
Wait-Free Clock Synchronization�

Shlomi Dolevy Jennifer L. Welchy

May 31, 2001

Abstract

Multiprocessor computer systems are becoming increasingly important as vehicles for

solving computationally expensive problems. Synchronization among the processors is

achieved with a variety of clock con�gurations. A new notion of fault-tolerance for clock

synchronization algorithms is de�ned, tailored to the requirements and failure patterns

of shared memory multiprocessors. Algorithms in this class can tolerate any number of

napping processors, where a napping processor can fail by repeatedly ceasing operation for

an arbitrary time interval and then resuming operation without necessarily recognizing that

a fault has occurred. These algorithms guarantee that, for some �xed k, once a processor

P has been working correctly for at least k time, then as long as P continues to work

correctly, (1) P does not adjust its clock, and (2) P 's clock agrees with the clock of every

other processor that has also been working correctly for at least k time. Because a working

processor must synchronize in a �xed amount of time regardless of the actions of the other

processors, these algorithms are called wait-free. Another useful type of fault-tolerance is

called self-stabilization: starting with an arbitrary state of the system, a self-stabilizing

algorithm eventually reaches a point after which it correctly performs its task.

Two wait-free clock synchronization algorithms are presented for a model with global

clock pulses. The �rst one is self-stabilizing; the second one is not but it converges more

quickly than the �rst one. The self-stabilizing algorithm requires each processor's commu-

nication register contents to be a part of the processor's state. This last requirement is

proven necessary. A wait-free clock synchronization algorithm is also presented for a model

with local clock pulses. This algorithm is not self-stabilizing.

Key words: Distributed Computing, Algorithms, Wait-Free, Self-Stabilization, Clock-

Synchronization.

yDepartment of Computer Science, Texas A&M University, College Station, TX 77843. Email:

shlomi@cs.tamu.edu and welch@cs.tamu.edu. Fax: 409-847-8578.
�This work was supported by NSF Presidential Young Investigator Award CCR-9396098 and Texas A&M

University Engineering Excellence funds. A preliminary version of this work was presented in the 12th ACM

Symposium on Principles of Distributed Computing, August 1993.



1 Introduction

Multiprocessor computers are being designed with ever-increasing numbers of processors.

These multiprocessors can be used to solve problems that demand high computation power,

such as grand challenge computing problems, which previously were not eÆciently solvable.

However, in order to take full advantage of multiprocessors, it is vital that they be made fault-

tolerant. Fault-tolerance is necessary in order to provide even the same level of availability

that is provided by uniprocessors, since the probability of a crash in a multiprocessor system

increases with the number of processors. Clever fault-tolerance schemes may also be able to

provide a higher level of availability, by continuing ongoing computations even if a large number

of processors fail.

A central issue for any multiprocessor system is the synchronization among processors.

The common synchronization component used in multiprocessors is a clock. There are several

ways to implement a clock in multiprocessor systems: (1) provide a common clock that is

connected to all the processors in the system, (2) provide a common clock pulse that reaches

every processor in the system and stimulates individual clocks, (3) provide every processor

with an individual clock pulse that stimulates its individual clock. The less centralized the

clock unit is, the more reliable the system can be, e.g., a system with multiple individual clocks

may be able to tolerate a wrong behavior of one individual clock while a system with a central

clock unit cannot. In the sequel we consider distributed clock synchronization algorithms for

the case in which a common clock pulse reaches every processor or every processor has an

individual clock pulse.

We present a new view of fault-tolerant clock synchronization, inspired by the architecture

and failure-patterns of shared-memory multiprocessors (cf., e.g., [KS91, KP+92]). We are

interested in clock synchronization algorithms that are highly resilient to failures. In particular,

we want them to tolerate any number of processor failures and for nonfaulty processors' clocks

to be una�ected by the failures. It is also important for processors that have ceased being

faulty to be able to rejoin the system and become synchronized. More precisely, we require an

algorithm to guarantee that, for some �xed k, once a processor P has been working correctly

for at least k pulses, then as long as P continues to work correctly, (1) P does not adjust

its clock, and (2) P 's clock agrees with the clock of every other processor that has also been

working correctly for at least k pulses.

The clock synchronization problem has been extensively studied in the presence of arbitrary,

or Byzantine, faults (e.g., [Ma83, LM85, MS85, DHS86, ST87, WL88]). This fault model is so

strong that no algorithm can work unless more than two-thirds of the processors are nonfaulty

[DHS86]. Because of its high cost and the fact that it is often claimed to be too pessimistic,

weaker fault models have been studied. A weaker fault model called authenticated Byzantine

allows an algorithm that can tolerate any number of faulty processors [HSSD84]. However, in

that algorithm faulty processors can in
uence the clocks of nonfaulty processors (namely, by

speeding them up). Furthermore, in that failure model reintegration of repaired processors is

only possible if less than half the processors are faulty.

1



In light of the above we choose to consider a more restricted type of faults, which we call

\napping." A napping failure causes a processor to stop operation and then resume without

necessarily recognizing that a failure has occurred. When the requirements above are stated for

napping failures they capture the spirit of wait-freedom. In a wait-free system, each processor

must solve the problem of interest in a �nite (or bounded) number of its own steps, regardless

of the speed of all the other processors. (Cf., e.g., [La86b, ALS90].) Therefore we call an

algorithm that solves the problem described above in the presence of napping failures a wait-

free clock synchronization algorithm.

One of our algorithms is also self-stabilizing. An algorithm is called self-stabilizing if it

is resilient to transient faults in the sense that, when started in an arbitrary system state,

if no further faults occur then the processors converge to a consistent global state and can

solve the task. (Cf., e.g., [Di74, La86a, DIM90, AKY90, DIM91, AV91].) Self-stabilizing clock

synchronization algorithms have been proposed [GH90, ADG91], but none of them is wait-free.

Self-stabilization and wait-freedom are incomparable conditions: a self-stabilizing algorithm

works regardless of the state in which it is started, but requires that none of the processors

fail subsequently, while a wait-free algorithm works regardless of whether some processors stop

but relies on a correct initial state. Our work is among the �rst to address self-stabilization

in combination with other failures. Independently, Gopal and Perry [GP93] have presented

a self-stabilizing consensus algorithm that withstands omission faults in a message passing

environment.

Most of the literature on clock synchronization concentrates on synchronization by exchang-

ing messages. In contrast, in this paper we are interested in clock synchronization for shared

memory multiprocessor systems. Towards this end we de�ne several settings for clock syn-

chronization algorithms in the context of shared memory systems. Our system model extends

that of [GH90] and [ADG91] by allowing more relaxed clock primitives and the combination

of failure types. We believe that the models we present allow us to address some of the in-

herent algorithmic issues for clock synchronization in shared memory multiprocessor systems.

In addition, the models are abstractions of existing and future VLSI technology where a clock

pulse is generated for synchronizing operations (e.g., [Ul84, Hw93]).

In this paper, we present several wait-free clock synchronization algorithms for di�erent

system settings. Except where noted, the clock values are integers that can grow without

bound. In all cases, the n processors communicate through n shared variables, one variable

associated with each processor. The �rst and second algorithms assume a global clock pulse; in

this model (called the in-phase model in the sequel), at each pulse, every (nonfaulty) processor

�rst reads one other shared variable and then writes its own. The �rst and second algorithms

guarantee synchronization with k = O(n3) and k = O(n2) respectively. The O(n3) algorithm

is self-stabilizing while the O(n2) algorithm is not.

The self-stabilizing algorithm requires the content of the communication register associated

with a processor to be a part of the processor's state. We present an impossibility result that

illustrates the necessity of this last requirement. Even under this restriction, the existence of

2



an algorithm that can tolerate any initial state and up to n� 1 faulty processors is somewhat

surprising.

The third algorithm assumes that every processor owns an independent clock pulse; in this

model (called the out-of-phase model in the sequel), at each (local) clock pulse a processor may

read a shared variable and write its own shared variable. However, unlike the case in which a

global clock pulse exists, both read and write actions are invoked simultaneously. Thus, the

value written by a processor at a pulse is de�ned solely by the processor's state prior to the

pulse occurrence. The third algorithm achieves k = O(n2); it is not self-stabilizing.

The remainder of the paper is organized as follows. In Section 2 we formalize the as-

sumptions and requirements for a wait-free clock synchronization algorithm. Towards the

presentation of our algorithms we present in Section 3 two impossibly results. The impossibil-

ity results give a better understanding of the diÆculties that an algorithm has to cope with.

Sections 4 and 5 contain the in-phase algorithms and the out-of-phase algorithm, respectively.

We conclude in Section 6.

2 Problem Statement and Assumptions

In this section we de�ne the requirements for a wait-free clock synchronization algorithm.

Towards that end, we �rst describe our system models.

The system consists of n identical processors and n shared variables. A processor P is

modeled as a (possibly in�nite) state machine. Each shared variable is \owned" by exactly

one processor; that processor is the only processor that may write to the variable, while all the

processors may read from it. (A single-writer shared variable is a natural choice for achieving

synchronization since a multi-writer shared variable might require some synchronization to

begin with in order to guarantee atomic writes.)

