
Modi�ed Tree Structure for Location Management in Mobile

Environments
�

Shlomi Dolevy Dhiraj K. Pradhanz Jennifer L. Welchx

Abstract

In this paper we suggest a new data structure for location management in mobile networks.

The data structure is based on the tree location database structure. We suggest replacing

the root and some of the higher levels of the tree with another structure that balances the

average load of search requests. For this modi�cation we use a set-ary buttery network,

which is a generalization of the well-known k-ary buttery. We also suggest modifying the

lowest level of the tree in order to reect neighboring geographical regions more accurately

and to support simple location data management. The modi�cation of the lowest level also

supports simple hando�s.

The update of the proposed location database ensures correct location data following

any number of transient faults that corrupt the location database information and thus is

self-stabilizing .

Keywords: Location management, distributed algorithms, fault-tolerance, self-stabilization,

hando� management.

�An extended abstract of this work was presented in the Fourteenth Annual Joint Conference of IEEE Computer

and Communications Societies, INFOCOM'95.
yDepartment of Mathematics and Computer Science, Ben-Gurion University, Beer-Sheva, 84105, Israel, Sup-

ported in part by TAMU Engineering Excellence funds and NSF Presidential Young Investigator Award CCR-91-

58478.
zDepartment of Computer Science, Texas A&M University, College Station, TX 77843.
xDepartment of Computer Science, Texas A&M University, College Station, TX 77843. Supported in part by

TAMU Engineering Excellence funds and NSF Presidential Young Investigator Award CCR-91-58478.



1 Introduction

Mobile computers using wireless communication is a rapidly expanding reality in computer sys-

tems. This trend grows with the availability of powerful portable computers and the construction

of infrastructure for wireless communication used by cellular phones. In the near future, new

computer services will accompany us wherever we are: mail, local news, local information, etc.

(See, e.g., [9, 12, 11].)

Location management is an important task for mobile systems. Whenever a connection is

to be established with a mobile computer, knowledge of the location of this mobile computer is

required. Mobile systems have to cope with frequent location updates and inquiries. Thus the

distributed database used for location management, as well as the update and search (inquiry)

procedures, have great inuence on the performance of the system. The location database is

maintained by location servers which are located in a physical wired network of �xed location

hosts. Any �xed host may act as a location server, i.e., have a process dedicated to maintaining

the location database and answering inquiries concerning the location of a mobile host. The

task of the location servers is to update the location database whenever a mobile host decides

to relocate, and to answer location inquiries.

A solution that uses a centralized location database (one that is maintained in a single site

by a single location server) implies a severe bottleneck in the performance, since every update or

search is executed by this single location server. Moreover, the cost (i.e. number of operations in

the database) of an update for a relocation is �xed and does not depend on the distance between

the previous and current locations. For example, a movement within a city and a movement to

a new continent are treated the same, yet many movement are likely to take place within a city,

while movements to another continent are rare.

One suggestion for a distributed location database is a tree structure of location servers

(e.g., [9, 10]). The leaves of the tree are mobile support stations . Each mobile support station

is responsible for the communication with mobile hosts within a small geographic region called

a cell. Each mobile support station maintains a list of the mobile hosts within its cell. Several

mobile support stations are connected to a single location server, which is their parent in the

tree structure that is embedded in the �xed network for maintaining location information. Every

non-leaf location server, si, has a list, listj , of the mobile hosts for every j'th child of si. listj
contains the identi�ers of the mobile hosts that are in the cells of the leaves of the subtree rooted

at sj . The tree structure of location servers is both distributed and hierarchical and hence �ts

better than the centralized solution discussed above.

Another location management scheme is based on home location servers (e.g., [9]). In this

scheme, each mobile host is registered in a �xed home location server located in the �xed network.

The current location of the mobile host is maintained at this home location server. Whenever a

mobile host, m, moves from one cell to another (or after some constant number of moves when

forwarding pointers are used), the address in the �xed home location server has to be updated.

This approach might be e�cient when the mobile host is almost always close to its home location

server. However, for the cases of high mobility and when m is far from its home location server,



many long distance updates have to take place. Moreover, in some cases a search inquiry is

for a mobile host with special attributes within a geographic region, e.g., search for a medical

doctor within a short distance. The tree structure naturally supports such inquiries. An inquiry

message may be sent directly to the location server that is a root of a subtree including every

mobile support station in some geographical region. In contrast, for the home location server it

is hard to �nd a medical doctor that is present in the region but has a distant home location

server.

