one-write algorithms satisfying the toggle property. We have also improved the

lower bound on the number of binary registers required for all one-write algorithms satisfying the symmetric

property from k to 2k�1�blog kc. Our lower bound proofs are modular, and they use our general technique

for \fooling the reader." We also made simplifying assumptions about the readers' programs and showed

the simpli�cations did not lead to any loss of generality.

An interesting open question is to determine tight bounds on the number of physical registers needed

for symmetric algorithms and more general types of algorithms. Lemma 5.5, which is our general algorithm

28

transformation technique, may help in obtaining tighter bounds. For example, if one can establish that

p = �(log k), then one can obtain a lower bound of
(k log k) registers. Another interesting open question

is to improve the known lower bound on the number of registers a reader must read.

7 Acknowledgments

We thank Michael Fischer for his helpful comments that greatly improved the presentation, especially in

Section 4.2.

References

[1] Soma Chaudhuri, Martha J. Kosa, and Jennifer L. Welch. Upper and Lower Bounds for One-Write

Multivalued Regular Registers. In Proceedings of the Third IEEE Symposium on Parallel and Distributed

Processing, December 1991. Also available as TR91-026 from the University of North Carolina at Chapel

Hill.

[2] Soma Chaudhuri and Jennifer L. Welch. Bounds on the Costs of Register Implementations. SIAM

Journal on Computing, 23 (2), April, 1994.

[3] Maurice Herlihy and Jeannette Wing. Linearizability: A Correctness Condition for Concurrent Objects.

ACM Transactions on Programming Languages and Systems, 12(3):463{492, 1990.

[4] Prasad Jayanti, Adarshpal Sethi, and Errol L. Lloyd. Minimal Shared Information for Concurrent

Reading and Writing. In Proceedings of the Fifth International Workshop on Distributed Algorithms,

October 1991.

[5] Lefteris Kirousis and Evangelos Kranakis. A Survey of Concurrent Readers and Writers. CWI Quarterly,

2:307{330, 1989.

[6] Leslie Lamport. On Interprocess Communication. Distributed Computing, 1(1):86{101, 1986.

[7] Nancy A. Lynch and Mark R. Tuttle. Hierarchical Correctness Proofs for Distributed Algorithms.

In Proceedings of the Sixth Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, pages 137{151, August 1987.

29