A con�guration of a system is a tuple containing a local state for each processor and a

value for each shared variable. For self-stabilizing wait-free clock synchronization algorithms

we prove that the shared variable value has to be part of the processor state. Thus, for such

a system a con�guration can be de�ned simply as a tuple of the processors' local states.

We consider two system models. In the in-phase model, there is a global pulse that triggers

every non-faulty processor to take a step. A step of a processor consists of the processor

reading one of the shared variables, performing some local computation which may change its

local state, and then writing its own shared variable. The state of the processor just before

the step occurs indicates which shared variable is to be read.

In the out-of-phase model, each processor has its own local pulse that triggers it to take a

step. A step of a processor consists of the processor reading one of the shared variables and

writing to its own shared variable; however the value written to its own variable cannot depend

on the value just read. A processor can also change its local state during a step. The state of

3



the processor just before the step occurs indicates which variable will be read and which value

will be written.

We now de�ne an execution for in-phase systems. A pulse is a (possibly empty) list of

processor names, indicating which processors take a step at this pulse. An execution is a �nite

or in�nite sequence c0�1c1 : : : of alternating con�gurations and pulses, starting (and ending, if

�nite) with a con�guration. (Pulse �i will be referred to as pulse i and con�guration ci will

be referred to as con�guration i.) Pulses are consecutively labeled j; j + 1; j + 2; j + 3, etc.,

for some j. The label of a pulse is the real time when it occurs, in an appropriate unit. Each

con�guration ci (except the �rst) must correctly re
ect the steps of all the processors in pulse

�i, based on con�guration ci�1. All the processors that are active at pulse �i base their steps

on the values of the variables and states in ci�1, and then change state and write variables in

unison to produce ci.

If a processor is not included in a pulse, then it is said to nap (or not work) at that pulse.

In an actual system, this could happen if a clock pulse does not reach a processor P either

because P does not recognize its occurrence (since it is crashed or because of a transient bug)

or due to a fault in the connection to P .

We now de�ne an execution for out-of-phase systems. A pulse is a processor name, indicat-

ing the processor taking a step now. An execution is an alternating sequence of con�gurations

and pulses as before. Pulses are consecutively labeled with increasing real numbers such that

the di�erence between any two consecutive steps of the same processor is at least one time

unit. The consistency constraints on con�gurations are the same.

For a given execution E we de�ne a sub-execution of E to be an in�x (i.e., a pre�x of a

suÆx) of E that begins (and ends, if it is �nite) with a con�guration. Note that a sub-execution

is also an execution.

If two consecutive steps of a processor occur more than one time unit apart, then the

processor is said to nap (or not work) in the interval between the steps.

The following de�nitions are made with respect to a �xed execution E of either an in-phase

or out-of-phase system. The time of con�guration i is the label on pulse i (i.e., the real time of

the pulse just before this con�guration). The time of c0 is one time unit less than the time of

c1. For con�guration c, processor P , and component x of P 's shared variable, P:x(c) denotes

the value of component x of P 's shared variable in con�guration c. For any real number (time)

T , P:x(T ) is de�ned to be P:x(ci), where ci is the latest con�guration in E whose time is less

than or equal to T .

The next main de�nition (\work") captures how long a process has been working; it requires

an auxiliary de�nition (\last step"). Let last step(P;E; T ) be the last time processor P exe-

cutes a step before T during E. De�ne work(P;E; T ) to be zero if (T � last step(P;E; T )) > 1,

otherwise work(P;E; T ) is the maximal l such that for every integer m � l, P executes a step

at time last step(P;E; T )�m. Intuitively, work(P;E; T ) is the number of consecutive pulses

P executed in E before T without napping.

4



In either in-phase or out-of-phase systems, an initialized execution is an execution whose

�rst con�guration is an initial con�guration|a con�guration with particular values as speci�ed

by the program.

We now de�ne the wait-free clock synchronization problem. Each processor P 's shared

variable has a component P:clock. A system is running a wait-free clock synchronization

algorithm with convergence time k, where k is a positive integer, if every initialized execution

E of the system satis�es the following two conditions.

Adjustment: For all times T and all processors P , if work(P;E; T ) > k, then P:clock(T ) =

P:clock(T � 1) + 1.

We say that a processor P adjusts its clock during a pulse if P does not nap in this pulse

and P does not increase its clock by 1 during the pulse. Intuitively, the adjustment requirement

states that there exists a time after which a working processor does not adjust its clock.

Agreement: For all times T and all processors P and Q, if work(P;E; T ) � k and

work(Q;E; T ) � k, then

P:clock(T ) = Q:clock(T ) for in-phase,

jP:clock(T ) �Q:clock(T )j � 1 for out-of-phase.

A wait-free clock synchronization algorithm is self-stabilizing if it works correctly in every

execution, starting with any con�guration, not just in initialized executions.

2.1 Discussion of the Model

One may view both the in-phase and out-of-phase systems as extensions of the well known

PRAM model (see e.g., [KR90, Le92]). The in-phase system is essentially a PRAM in which

processors can experience faults, both transient and napping. There are synchronous multi-

processor systems that use shared memory or message passing communication to which our

in-phase result could be applied (e.g., [Hw93] pp. 457). The out-of-phase case can be viewed as

a more loosely coupled system in which processors do not share a common clock pulse. Since

the assumptions made on the out-of-phase model are less restrictive, it abstracts an even wider

range of existing architectures that use shared memory for communication [Hw93].

It is clear that, in addition to the fault tolerance aspects the choice made for implementing

a clock in multiprocessor systems is in
uence by hardware considerations. Next we discuss

the hardware implementation issues of such extensions of the PRAM model. The hardware

designer of a multiprocessor system might have to cope with some of the following questions.

� Is the implementation of a global pulse much less diÆcult than the implementation of a

reliable counter (central clock unit) whose value is increased at each pulse and sent out

with the pulse?

� Can the synchronization of the clocks be implemented by a \reset" wire whenever the

system is initialized or inconsistency of clocks is detected?

5



� Is it possible to implement a global pulse that reaches all the processors simultaneously

and triggers operations at the same time (given the existing interrupt mechanism)?

� When every processor has a local clock is it possible to ensure that the interval between

two pulses is exactly the same on all correct processors?

Unlike the fault tolerance aspect for which it is clear that as more the clock implementation

is distributed is better the answers for the above questions may depend on the particular setting

of the multiprocessor system in hand. Next we try to qualitatively answer the above questions.

� In some cases the implementation of a reliable counter which is connected to every

processor might require more than a single wire (instead, a wire per each bit of the

counter) to be connected to each processor. This in turn will exacerbate the issues of

power used to drive the signals and the chip space wasted [MC80].

� A common reset signal might imply that any inconsistency detected is handled globally

by resetting the clocks of all the processor to some prede�ned value | in some case

this approach could be too drastic. For instance, when a single processor fails and

then resumes operation, we might not like the rest of the processors to reset their clock

values. Moreover, since every processor may initiate a reset request, some synchronization

mechanism might be needed to avoid too many signals taking place at the same time

using the same reset wire.

� The implementation of global clock pulse might not be possible because of the propaga-

tion delay and the nature of the interrupt handler. However, it is possible to ensure that

during a pulse every active processor �rst reads and only after all the read operations are

executed do the write operations take place. This is suÆcient for our in-phase algorithms.

� It might not be possible to devise clocks that have the exact same rate. Moreover, even if

such clocks are implemented, it is hard to ensure that processors will take actions at the

same rate (especially when the pulse triggers an interrupt). However, for our out-of-phase

algorithm it is only important to maintain the same relative order between the processors

for long enough. This is possible when the individual pulses are spread away from each

other to begin with. This can be achieved with high probability by the use of a random

number generator (in the beginning and) following every time a processor discovers that

it napped. The processor will use the random number generator to determine the time it

needs to wait until its hardware clock produces the �rst clock pulse. In addition, because

of clock drift, the pulses of two active clocks might become close to each other or even

change their relative order. Our out-of-phase algorithm will consider such a change as a

nap of the slower processor(s).

6



3 Impossibilities

In this section we present some of the diÆculties that must be surmounted in devising an

algorithm.

3.1 Hidden Values

Suppose at each clock pulse, each processor could read the entire shared memory, not just a

single shared variable. In this case there is a simple self-stabilizing algorithm with convergence

time k = 1: namely, in each step the processor reads all the clock variables in the system, �nds

the maximal value max and assigns max+ 1 to its clock.

The obvious adaptation of this simple algorithm to the in-phase model, in which each

processor can only read a single shared variable at each pulse, is to have each processor read

all the clock variables in the system in a succession of steps, and then set its clock to one more

than the maximum value observed. We now show that this approach does not work.

In more detail, we assume that every processor reads the clocks of the other processors

in a cyclic order, one after the other. Whenever a processor P reads Q:clock and �nds that

Q:clock > P:clock then P assigns P:clock := Q:clock+ 1. Otherwise, when Q:clock � P:clock,

P assigns P:clock := P:clock + 1. We call this the \�rst shot" algorithm.