This paper investigates the properties of the tree structure and suggests a modi�ed \tree"

structure for location management. We de�ne the level of a node s in a tree to be the number

of tree links in the path from the root of the tree to s, e.g. the level of the root is 0. The

�rst observation made is related to the upper levels of the tree structure | where upper (lower)

levels are the levels close to (far from, respectively) the root. An initiator of a location inquiry

for a highly mobile host is uncertain about the location of the mobile host. The tree structure

is hierarchical: a node in level i has information regarding more mobile hosts than a node in

level i+1. Naturally, a location inquiry for highly mobile host is initiated by sending an inquiry

message to the root of the location servers (or to a location server with relatively upper level in

the tree). This fact implies a heavy load on the root of the location server tree, which in turn

implies a bottleneck on the performance of the location servers. For example, a search for a

mobile host within Manhattan may start with the root of the subtree of the location servers that

maintain the location data of all the mobile hosts in Manhattan. Since the number of mobile

hosts in such a dense area may be big, this location server will be overloaded with inquiries. We

suggest a new tree structure for such cases that preserves the bene�ts of the tree and balances

the inquiry load. Interestingly, the solution is based on the well known k-ary buttery network

(cf. [14]).

The second observation is related to the lower levels of the tree structure. The leaves of

the tree correspond to geographic regions. Movements between neighboring geographic regions

have high probability of happening. In order to minimize the location updates, one would

like to guarantee that any two neighbors will have the same parent in the tree; however this

would result in there being a single parent for all leaves in the tree, which is a non-hierarchical

structure. A tree structure with h > 1 levels may not be symmetric in the following sense: some

neighbors have a common parent while others do not. In fact, there can be leaves corresponding

to neighboring geographic regions whose only common ancestor is the root of the tree. Thus,

the maximal delay for completing a location update depends on the number of levels in the tree.

An inquiry initiated during such a slow location update might not result in the address of the

mobile host.

Some techniques of using forwarding pointers , instead of updating the location servers' data,

have been proposed to cope with the delay in the updates (e.g., [8, 2]). The pointer chain is

extended whenever the mobile host moves, until at some point an update of the hierarchical

database is executed and the pointers are eliminated. Pointers solve the problem of the long

delay for updates but introduce new problems|longer search, pointer management including

periodic updates in order to eliminate too long pointers chains. Moreover, it is hard to recover

following corruption of a pointer (due to a transient fault, say crash and recovery of a location



server). We propose to use the fact that mobile hosts move from neighbor to neighbor to ensure

fast updates without the use of pointers.

We suggest adding connections to the lowest level of the tree such that any two location

servers that correspond to neighboring geographic regions will have either a common parent or

a direct link connecting them. Note that when the regions are hexagons, at most six additional

connections per leaf are required. We show that the modi�ed lowest level of the tree solves the

problem of unsuccessful inquiries due to update delay.

Hando� takes place when a mobile host moves from one cell to another during a commu-

nication session. The information transmitted to the previous mobile support station is easily

forwarded to the new mobile support station through their common link. Note that hando�s

and location management serve di�erent purposes|hando� is not required unless a communica-

tion session is in progress while a mobile host moves from one cell to another, whereas location

management is always required. We show how hando� executions are improved with the lower

level modi�cation. The improvement is by the simplicity of executing local broadcast (of distance

i) in the presence of the additional links. Local broadcast of distance i is a broadcast initiated

by a mobile support station that reaches every mobile host within cells of distance i from itself.

A self-stabilizing system [5] can be started in an arbitrary initial state and regains its consis-

tency by itself. A self-stabilizing system can recover from transient faults , faults which change

the state of one or more components of the system. The self-stabilization property is very im-

portant for on-going tasks such as topology update [17, 6]. We view the location management

task for mobile systems as a topology update under special settings | a subset of the system

components (the mobile hosts) change their location frequently. Our goal is a self-stabilizing

location management scheme that copes with transient faults. In other words a self-stabilizing

location database must guarantee that starting with any correct or incorrect location data for the

mobile hosts (resulting from arbitrary transient faults, e.g., message loss, memory corruption)

eventually each mobile host can be found using the location database.

We present a location management scheme that does not use forwarding pointer. The self-

stabilization property is achieved easily when these forwarding pointers are eliminated. Beyond

the self-stabilizing property, the modi�cations of the upper and lower levels of the tree also result

in a more robust mobile system that can tolerate location server crashes.

In the next section we describe in detail the distributed mobile environment. In Section 3

we present the modi�cations for the upper levels and lowest level of the tree. In Section 4 we

present a self-stabilizing location management. Concluding remarks are in Section 5.

2 Distributed Mobile Environment

A mobile network is composed of a �xed network and a wireless network that interact with

each other. The �xed network is a standard point-to-point communication network in which

the communication between �xed location hosts is carried by physical wire links. Some of the

�xed hosts are equipped with wireless transceivers. These �xed hosts are called mobile support



stations (or base stations). Each mobile support station is capable of transmitting and receiving

messages from a limited geographical region around it. This region is called the cell of the

mobile support station. Thus, the geographic area in which the wireless network service exists

is partitioned into cells and a mobile support station is located in every such cell.

The wireless network consists of mobile hosts which have the capability to exchange messages

with a mobile support station. The mobile host can communicate with a mobile support station

that is within a short distance from itself. The mobile host may move from one cell to another

while communicating with the �xed network (or with another mobile host through the �xed

network). At every instance the communication is carried by the mobile support station of the

cell in which the mobile host is currently located.

Data on the location of mobile host is maintained in the �xed network by location servers.

Any �xed host may act as a location server, i.e., have a process dedicated for maintaining the

location database and answering inquiries concerning the location of a mobile host. In particular,

mobile support stations may also act as location servers. The precise characterization of the

location database and the update and search procedures is up to the system designer. Our focus

in this paper is an hierarchical location management strategy that is based on a tree structure

of location servers which we now describe. (The idea of using a tree structure has been proposed

in, e.g., [9, 10]; in this paper we suggest speci�c schemes for update and search).

Each mobile support station is also a location server that maintains a list of mobile hosts

within its cell. Whenever a mobile host joins a cell, it is included in the list; whenever a mobile

host leaves the cell, it is removed from the list. Every mobile host periodically sends an alive

signal to the mobile support station. If the signal of a mobile host listed in some mobile support

station does not reach the mobile support station for a prede�ned period of time, the mobile

support station assumes that the mobile host is not (active) in the cell and removes it from the

list.

The location servers of the mobile support stations are connected with other location servers

within the �xed network. The location servers are organized in a tree structure, where the

location servers of mobile support stations are the leaves of the tree. Every � leaves are connected

to a single parent location server. A non-leaf location server, si, has � subtrees (each rooted in

one of its children). There is a single root location server that does not have a parent, while every

other location server has a single parent. si maintains � lists; the j'th list, listj , is associated

with the j'th child of si. listj is the list of the mobile hosts that are in the cells of the leaves of

the subtree rooted at this j'th child.

We now present the outline of the update and search procedures that we use for the tree

structure. These procedures are the base for the update and search procedures of the modi�ed

tree structure. The update procedure is invoked whenever a mobile support station receives

an indication that a mobile host joined or left the cell for which the mobile support station is

responsible. The indication for a join event of a mobile host m (that is not listed in the mobile

support station list) is an alive signal from m that is directed to the mobile support station. The

indication for a leave event of m is the absence of an alive signal for a long period (the length



of the period is a function of how frequently alive signals are sent and the time required for an

update, as discussed in the sequel).

When a mobile host m joins a cell, say c1, possibly due to movement from another cell c2,

m's identi�er is added to the list of the mobile support station of c1. This addition is reported

to the mobile support station's parent by sending a join message with m's identi�er. When a

non-leaf location server, si, receives a join message from its child, sj , for a mobile host, m, that

does not exist in any of si's lists, then si includes m in listj and (when si is not the root si)

sends a join message to si's parent. Otherwise, when si �nds m's identi�er in one of its lists,

say listk, si (1) deletes the identi�er of m from listk, (2) sends a delete message to its k'th child

and, (3) adds the identi�er of m to listj . Note that in this case no join message is sent.