We now present a speci�c execution of the above algorithm for which there is no k that

satis�es the adjustment requirement. The diÆculty intuitively is that the maximal clock value

can remain hidden from nonfaulty processors arbitrarily long. This execution, denoted by E, is

for a system with four processors. Part of E is depicted in Fig. 1, where each circle in the �gure

represents a processor and each four-tuple of processors represents a system con�guration. The

�rst con�guration in the execution is the top leftmost four-tuple (marked c1) and the last is

the bottom leftmost four-tuple (marked c0
1
).

The value of the clock of the processor Pi is written inside the circle that represents Pi.

Each processor Pi has one outgoing arrow which indicates the next processor that Pi is about

to read from. If Pi is marked with a box (inside the circle) then Pi is about to execute a step

during the next pulse (otherwise, there is no change in the state of Pi). The execution includes

six pulses, during which P1 executes six steps and every other processor executes three steps.

Two con�gurations c and c0 are equivalent if there is some constant l such that c0 is derived

from c by adding l to every clock in c. (Everything else is the same about the states, including

each processor's choice of which processor to read from next.) Note that c1 and c01 in Fig. 1

are equivalent with l = 6. To construct E we have to show that there is a con�guration c0

equivalent to c1, that is reachable from the initial con�guration c0 of the system.

Starting from c0, we can reach a con�guration c in which P4:clock < P3:clock < P1:clock <

P2:clock and the arrows are in the same direction as in c1 by �rst activating only P4 till it is

about to read from P2, then activating only P3 till P3:clock > P4:clock and P3 is about to read

7



��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��
��
��

��
��

��
�� �

�
�
����
�
�
��	

6@
@
@
@@R�

�
�
���

?

6

-

@
@
@
@@R

�

6

?

-

6

-
�

�

?

6

�
�
�
���

�
�
�
��� 6

?

�

?

6

@
@

@
@@I

?

7 8

98

7 8

5

6 5

55

5 2

44

9 10

87

1 2

3 4

P1 P2P1 P2P1 P2

c3c2c1

c6c5c4

P1 P2P1 P2

c01

P1 P2

P2P1

6 5

76

P3P4 P4 P3 P3P4

P3P4P3P4P4 P3

P4 P3

7

Figure 1: Execution of First Shot Algorithm

8



from P2, then activating only P1 till P1:clock > P3:clock and P1 is about to read from P4, and

�nally activating only P2 till P2:clock > P1:clock and P2 is about to read from P1.

Although the relation P4:clock < P3:clock < P1:clock < P2:clock holds in c, c may not be

equivalent to c1: for instance, in c it might be true that P4:clock � P3:clock > 1. However, it

is easy to check that when the system is started with c and the processors are activated in the

same order as in Fig. 1, then after six pulses a con�guration that is equivalent to c1 is reached.

In the execution that appears in Fig. 1, P1 does not �nd the maximal clock value (i.e.,

the value 10 in c01). Moreover, since c1 and c01 are equivalent, there is an execution that starts

with c01 and ends with equivalent con�guration c001 in which P1 does not hold the maximal

value either, and so on and so forth till the execution includes more than k pulses. After the

execution includes more than k pulses we activate all the processors in each pulse and then P1
adjusts its clock to the maximal value. Note that this last operation violates the adjustment

requirement.

3.2 Blind Writes

This section shows that no self-stabilizing wait-free clock synchronization algorithm is possible

if processors can start with incorrect information about the values of their own shared variables.

This result motivates our assumption that the state of the processor includes the value in its

shared register, for any self-stabilizing wait-free clock synchronization algorithm.

A self-stabilizing algorithm is blind-write if the value of its shared variable is not part of

its state. Note that in a non-self-stabilizing algorithm, a processor can accurately keep track

of the last value written to its own variable, and thus it will not be blind-write.

Theorem 3.1 There is no blind-write self-stabilizing wait-free clock synchronization algo-

rithm.

Proof: Assume towards a contradiction that there is such an algorithm A with convergence

time k. Suppose the system has three processors, P , Q, and R, with shared variables P:v, Q:v,

and R:v respectively.

Lemma 3.2 In any in�nite execution of A in which only P works, P must read R:v in�nitely

often.

Proof: Suppose not. Consider execution EP in which Q and R nap, P works and P reads

R:v only �nitely often. Let c be the k-th con�guration after P 's last read of R:v. Let s be P 's

state in c, x be P:v's value in c, and y be Q:v's value in c. Let m be the value of P 's clock in

x. By the adjustment condition, P must increment its clock by 1 at every pulse after c.

Let ER be an in�nite execution that begins with P in state s, P:v holding x, and Q:v

holding y. Furthermore, suppose that P and Q nap and R works. By the adjustment condition,

9



eventually R's clock reaches some value m0 > m. Truncate ER k pulses after this point. Call

the result E0

R.

Extend E0

R to in�nite execution E0

REPR by having Q continue to nap and P and R work.

Note that in EPR, R must increment its clock by 1 at every pulse, by the adjustment condition.

P goes through the same sequence of state transitions in EPR as P does in the suÆx of EP

after c. Thus P increments its clock by 1 at every pulse. But since m and m0 are not equal,

P 's and R's clocks are never equal in EPR, violating the agreement condition.

Let EP be an in�nite execution in which P works and Q and R nap. Let c be a con�guration

that follows the �rst k pulses of EP in which P is about to read R:v. Such a con�guration

exists by the lemma. Let s be P 's state in c and v be the value of P:v in c. Let m be the

clock value that P writes in the next step. (By the adjustment condition, P has no choice

concerning m.) Let c0 be next con�guration after c in which P is about to read R:v. Again,

such a con�guration exists by the lemma. Let s0 be P 's state in c0 and v0 be the value of P:v in

c0. Let m0 be the clock value that P writes in the next step. Note that R:v has a �xed value,

say z, throughout EP since R naps.

Let EQ be the same as EP except that P and Q reverse roles, i.e., the initial states of P

and Q are switched, the initial values of P:v and Q:v are switched, P naps and Q works. Let

d0 be the con�guration in EQ that is the analog of con�guration c0 in EP .

Let E be an execution that begins with P in state s, Q in state s0, R:v equal to z, in which

P and Q work and R naps. In the �rst pulse, P does the same thing that it does after c in EP

and Q does the same thing that it does after d0 in EQ. Thus the clocks of P and Q are not

equal. By the agreement condition, there is some point in E at which either P or Q adjusts

its clock (i.e., changes it in a way other than incrementing by 1).

Case 1: P adjusts its clock in E. Then we can construct an execution by truncating EP at

c, changing Q's state in the initial con�guration to be s0, and then extending the execution to

mimic E. In the extension, P will mimic its behavior in E; in particular it will adjust its clock.

But P has already been working for more than k pulses, violating the adjustment condition.

Case 2: Q adjusts its clock in E. Then we can construct an execution by truncating EQ at

d0, changing P 's state in the initial con�guration to be s, and then extending the execution to

mimic E. In the extension, Q will mimic its behavior in E; in particular it will adjust its clock.

But Q has already been working for more than k pulses, violating the adjustment condition.

4 In-Phase Algorithms

In this section we present two algorithms.

10



4.1 O(n3) Algorithm

In this section we describe a self-stabilizing wait-free clock synchronization algorithm with

k = O(n3). The main observation leading to our solution is the following: In the �rst shot

algorithm a processor that misbehaves needs to frequently stop and resume operation in order

to mislead a working processor. Thus we choose to \punish" a processor that naps by excluding

it from the \game" for a long enough time. We design a mechanism that provides a napping

processor an indication on the fact it has been napping. When a processor receives such an

indication it stops participating for a long enough period.

A processor P stops increasing its clock if P increases its clock in one pulse and does not

increase its clock in the next pulse. If during the execution of the �rst shot algorithm there is

an interval of 2(n� 1) pulses during which no processor stops increasing its clock, then every

working processor �nds the maximal clock value in the system. The reason is that the maximal

clock value is held by at least one increasing processor after the �rst n�1 pulses and is held by

every increasing processor after the second n�1 pulses. To use the above observation we design

a mechanism by which a processor can tell whether it stopped increasing or not. Whenever

a processor P gets an indication that it stopped increasing, it continues not to increase for a

certain number of steps. The number of steps is chosen to be long enough so that P does not

mislead increasing processors.

The algorithm for processor Pj is shown in Fig. 2. Informally, the algorithm works as

follows. Pj reads the clock and count variables of its neighbors one after the other in cyclic

order. Each step is started with such a read operation (line 4), say from Pi. Then Pj increments

its own count variable by 1. Next Pj computes the number of steps that Pi executed since the

last read of Pj from Pi using the variable previous (lines 6,7). If Pj realizes that Pi executed

more than n � 1 steps between those reads, then Pj concludes that Pj omitted at least one

step and assigns wait := 4n3 (line 9). (Note that by the nature of the faults to be tolerated

by a self-stabilizing algorithm, that conclusion could be wrong the �rst time, since a processor

can be initiated with arbitrary values of previous.) Pj decrements wait by 1 in every step

until wait = 0 (line 8). As long as wait > 0, Pj does not change the value of clock (line 10).

When wait = 0, Pj chooses the greater of its own clock and Pj 's clock and increments it by 1

to obtain its new clock value. At the end of each step, Pj writes the new values of clock and

count.

We now prove the algorithm is correct. Let E be an arbitrary execution.

Lemma 4.1 For all times T and all processors P , if work(P;E; T ) � 4n3 + n � 1, then P

increases its clock at step T .

Proof: Let l = work(P;E; T ). During the �rst n�1 (out of l) successive steps of P , P reads

all the count variables in the system and any further computation of delta results in a value

that is less than or equal to n� 1. Thus following those �rst n� 1 steps, P decrements wait

until it reaches the value 0. The lemma follows.

11



01 do forever

02 for i := 1 to n (not including j)

03 do

04 read(Pi:clock; Pi:count)

05 count := count+ 1

06 delta := Pi:count� previous[i]

07 previous[i] := Pi:count

08 if wait � 1 then wait := wait� 1

09 if delta > n� 1 then wait := 4n3

10 if wait = 0 then clock := max(Pi:clock; clock) + 1

11 write(clock; count)

12 od

13 od

Figure 2: Program of Pj for O(n
3) In-Phase Algorithm

De�nition 4.1 stop increasing(P;E) is de�ned to be the number of pulses in E such that (1)

P 's clock does not change during the pulse, and (2) P 's clock does change during the preceding

pulse.

It is suÆcient for our correctness proof to consider an arbitrary sub-execution Eq of E

during which some processor Q executes all the pulses, and the number of pulses is greater

than k = 8n3 + n� 1. We will show that in Eq the adjustment condition holds for Q and the

agreement condition holds for Q and any other processor.

Let E0

q be the sub-execution of Eq that begins after the �rst 4n
3 + n� 1 pulses of Eq and

lasts for 4n3 pulses. Note that by Lemma 4.1, Q increases its clock at every step of E0

q.

Lemma 4.2 For any processor P , stop increasing(P;E0

q) � 2(n� 1).

Proof: A processor P may stop increasing only if P assigns wait := 4n3 or P fails, i.e., does

not execute a step. Since E0

q includes only 4n
3 pulses, P may stop increasing at most once due

to the assignment of wait := 4n3. Thus, we have to count the maximal number of times that

a processor P may stop increasing due to failures. If P takes fewer than 2(n� 1) steps in Eq,

then we are done.

Suppose P takes at least 2(n � 1) steps. During one of the �rst n � 1 of those steps, P

reads Q:count. If P fails once more following this read, then the next time P reads Q:count,

P �nds out that delta > n� 1 and assigns wait := 4n3. Hence, we have to count the maximal

number of times P may stop increasing before that read operation and assignment occurs. P

12



may stop increasing after every single step that it takes, if for instance it skips every other

pulse. Thus, P may additionally stop increasing at most n� 2 times.

To summarize, in the worst case P stops increasing due to napping after each of the �rst

n � 1 read operations (in the last of those read operations P reads Q:count). Then P stops

increasing due to napping after each of the next n� 2 read operations (before P gets to read

Q:clock again). At last P stops increasing once more due to the assignment of wait := 4n3

(right after reading Q:clock).

Lemma 4.3 There is a sub-execution Êq of E
0

q with at least 2(n�1) pulses such that for every

processor P , stop increasing(P; Êq) = 0.

Proof: The lemma is proved by the pigeon-hole principle. By Lemma 4.2, each processor

P 6= Q may stop increasing at most 2(n � 1) times. Thus there are at most 2(n � 1)2 stop-

increasing events during E0

q. The number of intervals of E0

q delimited by either the begining

of E0

q, or a stop-increasing event, or the end of E0

q (not containing a stop-increasing event) is

2(n� 1)2 + 1. Since E0

q contains 4n
3 pulses, there is a sub-execution of E0

q containing at least

4n3=(2(n � 1)2 + 1) > 2(n� 1) pulses in which no processor stops increasing.

A processor R holds the maximal clock value in a certain con�guration c if R:clock(c) �

P:clock(c) for all processors P .

Lemma 4.4 In the last con�guration of Êq, Q:clock holds the maximal clock value.

Proof: By Lemma 4.3, stop increasing(P; Êq) = 0 for every P . Either P does not increase

its clock during Êq at all or after the �rst time P increases its clock P continues to increase

its clock in later pulses. We say that after the �rst increase of P , P is increasing. During each

clock pulse every processor may either (a) not increase its clock or (b) increment its clock by

1 or (c) assign its clock to be the value of the clock of another processor + 1. Therefore, once

the clock of an increasing processor has the maximal clock value in the system, this clock is

incremented by 1 in every clock pulse and thus it stays the maximal clock value in the system.

Let P(c) be the set of processors with the maximal clock value in a system con�guration

c. Let c be the the �rst con�guration of Êq. If there is no increasing processor in P(c) then

within the �rst n � 1 pulses at least one increasing processor reads a value from a processor

in P and assigns its clock to be a greater value. (Notice that during Êq, Q is an increasing

processor.) Just after that assignment the set P includes an increasing processor. Once there

is an increasing processor P in P, then within the next n� 1 pulses, Q reads P 's clock value

and assigns its clock to be the maximal value too. Thus, after the �rst 2(n� 1) pulses of Êq,

Q has the maximal clock value.

Let cq be the �rst con�guration in Eq for which Q holds the maximal clock value. Note

that the existence of such a con�guration is proven in Lemma 4.4.

13



Lemma 4.5 For every con�guration in E0

q that follows cq, Q holds the maximal clock value.

Proof: Throughout E0

q, Q:wait = 0. Thus in any step during E0

q, Q may (a) increment its

clock by 1 or, in case Q does not hold the maximal clock value, Q may (b) set its clock to some

value that Q reads from the clock of another processor, and increment this value by 1. Hence,

once Q holds the maximal clock value, Q does not execute (b) above for the rest of E0

q.

Theorem 4.6 The above algorithm is a wait-free clock synchronization algorithm with con-

vergence time k = 8n3 + n� 1.

Proof: By Lemmas 4.4 and 4.5, Q has the maximal clock value after Êq. Thus the only

change ever made to Q:clock is to increment it by 1, as long as Q continues to work. Hence,

the adjustment requirement holds. If there is any other processor P that has been working long

enough, then it too has the maximal clock value, which is equal to Q's clock value. Therefore

the agreement requirement holds too.

During the proof we did not restrict the values of the variables (clock, count, previous,

wait) in the initial con�guration. Thus the system could be initiated with any possible con�g-

uration and still ful�ll the adjustment and agreement requirements. In other words the above

algorithm is also self-stabilizing. Note that the algorithm presented in this section as well as

the algorithms presented in the sequel assume that clock values are unbounded.

4.2 O(n2) Algorithm

In order to reduce k we would like to limit the number of times a processor may \disturb" the

system before it �nds out that it was napping. To do so we let each processor adjust its clock

only once every n�1 pulses. Roughly speaking, a processor \remembers" in a local variable the

maximal clock value it read and uses it to adjust its clock once every n�1 pulses. The drawback

of this approach is that it violates the self-stabilization property: A napping processor might

be initiated with a very large value for the local variable that stores the maximal clock value

observed and then this very large value could be used at a most unfortunate time, causing

working processors to adjust clocks. Thus, our next algorithm achieves better performance at

the cost of the self-stabilization property.

Fig. 3 describes the wait-free clock synchronization algorithm for k = O(n2). Since the

algorithm is not self-stabilizing, we must de�ne the initial values of the variables. For all i and

j, we assume that the initial values of Pj :count, Pj:previous[i], Pj :clock, Pj :max clock and

Pj :wait are all 0.

Informally, the nature of the variables and operations is the same as in the previous algo-

rithm. The main di�erence from the previous algorithm is that Pj does not adjust (increase

by more than 1) its clock immediately after reading a greater clock value. Pj may adjust its

14



clock only in one step out of every n� 1 successive steps (line 12). In the rest of the steps, Pj
just increments its clock by 1 (line 5). To keep track of the maximal clock value, Pj updates

its internal variable max clock (line 11).

Roughly speaking, the improvement upon the previous algorithm is gained by the fact that

a processor P that does not work correctly may \disturb" the system (i.e., increase its clock

by more than one) only once every n � 1 steps. This helps to reduce the number of times

P can \disturb" the system before �nding out that it has to wait. A processor P uses the

local variable max clock to keep track of the maximal clock value it observed. Only after P

reads from every other processor does P set its clock to the value of max clock. Note that

this algorithm is not self-stabilizing, since in a self-stabilizing algorithm max clock could be

arbitrarily initialized.