Note that if m were in c2 just before m joins c1, then m's identi�er appears in every listj of

every si such that the link between si and si's j'th child is in the path from the root to c2. After

m moves to c1, the update procedure ensures thatm's identi�er appears in every listj of every si
such that the link between si and si's j'th child is in the path from the root to c1. Further note

that for every location server si, an identi�er of a mobile host m may appear in at most one list

of si, thus at any given time there is at most one path from the root to a mobile support station

such that m appears in every list along this path. Still the update procedure needs to \collect

garbage", i.e., eliminate appearances of m's identi�er that are not related to the path from the

root, e.g., the part of the previous path to c2 that is not part of the path to c1. Obviously when

a location server si deletes m's identi�er from listk and at the same time adds m's identi�er to

listj , si may send a delete message towards c2 that removes the identi�er of m in the path from

si towards the mobile support station of c2.

A search inquiry for the location of a mobile hostm starts with a message sent by an initiator

(�xed or mobile) host to the root of the location server tree. When such an inquiry message

arrives at a location server s, s searches for m in its lists. If s is not a leaf and m is found in

listj then s sends the inquiry message to its j'th child. This procedure repeats itself until the

inquiry message reaches a mobile support station. The mobile support station veri�es that m is

in its cell. Upon successful veri�cation, the address of the mobile support station is sent to the

host that initiated the inquiry.

3 The Modi�ed Tree

In the next two subsections we present the modi�cation we propose for the upper and lower

levels. Then we present the update and search procedures for a tree with modi�ed upper and

lower levels. For simplicity we assume that every location inquiry arrives at the root of the

location server tree. In reality a location inquiry for mobile host m might be addressed to a root

of a subtree (say the one that is responsible for New York City) in case the initiator is sure of

the area m is in. The approach we suggest can be applied to subtrees as well.



3.1 Modifying the Upper Levels

In this subsection we present an alternative structure for the upper levels of the tree, i.e., the

levels that are closer to the root. The new structure of the upper levels improves the performance

of the tree structure by spreading the load of queries. To measure this improvement, we suggest

the following analysis. Let lo be the average load (queries per time unit) of outside queries that

reach the root of the tree. Let � be the out-degree of a node in the tree. First we assume that

the out-degree of every non-leaf node in the tree is �; later we relax this assumption. We assume

that the load of the queries that reaches every node is evenly divided between its children. Thus,

the average load for a node in level 1 is lo=�. Similarly the average load per node in level i is

lo=�
i. Let h be the level of the leaves of a tree T . We present a modi�ed tree structure for T

in which the maximal average load per node is lo=�
i, for every 1 � i � h. The modi�cation

requires i�i � ((�i � 1)=(�� 1)) additional nodes, which is proven necessary.

Interestingly the modi�ed upper levels for a tree with � = 2 is the well-known buttery

network; Figure 3 illustrates the correspondence between the binary tree structure and the

buttery. For out-degree � > 2 the modi�ed upper levels form a k-ary buttery (cf. [14]). In

Figure 4 we show that the k-ary buttery is a composition of trees with out-degree � = k. The

example in Figure 4 is for the case k = 3.

The de�nition of the modi�ed tree is naturally expanded for trees with uniform out-degree at

each level and di�erent degrees in di�erent levels. We generalize the k-ary buttery to a set-ary

buttery as depicted in Figure 5. This generalization may reect better the current structure of

the location server tree which might have di�erent out-degrees in di�erent levels of the tree.

Note that Figures 3 through 5 present only the upper levels of the tree while the rest of the

tree is left unchanged. The number of upper levels of the tree to be modi�ed is a function of the

desired distribution of the inquiry load. If the system designer must guarantee that any location

server has average load of no more than the average load of a node in level i+ 1 then i levels of

the tree have to be modi�ed.

The h upper levels of a tree form a tree Th with h levels. To modify Th we use the following

construction. Let Ti be a subtree of Th with depth i such that the leaves of Ti are leaves of Th.