01 do forever

02 for i := 1 to n (not including j)

03 do

04 read(Pi:clock; Pi:count)

05 clock := clock + 1

06 count := count+ 1

07 delta := Pi:count� previous[i]

08 previous[i] := Pi:count

09 if wait � 1 then wait := wait� 1

10 if delta > n� 1 then wait := 8n2

11 if wait = 0 then max clock := max(max clock; Pi:clock) + 1

12 if wait = 0 and (i = n or (j = n and i = n� 1)) then clock := max clock

13 if wait 6= 0 then max clock := clock

14 write(clock; count)

15 od

16 od

Figure 3: Program of Pj for O(n
2) In-Phase Algorithm

The outline of the proof is the same as that for the previous algorithm. We consider any

sub-execution that contains at least k = 16n2+n� 1 pulses and during which there is at least

one processor, say Q, that executes every clock pulse. We use the pigeon-hole principle to

deduce that there is a sub-execution of 4(n�1) pulses satisfying certain requirements. Thanks

to these requirements, we can show that Q �nds the maximal clock value at the end of this

sub-execution. Once this happens, Q satis�es the adjustment and agreement conditions.

De�nition 4.2 g clock(c) is the maximal value of P:clock, over all P , in con�guration c.

De�nition 4.3 g max clock(c) is the maximal value of P:max clock, over all P , in con�gu-

ration c.

15



Lemma 4.7 For any processor P and for every con�guration c in an initialized execution,

P:max clock(c) � P:clock(c) and hence g max clock(c) � g clock(c):

Proof: The lemma is proved by induction on the steps of P . The base case is by the fact

that in c0 (the initial con�guration), P:max clock(c0) = P:clock(c0) = 0. For the inductive

case: During any step of P , P increments clock by 1 and then either increases max clock by

at least 1 or makes the values of clock and max clock equal.

Lemma 4.8 Consider any initialized execution. For every con�guration c that immediately

follows the execution of l > 8n2 + n� 1 successive steps by P , P:wait(c) = 0.

Proof: During the �rst n� 1 (out of l) successive steps of P , P reads all the counts in the

system and any subsequent computation of delta results in a value that is less than or equal

to n� 1. Thus following those �rst n� 1 steps, P decrements wait till it reaches the value 0.

The lemma follows.

Eq, Q is working, � 16n2 + n� 1

E0

q, Q:wait = 0, 8n28n2 + n� 1

E00

q

Ê00

q , 4(n� 1)

Figure 4: De�nitions of sub-executions within Eq

De�nition 4.4 For execution E, de�ne working(P;E) to be true if P executes all the steps

during E.

De�nition 4.5 Let E0 be a suÆx of execution E. De�ne first stop(P;E;E0) to be true if the

�rst time that P does not execute a step in E is during E0; otherwise first stop(P;E;E0) is

false.

16



De�nition 4.6 Let E0 be a suÆx of execution E. De�ne disturbing(P;E;E0) to be 0 if

working(P;E) is true. Otherwise if working(P;E) is false, i.e., P missed at least one step

during E, let a be the �rst step P missed during E, and de�ne disturbing(P;E;E0) to be the

number of pulses in E0 and after a, at which P increases P:clock by more than 1.

It is suÆcient for our proof to consider an arbitrary sub-execution Eq of an arbitrary

initialized execution E during which some processor Q executes all the steps, and the number

of steps is greater than or equal to k = 16n2+n� 1. We show, in this case, that Q will satisfy

the adjustment and agreement conditions.

Let E0

q be the sub-execution of Eq that begins after the �rst 8n
2 + n� 1 pulses of Eq and

lasts for 8n2 pulses. Note that, by Lemma 4.8, Q:wait = 0 throughout E0

q. Refer to Fig. 4

throughout the remainder of the correctness proof.

Lemma 4.9 For all processors P , disturbing(P;E0

q; E
0

q) � 1.

Proof: A processor may increase its clock by more than 1 at most once every n� 1 steps.

The proof considers two cases. First we consider any processor P that does not read

Q:count during the n� 1 pulses of Eq that precede E
0

q (note that E
0

q is a sub-execution of Eq

that begins after the �rst 8n2 + n� 1 > n� 1 pulses of Eq). During those n� 1 pulses of Eq,

Q:count is increased by n � 1, thus if P reads Q:count after those n � 1 pulses (i.e., during

E0

q), P �nds out that delta > n� 1 and assigns wait := 8n2. Since P executes line (12) once

between each pair of reads of a particular other processor's variables, it holds that before that

�rst read (and assignment) P may increase its clock by more than 1 at most once. Moreover,

following that �rst read (and assignment) P does not increase P:clock by more than 1 for the

rest of E0

q.

We have to consider a processor P that reads Q:count during the n� 1 pulses of Eq that

precede E0

q. Following that read operation if P misses even a single execution of a step P has

to discover that delta > n � 1 in the successive read operation from Q:count. Again since

P executes line (12) once between each pair of reads of Q:count, it must hold that before P

discovers that delta > n� 1 and assigns wait := 8n2, P may increase its clock by more than

1 only once. Note that for a processor P that does not miss any step during E0

q it holds that

disturbing(P;E0

q; E
0

q) = 0.

Lemma 4.10 There exists a pre�x E00

q of E0

q that has suÆx Ê00

q consisting of 4(n � 1) steps

such that for every processor P , first stop(P;E00

q ; Ê
00

q ) = false and disturbing(P;E00

q ; Ê
00

q ) = 0.

Proof: The lemma is proved by the pigeon-hole principle. During the 8n2 steps of E0

q each

processor P 6= Q may stop working for the �rst time at most once and by Lemma 4.9, P may

disturb the system thereafter at most once. Thus the sum of the �rst-stop and disturbing

events during the �rst 8n2 pulses of E0

q is at most 2(n � 1). Hence, there is a sub-execution

17



Ê00

q of E0

q consisting of at least 8n2=(2(n � 1) + 1) > 4(n � 1) pulses in which no processor

�rst-stops or disturbs. Let E00

q be the pre�x of E0

q through the end of Ê00

q .

Lemma 4.11 Let ĉ be the last con�guration in Ê00

q . Then Q:max clock(ĉ) = Q:clock(ĉ) =

g max clock(ĉ).

Proof: Let P be the set of processors P such that working(P;E00

q ) = true. First we show

that after the �rst n� 1 pulses of Ê00

q , every processor P in P increases P:max clock at every

step it takes through the end of Ê00

q . Suppose P has P:wait > 0 at some point after the �rst

n � 1 pulses of Ê00

q . This can only be because P decides it has to wait (based on computing

delta > n� 1) during those �rst n� 1 pulses or earlier. By the code, once P sets P:wait equal

to 8n2, as long as P:wait is bigger than 0, P:max clock and P:clock are equal to each other

and are incremented by 1 in every step. Once P stops waiting (if it ever does during Ê00

q ), it

continues increasing P:max clock. If P never has P:wait > 0 after the �rst n� 1 pulses of Ê00

q ,

then by the code it always increases P:max clock.

During the �rst n � 1 steps of Q in Ê00

q , Q reads the clock of every processor R such

that R 62 P. By the de�nition of Ê00

q , it holds that first stop(R;E00

q ; Ê
00

q ) = false. Since

R 62 P it must hold that R does not execute at least one step during E00

q and before Ê00

q .

Moreover, by the de�nition of Ê00

q it holds that disturbing(R;E00

q ; Ê
00

q ) = 0. Hence, during Ê00

q ,

R increases R:clock by at most 1 in every step, while Q increases Q:max clock by at least

1 in every step. Thus, any successive read of Q from R:clock does not change the value of

Q:max clock. In other words, in every con�guration of Ê00

q that follows the �rst n� 1 steps of

Ê00

q , it holds that Q:max clock � R:clock. Let c be the con�guration that immediately follows

the �rst n � 1 pulses in Ê00

q . Let W 2 P be a processor such that for every other processor

P 2 P, W:max clock(c) � P:max clock(c). Note that since W 2 P, then between c and ĉ, W

increments W:max clock by 1 in every clock pulse and W:max clock � P:max clock.

During the second n � 1 pulses, W assigns to its clock the value of W:max clock. Thus

in the con�guration c0 that follows 2(n � 1) pulses of E00

q , W:max clock(c0) = W:clock(c0) =

W:max clock(c) + n� 1. Moreover, following that assignment and throughout Ê00

q , W:clock =

g clock. Before the third set of n� 1 pulses elapses, Q reads the value of W:clock. Thus in the

con�guration c00 that follows the �rst 3(n � 1) pulses of Ê00

q , it holds that Q:max clock(c00) =

W:max clock(c00) = W:clock(c00) = W:max clock(c) + 2(n� 1) and for every processor P 2 P,

Q:max clock(c00) � P:max clock(c00) and in ĉ Q:clock(ĉ) = Q:max clock(ĉ).

Thus, in order to show that Q:max clock(ĉ) = g max clock(ĉ), we only have to show that

for every processor R 62 P, Q:max clock(ĉ) � R:max clock(ĉ). Assume toward contradiction

that R:max clock(ĉ) > Q:max clock(ĉ). Since Q:max clock(ĉ) = W:clock(ĉ) = g clock(ĉ),

then R:clock(ĉ) < R:max clock(ĉ). R:max clock(ĉ) may be greater than R:clock(ĉ) only due

to a value R reads from a processor clock, say P:clock, during a step r that is one of the last

n � 2 steps of R before ĉ. (Recall that during at most n � 1 successive steps of R there is a

step in which R:clock = R:max clock.)

18



Consider two cases: (a) r occurs after the �rst 2(n� 1) steps of Ê00

q , or (b) r occurs during

or before the �rst 2(n� 1) steps of Ê00

q . In case (a), R assigns to R:max clock a value that is

less than or equal to W:clock by de�nition of W .

In case (b), R does not execute at least 2(n � 1) � (n � 2) steps (otherwise, R assigns

R:clock := R:max clock after r which contradicts the de�nition of r). Let cr be the con-

�guration that immediately follows r. Then R:max clock(cr) � g clock(cr) + 1. As men-

tioned above, R may increase the value R read by at most n � 2 before R writes (by choice

of r). Thus, R:max clock(ĉ) � R:max clock(cr) + n � 2. Moreover, since during the last

2(n � 1) steps W increases its clock (and hence increases g clock) by at least 2(n � 1), then

g clock(cr) � g clock(ĉ) � 2(n � 1). Hence, R:max clock(ĉ) � R:max clock(cr) + n � 2 �

g clock(cr) + 1 + n� 2 � g clock(ĉ)� 2(n� 1) + 1 + n� 2 < g clock(ĉ).

Lemma 4.12 In every con�guration c0 in Eq after ĉ, Q:max clock(c0) = Q:clock(c0) =

g max clock(c0).

Proof: We prove the lemma by induction on the number of pulses in Eq following ĉ.

Let p be a pulse that immediately follows a con�guration ci in which Q:max clock(ci) =

Q:clock(ci) = g max clock(ci). During p, Q increments Q:max clock and Q:clock by 1,

and every other processor P may increase P:max clock and P:clock to be at most the

same value as Q:max clock. Thus, in the con�guration ci+1 that follows p it holds that

Q:max clock(ci+1) = Q:clock(ci+1) = g max clock(ci+1).

Theorem 4.13 The above algorithm is a wait-free clock synchronization algorithm with con-

vergence time k = 16n2 + n� 1.

Proof: By Lemmas 4.12 and 4.7, Q has the maximal clock value after Ê00

q . Thus the only

change ever made to Q:clock is to increment it by 1, as long as Q continues to work. This

implies the adjustment requirement. If there is any other processor P that has been working

long enough, then it too has the maximal clock value, which is equal to Q's clock value. Thus

the adjustment requirement holds too.

5 Out-of-Phase Algorithm

In this section we assume that there is no common clock pulse. Each processor owns an

independent pulse generator. Each processor P may execute a step at any time, subject to the

restriction that the time elapsed between two successive steps of P is greater than or equal to

a single time unit. Since read and write operations may require some duration in time, it is

not natural to assume that in a single step a processor P atomically reads a shared variable,

modi�es its own state according to the value read and writes a value in its shared variable.

Instead, we assume that a clock pulse triggers P to execute simultaneously both write operation

19



to its own variable and read of a shared variable. Thus, the value written during a pulse is

the function of the processor state before the pulse (and not of the value the processor reads

during the pulse).

A processor works as soon as possible (abridged asap) if the time elapsed between two

successive steps of the processor is exactly a single time unit.

The code for processor Pj in our out-of-phase algorithm appears in Fig. 5. We assume for

any two processors Pj and Pi that the initial values of Pj :previous[i], Pj:clock, Pj :max clock

and Pj :wait are all 0. Informally, the nature of the variables and operations is the same as in

the previous algorithms. The main di�erence from the previous algorithm is that whenever Pj
reads a clock value that is greater than max clock, Pj assigns max clock to be the value Pj
read without incrementing it by 1 (line 13).

01 do forever

02 for i := 1 to n (not including j)

03 do

04 write(clock + 1; count+ 1)

05 read(Pi:clock; Pi:count)

06 max clock := max clock + 1

07 clock := clock + 1

08 count := count+ 1

09 delta := Pi:count� previous[i]

10 previous[i] := Pi:count

11 if wait � 1 then wait := wait� 1

12 if delta > n� 1 then wait := 12n2

13 if wait = 0 then max clock := max(max clock; Pi:clock)

14 if wait = 0 and (i = n or (j = n and i = n� 1)) then clock := max clock

15 if wait 6= 0 then max clock := clock

16 od

17 od

Figure 5: Program of Pj for O(n
2) Out-of-Phase Algorithm

The correctness proof is similar to the correctness proof of the previous algorithm. Instead

of arguing about the number of steps that Q executes successively (as in the previous proof),

we argue about a sub-execution during which Q executes all its steps asap. Therefore between

any two successive read operations by Q of another processor's clock, P 's count is increased

by at most n � 1. Thus, following the �rst sequence of read operations by Q, whenever Q

computes delta, its value is less than or equal to n � 1. We consider a time period in which

Q:wait = 0, and concentrate on a period of 12n2 pulses during which every processor that

assigns wait := 12n2 does not have enough time to decrement it to 0. We show that during the

20



12n2 successive pulses, each processor may \disturb" the execution at most three times. Thus

there is a sub-execution of length 4n pulses with no \disturbances", ensuring that Q �nds the

maximal clock value by the end.

A processor P is working asap relative to Q if between any two successive steps of Q there

is a step of P .

De�nition 5.1 For execution E, de�ne working(P;E;Q) to be true if, during E, P executes

all its steps asap relative to Q.

De�nition 5.2 Let E0 be a suÆx of execution E that starts immediately following a step of

Q. De�ne first stop(P;E;E0; Q) to be true if the �rst time that P does not execute a step

asap relative to Q is during E0; otherwise first stop(P;E;E0; Q) is false.

De�nition 5.3 Let E0 be a suÆx of execution E that starts immediately following a step of

Q. De�ne first wait(P;E;E0; Q) to be true if the �rst time that P assigns wait := 12n2 is

during E0; otherwise first wait(P;E;E0; Q) is false.

De�nition 5.4 Let E0 be a suÆx of execution E that starts immediately following a step

of Q. De�ne disturbing(P;E;E0; Q) to be 0 if working(P;E;Q) is true. Otherwise if

working(P;E;Q) is false, i.e., P missed at least one step during E relative to Q, let t be

the �rst time P missed such a step during E and de�ne disturbing(P;E;E0; Q) to be the

number of pulses in E0 and after t, at which P increases P:clock by more than 1.

It is suÆcient for our proof to consider an arbitrary sub-execution Eq of an arbitrary

initialized execution E during which some processor Q executes all the steps asap and the

number of steps is more than k = 24n2 + n. We show in this case that the adjustment

condition holds for Q and that the agreement condition holds for Q and any other relevant

processor.

Let E0

q be the sub-execution of Eq that begins after the �rst 12n
2 + n� 1 asap steps of Q

and lasts for 12n2 asap steps of Q. Note that Q:wait = 0 throughout E0

q.

Lemma 5.1 For every processor P , disturbing(P;E0

q; E
0

q; Q) � 1.

Proof: A processor may increase its clock by more than 1 at most once every n� 1 steps.

The proof considers two cases. First we consider any processor P that does not read

Q:count during the n� 1 pulses of Eq that precede E
0

q (note that E
0

q is a sub-execution of Eq

that does not include the �rst at least 12n2 + n� 1 > n� 1 steps of Q). During those n� 1

pulses of Eq, Q:count is increased by n � 1; thus if P reads Q:count after those n� 1 pulses

(i.e., during E0

q) P �nds out that delta > n � 1 and assigns wait := 12n2. Since P executes

21



line 14 once between each pair of reads of a particular other processor's variables, before that

�rst read (and assignment) P may increase its clock by more than 1 at most once. Moreover,

following that �rst read (and assignment) P does not increase P:clock by more than 1 for the

rest of E0

q, since it has P:wait > 0 for the rest of E0

q.

We have to consider a processor P that does read Q:count during the n� 1 pulses of Eq

that precede E0

q. Following that read operation if P does not work asap relative to Q at least

once then P has to discover that delta > n� 1 in the successive read operation from Q:count.

Again since P executes line 14 once between each pair of reads of a particular other processor's

variable, before P discovers that delta > n � 1 and assigns wait := 12n2, P may increase its

clock by more than 1 only once.

Lemma 5.2 There exists a pre�x E00

q of E0

q that has a suÆx Ê00

q consisting of 4n steps of Q such

that for every processor P , first stop(P;E00

q ; Ê
00

q ; Q) = false, first wait(P;E00

q ; Ê
00

q ; Q) = false

and disturbing(P;E00

q ; Ê
00

q ; Q) = 0.

Proof: The lemma is proved by the pigeon-hole principle. During the 12n2 steps of E0

q each

processor P 6= Q may stop working for the �rst time at most once, may start waiting for the

�rst time at most once and by Lemma 5.1, P may disturb the system at most once. Thus,

there is a sub-execution Ê00

q of E0

q consisting of at least 12n
2=(3(n� 1) + 1) > 4n steps of Q in

which none of the above occurs. Let E00

q be the pre�x of E0

q through the end of Ê00

q .