The modi�cation starts with trees of depth one, i.e., h = 1. T1 is modi�ed to MT1. T1 contains

a single root and �1 leaves which are connected to this root. The construction replaces the root

with �1 \root" nodes and connects each such node with all of the leaves, i.e., each such node has

�1 outgoing links. The construction of MTi+1 is de�ned recursively by MTi and the out degree

�i+1 of a root of a subtree Ti+1. Let ni be the number of roots in a MTi. The root of Ti+1
is replaced by �i+1ni roots. Each root of MTi+1 is connected with a single root of each of the

�i+1 MTi's. If ri+1;k is the k'th root ofMTi+1 then ri+1;k is connected to the (k�1) mod ni+1

root of each of the �i+1 MTi's. The modi�ed tree structure supports the same search procedure

as the original tree. To balance the load of outside inquiries we assume that an inquiry is sent to

one of the \roots" of the modi�ed tree that is chosen according to some portion of the identi�er

of the mobile host m that is to be located. Thus each root of the modi�ed tree has to maintain

the location information (in the lists) for only some portion of the mobile hosts. This in turn



keeps the number of update messages small|only the embedded tree for the mobile host for

which the location update message has been sent is involved in the update.

The division of geographic regions into cells has great inuence on the amount of processing

needed for location updates. For example, it is important for the mobile support stations that

cover Japan to have a common ancestor that is relatively close to the leaves of the tree. On

the other hand, the only common location server for mobile support stations in Japan and, say,

England, could be the root. With such a division the number of update messages arriving at

the root is small. Therefore we also suggest that in some cases it is better to send a copy of the

update messages to every root (and not only to a single root). The bene�ts of having identical

data in each root is the possibility to place each root in a di�erent (�xed) location. Each root

will handle inquiries from its surrounding area. For example, one replicated root may be located

on the west coast and another on the east coast, while both roots maintain the location data for

every mobile host. If the inquiry initiator is on the west (respectively, east) coast, it starts the

inquiry with a message to the root on the west (respectively, east) coast.

The next Theorem states the number of nodes (location servers) added by our construction

is minimal. The Theorem is proved for the case of �xed � tree, similar result can be obtained for

a tree with di�erent �'s in di�erent levels. We compare our modi�ed tree structure MT , that

corresponds to a tree T , with any other solution G such that (1) each node in G corresponds to

a single tree level in T , (2) there exists at least one node in G that corresponds to the level of

the root in T , and (3) for each node r in G that corresponds to the level of the root in T , r is a

root of an embedded tree in G with the same structure as T . We use lo to denote the (original)

average load of inquiries on the root of T , and lm to denote the maximal average inquiries load

on a node in the modi�ed tree. (Note that it is possible for a solution G to have the maximal

average load on a non-root node, e.g., if the tree is a binary tree and the root is replicated three

times while the rest of the tree is left unchanged.)

Theorem 3.1 The number of nodes in any G such that lm � lo=�
i is greater than the number

of nodes in T by at least i�i � ((�i � 1)=(�� 1)).

Proof: The number of nodes (location servers) in every level must be at least �i. The j'th

level, 0 � j < i has only �j < �i nodes. The number of nodes to be added is
Pi�1

j=0(�
i ��j).

This implies the theorem.

3.2 Modifying the Lower Levels

The primary motivation for the use of the hierarchical tree structure was to localize the e�ect

of \short" moves of mobile hosts|ideally a small portion of the location database is updated

upon such a \short" move. However the tree is an asymmetric structure|there are some mobile

support stations corresponding to neighboring cells that have a common parent in the location

server tree, yet there are other mobile support stations corresponding to neighboring cells which

have only one common ancestor in the tree, namely the root. Thus, when a mobile host moves



from one cell to a neighboring cell it causes in one extreme only the common parent of the

neighboring mobile support stations to be updated, while in the other extreme some location

server at every level of the tree has to be updated.

The maximal delay for completing a location update is related to the number of levels of

the tree. An inquiry initiated during such a slow location update might not �nd the address

of the mobile host. One possibility to cope with this problem is to delay the update and use

forwarding pointers to keep track of the location of the mobile host. When a mobile host m

moves from one cell c1 to a neighboring cell c2 the original database is not updated; instead the

mobile support station of c1 has a pointer for m that points to the mobile support station of

c2. If m subsequently moves to another cell, say c3, c2 will have a pointer for m that points to

the mobile support station c3, and so on, for further moves. In order to avoid searches through

too long chains of pointers, updates of the tree location database are done periodically and the

pointers are eliminated. Thus, in the long run forwarding pointers cause overhead in time and

space.