Lemma 5.3 Let ĉ be the last con�guration in Ê00

q . Then Q:max clock(ĉ) = Q:clock(ĉ) =

g max clock(ĉ). (g max clock is de�ned the same as for the in-phase system.)

Proof: Let P be the set of processors P such that working(P;E00

q ; Q) = true. Note that

because first stop(R;E00

q ; Ê
00

q ; Q) = false, every processor R 62 P must have not executed a

step asap relative to Q during E00

q and before Ê00

q .

During the �rst n� 1 steps by Q in Ê00

q , Q reads the clocks of all processors R such that

R 62 P. By Lemma 5.2, disturbing(R;E00

q ; Ê
00

q ) = 0. Thus during Ê00

q , R increases R:clock by

at most 1 in every step while Q increases Q:max clock by at least 1 in every step. Thus, any

successive read of Q from R:clock does not in
uence the value of Q:max clock.

Denote the con�guration that immediately precedes the i'th step of Q during Ê00

q by bi and

denote the con�guration that immediately follows the i'th step of Q by ci.

LetW 2 P be a processor such that for every other processor P 2 P,W:max clock(bn�1) �

P:max clock(bn�1) (note that W may be Q).

First we prove that (1) for n� 1 � i < 4(n� 1), W increments W:max clock by 1 between

bi and bi+1 and (2) for n � i � 4n, W:max clock(bi) � P:max clock(bi) for all P 2 P.

22



Since Q works asap, W executes a single step between bi and bi+1. W does not increase

W:max clock by 1 only if W reads a value that is greater than W:max clock + 1. Assume

towards contradiction that W reads from P:clock (for some processor P ) a value that is greater

than W:max clock + 1. Recall that for any processor it holds that max clock � clock. By the

de�nition of W , following bn and before bn+1, P reads a value of at least W:max clock + 2

from some clock variable.

Let P 0 be the �rst processor that increases P 0:clock to be at least W:maxclock + 2. Since

every processor executes at most one step between bn�1 and bn and since by the de�nition

of W , P 0 increases P 0:clock by more than 1, P 0 reads a value that is greater than or equal

to W:max clock + 2 from another processor, which contradicts the de�nition of P 0. The

above implies that W increments W:max clock by 1 and that no clock value is greater than

W:max clock(bn�1) + 1 in bn. Thus, assertions (1) and (2) hold. Using the same argument we

proof that assertions (1) and (2) hold starting with bn and reaching bn+1, and so on and so

forth up to the end of E00

q .

We proved that W has the maximal W:max clock in any bi such that n � 1 � i � 4(n �

1). In particular, if W = Q we have shown that for all P 2 P, Q:max clock(c3n�3) �

P:max clock(c3n�3). Next we show that this also holds when W 6= Q.

During the second n� 1 pulses, W assigns its clock to be the value of W:max clock. Thus

W:max clock(b2n�2) = W:clock(b2n�2) = W:max clock(bn�1) + n � 1. Moreover, following

that assignment and throughout Ê00

q , in every con�guration bi that immediately precedes a

step of Q, W:clock(bi) = g clock(bi) (g clock is de�ned the same as for the in-phase system.)

Before the third n� 1 pulses elapse, Q reads the value of W:clock. Thus, in the con�guration

c3n�3 of Ê00

q it holds that Q:max clock(c3n�3) = W:max clock(c3n�3) = W:clock(c3n�3) =

W:max clock(cn�1) + 2n � 2 and for every processor P 2 P, Q:max clock(c3n�3) �

P:max clock(c3n�3).

Thus, in order to show that Q:max clock(ĉ) = g max clock(ĉ) we only have to show that

for every processor R 62 P, Q:max clock(ĉ) � R:max clock(ĉ). Assume toward contradiction

that R:max clock(ĉ) > Q:max clock(ĉ) for some processor R 62 P. Since Q:max clock(ĉ) =

W:clock(ĉ) = g clock(ĉ), then R:clock(ĉ) < R:max clock(ĉ). R:max clock(ĉ) may be greater

than R:clock(ĉ) only due to a value R reads from a processor clock, say P:clock, during a step

r that is one of the last n� 2 steps of R before ĉ. (Recall that during at most n� 1 successive

steps of R there is a step in which R:clock = R:max clock.)

Consider two cases: (a) r occurred before c2n�2 or (b) r occurred after c2n�2. In case (a) R

does not execute at least 2n� 2� (n� 2) steps (otherwise, R assigns R:clock = R:max clock

after r which contradicts the de�nition of r). Let cr be the con�guration that immediately

follows r. Then R:max clock(cr) � g clock(cr). As mentioned above R may increase the value

read by at most n � 2 before R assigns R:clock = R:max clock. Thus, R:max clock(ĉ) �

R:max clock(cr)+n� 2. Moreover, since during any of the last 2n� 2 steps W increments its

clock by 1 (and hence increases g clock in any con�guration that immediately follows a step

of Q) then g clock(cr) � g clock(ĉ) � 2n � 2. Hence, R:max clock(ĉ) � R:max clock(cr) +

23



n� 2 � g clock(cr) + n� 2 � g clock(ĉ)� 2n� 2 + n� 2 < g clock(ĉ). In case (b) R assigns

R:max clock to be a value such that for any 2n < i � 4n R:max clock(bi) � W:clock(bi).

Since Q:max clock(ĉ) �W:clock(ĉ) the contradiction is completed.

Lemma 5.4 In every con�guration c0 in Eq after ĉ that immediately follows a step of Q,

Q:max clock(c0) = g clock(c0) = g max clock(c0).

Proof: We prove the lemma by induction on the number of steps executed by Q following ĉ

during E0

q. The basis is by Lemma 5.3. Let qi and qi+1 be two such successive steps of Q. We

claim that between qi and qi+1 a processor P may increase P:clock and P:max clock, during a

step p, to be at most the value of Q:clock + 1. P may read at most the value Q:clock + 1 and

assign P:max clock := Q:clock + 1. The proof is completed since during qi+1 Q increments

both Q:max clock and Q:clock by 1.

Theorem 5.5 The above algorithm is wait-free clock synchronization algorithm with conver-

gence time k = 24n2 + n.

Proof: By Lemma 5.4, Q has the maximal clock value after each of Q's step that follows ĉ.

Thus the only change ever made to Q:clock is to increment it by 1, as long as Q continues to

work. This implies the adjustment requirement. If there is any other processor P that has been

working long enough, then it too has the maximal clock value, which is equal to either Q:clock

or Q:clock � 1 in any con�guration that follows Q's step. Thus the adjustment requirement

holds too.

6 Concluding Remarks

We have de�ned the new class of wait-free clock synchronization algorithms. Algorithms in

this class may tolerate napping faults that cause a processor to repeatedly stop operation and

then resume operation without necessarily recognizing that a failure occurred. Wait-free clock

synchronization algorithms can tolerate up to n � 1 faulty processors. The viability of this

de�nition was demonstrated by presenting three wait-free clock synchronization algorithms,

one of which is also self-stabilizing.

In a single-site multiprocessor system it may be possible to achieve tighter clock syn-

chronization than in a multi-site distributed system. In fact, when a common clock pulse is

assumed our algorithms cause the clocks to be perfectly synchronized. Such strong synchro-

nization might be needed in systems where simultaneous actions are important, e.g., the �ring

squad synchronization problem (cf. [BL87, CDDS89]). When there is no common pulse we

have to consider the skew between the individual pulses. Digital clocks that are incremented

at di�erent real time cannot be totally synchronized | they are doomed to have at least one

unit di�erence.

24



Many interesting open questions remain.

A straightforward lower bound on k for any wait-free clock synchronization algorithm is


(n). There is a simple randomized self-stabilizing algorithm with expected k = O(n). In

the in-phase version of that randomized algorithm, during every step P chooses randomly

the neighbor Q from which to read and assigns its clock to the maximum of P:clock + 1 and

Q:clock + 1. An interesting open question is whether a deterministic protocol with k = O(n)

exists.

To complement work on lower bounds, �nding improved upper bounds on k for clock

synchronization would be helpful. It may be that the requirement for self-stabilization a�ects

the achievable bounds. Preliminary follow-up work in this direction has been done, describing

an O(n2) self-stabilizing algorithm [PT94].

In a very strong model of communication, in which at each global clock pulse every (non-

faulty) processor �rst reads all n shared variables and then writes a new value to its own shared

variable, self-stabilizing wait-free clock synchronization can be achieved with k = �(1) even

when the clock values are bounded (i.e., the clock is a bounded counter, see the appendix for

this algorithm.) It is currently unknown whether there exists an algorithm for bounded clocks

in either our in-phase and out-of-phase systems (of Section 2).

More general future work in this area includes devising algorithms for other tasks (e.g.,

agreement, renaming) using the same model of faults and analogous requirements, and inves-

tigating lower bounds on k for each of them.

Acknowledgments: We thank Mohamed Gouda and Steve Liu for helpful discussions. Many

thanks to the anonymous referees for a careful reading of a preliminary version of this paper

and for their helpful suggestions.

25



References

[ADG91] A. Arora, S. Dolev, and M. Gouda, \Maintaining Digital Clocks in Step," Parallel

Processing Letters, Vol. 1, No. 1, 1991, pp. 11-18.

[AKY90] Y. Afek, S. Kutten and M. Yung, \Memory-EÆcient Self Stabilization on General

Networks," Proceedings of the 4th International Workshop on Distributed Algorithms,

Bari, Italy, September 1990, LNCS 486 Springer-Verlag, pp. 15-28.

[ALS90] H. Attiya, N. A. Lynch and N. Shavit, \Are Wait-Free Algorithms Fast?," Proceedings

of the 31st IEEE Symposium on Foundations of Computer Science, October 1990, pp.

55-64.

[AV91] B. Awerbuch and G. Varghese. \Distributed Program Checking: a Paradigm for Build-

ing Self-Stabilizing Distributed Protocols," Proceedings of the 32nd IEEE Symposium

on Foundations of Computer Science, October 1991, pp. 258-267.

[BL87] J. E. Burns and N. A. Lynch, \The Byzantine Firing Squad Problem," Advances in

Computing Research: Parallel and Distributed Computing, Vol. 4, 1987, pp. 147-161.

[CDDS89] B. A. Coan, D. Dolev, C. Dwork and L. Stockmeyer, \The Distributed Firing Squad

Problem," SIAM Journal on Computing, Vol. 18, No. 5, 1989, pp. 990-1012.

[Di74] E. W. Dijkstra, \Self Stabilizing Systems in Spite of Distributed Control," Commu-

nication of the ACM, Vol. 17, 1974, pp. 643-644.

[DHS86] D. Dolev, J. Y. Halpern, and H. R. Strong, \On the Possibility and Impossibility of

Achieving Clock Synchronization," Journal of Computer and System Sciences, Vol.

32, No. 2, 1986, pp. 230-250.

[DIM90] S. Dolev, A. Israeli, and S. Moran, \Self Stabilization of Dynamic Systems Assuming

Only Read/Write Atomicity," Proceedings of the 9th ACM Symposium on Principles

of Distributed Computing, August 1990, pp. 103-117.

[DIM91] S. Dolev, A. Israeli, and S. Moran, \Resource Bounds for Self Stabilizing Message

Driven Protocols," Proceedings of the 10th ACM Symposium on Principles of Dis-

tributed Computing, August 1991, pp. 281-293.

[DW93] S. Dolev and J. Welch, \Wait-Free Clock Synchronization," Proceedings of the 12th

ACM Symposium on Principles of Distributed Computing, August 1993, pp. 97-108.

[GH90] M. G. Gouda and T. Herman. \Stabilizing Unison," Information Processing Letters,

Vol. 35, 1990, pp. 171-175.

[GP93] A. Gopal, and K. J. Perry, \Unifying Self-Stabilization and Fault-Tolerance", Pro-

ceedings of the 12th ACM Symposium on Principles of Distributed Computing, August

1993, pp. 195-206.

26



[HSSD84] J. Halpern, B. Simons, R. Strong, and D. Dolev, \Fault-Tolerant Clock Synchroniza-

tion", Proceedings of the 3rd ACM Symposium on Principles of Distributed Computing,

August 1984, pp. 89-102.

[Hw93] K. Hwang, Advanced Computer Architecture, Parallelism, Scalability, Programmabil-

ity, McGraw-Hill, Inc., 1993.

[KP+92] Z. M. Kedem, K. V. Palem, M. O. Rabin, and A. Raghunathan, \EÆcient Program

Transformations for Resilient Parallel Computation via Randomization," Proceedings

of the 24th ACM Symposium on Theory of Computing, 1992, pp. 306-317.

[KS91] P. C. Kanellakis and A. A. Shvartsman, \EÆcient Parallel Algorithms on Restartable

Fail-Stop Processors," Proceedings of the 10th ACM Symposium on Principles of Dis-

tributed Computing, 1991, pp. 23-36.

[KR90] R. Karp and V. Ramachandran. \Parallel algorithms for shared memory machines,"

Handbook of Theoretical Computer Science, J. van Leeuwen, ed., Elsevier Science

Publishers B.V. (also MIT Press), 1990, pp. 869-941.

[La86a] L. Lamport, \The Mutual Exclusion Problem: Part II - Statement and Solutions,"

JACM, Vol. 33, 1986, pp. 327-348.

[La86b] L. Lamport, \On Interprocess Communication," Distributed Computing, Vol. 1, No.

1, 1986, pp. 86-101.

[Le92] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,

Hypercubes, Morgan Kaufmann Publishers, Inc., 1992.

[LM85] L. Lamport and P. M. Melliar-Smith, \Synchronizing Clocks in the Presence of

Faults," Journal of the ACM, Vol. 32, No. 1, 1985, pp. 1-36.

[Ma83] K. Marzullo, Loosely-Coupled Distributed Services: A Distributed Time Service, Ph.D.

Thesis, Stanford University, 1983.

[MC80] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.

[Mo64] E. F. Moore, \The Firing Squad Synchronization Problem," Sequential Machines, ed.

E. F. Moore (Addison-Wesley), 1964.

[MS85] S. Mahaney and F. Schneider, \Inexact Agreement: Accuracy, Precision and Graceful

Degradation," Proceedings of the 4th ACM Symposium on Principles of Distributed

Computing, August 1985, pp. 237-249.

[PT94] M. Papatrianta�lou and P. Tsigas, \Self-Stabilizing Wait-Free Clock Synchroniza-

tion," Technical Report CS-R9421 Centrum Voor Wiskunde en Informatica, 1994.

[ST87] T. K. Srikanth and S. Toueg, \Optimal Clock Synchronization," Journal of the ACM,

Vol. 34, No. 3, 1987, pp. 626-645.

27



[Ul84] J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, 1984.

[WL88] J. L. Welch and N. Lynch, \A New Fault-Tolerant Algorithm for Clock Synchroniza-

tion," Information and Computation, Vol. 77, No. 1, 1988, pp. 1-36.

A Bounded Algorithm for In-Phase System with Global Read

Recall the simple in-phase algorithm presented at the beginning of Section 3.1 assuming a

processor can read the entire shared memory at each step. If the algorithm is modi�ed so that

the clock is incremented by one modulo some maximal clock value (instead of using unbounded

values), then the algorithm does not ful�ll the adjustment requirement: if a processor with

the maximal clock value is napping forever then it causes every other processor to repeatedly

adjust its clock.

We now present an in-phase algorithm that uses a bounded amount of memory, assuming

that a processor can read all the shared variables at each step. In particular, it is designed for

the case of bounded clocks, meaning that the clock variable can only take on integer values

between 0 and M � 1, for some positive integer M . Note that in this case, the adjustment

condition is modi�ed so that the arithmetic is modulo M .

In addition to the clock variable, each processor P has, for every other processor Q, a count

variable P:count[Q]. Each count variable may hold one of three values: 0, 1, or 2. For every

two processors Q and R, we say that Q is behind R if Q:count[R] + 1 (mod 3) = R:count[Q].

Roughly speaking, the count variable ensures that a napping processor will be ignored since it

will be behind every non-napping processor. Every non-napping processor tries to make each

neighbor be behind itself and succeeds only if this neighbor is napping.

At each step P reads all the count and clock variables in the system and executes the

following:

1. Let R be the set of processors that are not behind any other processor.

2. If R is not empty then P:clock := R:clock+1 (mod M), where R is the processor with

the maximal clock in R.

3. For every processor Q, if Q is not behind P then P:count[Q] := P:count[Q]+1 (mod 3).

Theorem A.1 The above algorithm is a self-stabilizing wait-free clock synchronization algo-

rithm with convergence time k = 2.

Proof: Fix an execution E. First note that all processors that take a step at the same pulse

see the same view and compute the same R.

28



Suppose processor X takes a step at pulse T � 1. Then X is not behind any processor

in con�guration T � 1. Thus all processors that take a step at pulse T compute the same

value for R, which includes X, and set their clocks using the maximum clock value among the

processors in R.

Agreement: Suppose work(P;E; T ) � 2 and work(Q;E; T ) � 2. By the above argument,

P and Q set their clock the same way during pulse T and P:clock(T ) = Q:clock(T ).

Adjustment: Suppose work(P;E; T+1) � 3. We show that P:clock(T+1) = P:clock(T )+1

(mod M). By the above argument, P is in R in con�guration T . So P sets its clock to

R:clock+1 (mod M) during pulse T +1, where R is a processor in R with the maximum clock

value. The proof is clear when R is P . Assume that R 6= P . Since work(P;E; T + 1) � 3

it holds that P 2 R in con�guration T � 1. In particular, R is not empty in con�guration

T � 1. By the fact that R is not behind P in con�guration T it holds that R took a step at

pulse T (as P did). Thus, during pulse T both P and R set their clock the same way and

P:clock(T ) = R:clock(T ).

The above arguments assume an arbitrary starting con�guration for the execution, with

any combination of count and clock values. Thus the algorithm is also self-stabilizing.

29