We say that two cells c1 and c2 are at distance i from each other when a move of a mobile

host from c1 to c2 must physically pass through at least i cells (excluding c1). A broadcast

from a cell c1 to every cell of distance less than or equal to r from c1 is called broadcast with

diameter 2r. We assume that during the time it takes for a mobile host m to move from a cell

c1 to a cell c2 at distance i, several complete updates can be executed. The mobile host triggers

location updates by sending an alive message to the mobile support station of its current cell.

To avoid too frequent location updates and for simplicity of the updates, we assume that the

time between every two successive alive messages of a mobile host is long enough to guarantee

completion of the location update. The required broadcast diameter for the search procedure,

denoted d, depends on the time needed for completion of an update, the size of the cell, and the

velocity of the mobile host.

To locate a mobile support stationm at any given time, it is enough to communicate with the

cell for which the tree location database has a record and the neighboring cells within distance d

from this cell. This could be easily done when any two neighboring mobile support stations are

connected by either a direct physical communication link or a fast virtual communication link.

When a search for a mobile support station m arrives at a location server si that is a leaf in

the tree (mobile support station) and si detects that m is not currently in its cell, si broadcasts

the search request to cells in distance d. Then si receives an answer (found or not-found) from

its neighbors and accordingly sends an answering message to the initiator of the search. Note

that for this scheme to work, si must not delete the location information concerning m for long

enough time. The indication of disappearance is delayed for a period of time that ensures the

completion of the next update.

Obviously, the additional (relatively short) links between neighboring location servers will

result in e�cient local broadcasts and will support hando�s. Note that the location management

for a mobile host that moves from one cell to another takes place automatically based on the

periodic alive messages sent to the closest mobile support station and does not require resources

for fast response as hando� does. The modi�cation of the lower level may support fast response



required for hando�s.

We call the following hando� procedure follow-me hando� . The follow-me hando� procedure

does not use forwarding pointers. If during a communication session every packet addressed to

a mobile host is locally broadcast, then even if the mobile host moves to a new cell, the mobile

host receives every packet sent to it. At the same time the mobile host noti�es its session partner

of its new location through the new mobile support station. Note that this noti�cation can be

appended to the packets of the communication session. Consequently, the session partner starts

sending its packet to the new mobile support station. Thus, after a connection is established the

hosts of the session do not need to access the location database.

3.3 Update and Search Procedures

The correct operation of our update and search procedures relies on the following assumptions:

(A1) The location database is initiated with all the lists empty.

(A2) The time required to complete an update (send a join message towards the direction of

the root and then send a delete message towards the previous cell) is bounded by tu.

(A3) The time between two successive alive signals of a mobile host m is ta > tu.

(A4) If mobile hostm sends an alive signal at time t while m is in cell ci, then at time t+ ta+ tu
m is in a cell cj (possibly ci = cj) that is within distance d from ci.

(A5) The LocalSearch procedure (as described in the sequel) locally broadcasts the search in-

quiry to all the cells that are within distance d.

(A6) Disappearance of a mobile host from a cell is indicated by the mobile support station of

that cell when no alive signal is received for td > ta + tu period of time.

A mobile host m is active if (1) m sent an alive signal, al, in the last period of ta time, and

(2) either m sent the previous alive signal, al�1, ta time before m sent al or at least tu time has

elapsed from the time m sent al. Roughly speaking, the two conditions above make sure that a

complete update that is related to the previous or the current location has been executed. The

requirement for our location management scheme is that any search for an active mobile host

m will result in communicating with m.

The code of the update and search procedures of a location server si in the modi�ed tree

appears in Figure 1. The code starts with the description of the actions taken by a mobile

support station (a leaf in the location server tree) upon an indication of the appearance or

disappearance of a mobile host m. Note that a mobile support station has a single list that

includes the current mobile hosts in the cell. Note further that the removal of m from list (of

a leaf) is only for \garbage collection" reasons since a join message to another cell results in

changing the path tom in the location server tree. In order to ensure that every search succeeds,



it is assumed that the indication of disappearance is delayed for at least the time it takes for an

update on the new location to be triggered by an alive signal and then to be completed.

The code continues with the actions taken by a non-leaf location server upon the receipt of

join and delete messages. A join message for a mobile host m received from the j'th child causes

the addition of m to listj . In case m appears in another list of si, say listk, then m is deleted

from listk and a delete message is sent to the k'th child. Note that join messages are sent only

towards the roots while delete messages are sent only towards the leaves.

In the modi�ed tree a node may have more than a single parent. Thus, we have to de�ne

whether the message is sent simultaneously to every parent or alternatively the precise parent(s)

to whom the message is sent. Each root, r, of our modi�ed tree maintains location information

on a subset of the mobile hosts (possibly includes every mobile host) de�ned by the mobile

hosts' identi�er. Therefore, update messages concerning the location of a mobile host m need to

be sent to the parent(s) in the embedded tree rooted at the appropriate root(s). The function

parent(m) executed by location server si returns the parent(s) of si in the embedded tree that

is related to the root(s), r, that maintains location information on m.

The search procedure is activated by an outside initiator that uses the tree structure to

locate a mobile host. The initiator sends a message msg = (search;m; initiator) to the root

that maintains information onm and waits for a response with the address of the mobile support

station of the current cell of m. When the search message reaches a mobile support station, si,

then si tries to locate m by direct communication and then by local broadcast. In the code we

use the function LocalSearch for this purpose. The result of the LocalSearch procedure is sent

directly to the initiator of the search request.

Correctness Proof:

We prove that the location management requirements hold for each mobile hostm. The location

data for a given mobile hostm might be maintained by more than one root (and hence more than

a single embedded tree) when the designer decides to have more than a single replica. Although

the proof is written for the case of a single embedded tree for each mobile host m, the proof

holds for the case of more than a single embedded tree for a mobile host m.

Messages sent from one location server si to another location server sj obey the FIFO order.

Each message arrives at its destination within a bounded period of time. A location database

instance is a vector of the lists of the location servers and the messages sent between any two

location servers. Location servers execute steps . A step executed by location server starts with

zero or one message received, then zero or more messages sent and ends with a state transition for

the location server. A run is a (�nite or in�nite) sequence of instances and steps, I1; s1; I2; s2; � � �

such that: (1) The application of si to Ii results in Ii+1. (2) Each step si is executed at time ti.

For every two steps si and sj (j > i), ti+1 � ti. (3) The message delay time is obeyed, i.e., if a

message is sent in si and received in sj then tj � ti is a (positive) time period that is no longer

than the message delay time.

We prove that every instance, I , of the the location database contains a single location-path for

each active mobile host m. A location-path of m in I is a list of location servers S = sr; s1; � � �sj



(* Update Procedure *)

(* Leaf *)

Receive indication for m in cell:

if m 62 list then

send msg := (join;m) to parent(m)

list := list [m

Receive indication on disappearance of m from cell:

send msg:=(non-active,m) to parent(m)

list := list� fmg

(* Non-leaf *)

Receive msg from the j'th child, msg.type=join:

if 8listk msg:m 62 listk then

send msg to parent(msg:m)

else 8listk msg:m 2 listk do

listk := listk � fmsg:mg

send msg := (delete;m) to the k'th child

listj := listj [msg:m

(* Non-root *)

Receive msg from the j'th child, msg:type = non � active:

if msg:m 2 listj then

send msg to parent(m)

listj := listj � fmsg:mg

Receive msg from parent, msg:type = delete:

8listk, msg:m 2 listk do

send msg to the k'th child

listk := listk � fmsg:mg

(* Search Procedure *)

Receive msg from parent, msg:type = search:

if leaf then

LocalSearch(m)

if found then send msg:=(address) to msg.initiator

else send msg:=(not-found) to msg.initiator

else

if 9k, msg:m 2 listk then

send msg to the k'th child

else send msg := (not � found) to msg:initiator

Figure 1: Update and Search Procedures for the Modi�ed Tree



that starts with the (appropriate) root location server sr of the (appropriate) tree and for which

si+1 follows si in S if listk of si includes m and si+1 is the k'th child of si in the location server

tree. We say that listk is on the location-path of m. For a given instance I , an identi�er m that

is not in a list on the location-path of m is called dangling .

Theorem 3.2 Our update and search procedures for a mobile host m ful�ll the requirements for

location management.

Proof: By assumption (A3) every update is completed before the next update starts. Thus,

by induction on the number of updates (using assumption (A1) as the induction base) whenever

an update starts there are no dangling identi�ers for m. Thus, when an update starts for

a mobile host m the join message reaches a location server si along the location-path S =

sr; s1; � � � ; si; sj ; � � �sk of m. Then the su�x sj ; � � � ; sk is replaced by the su�x leading to the

mobile support station that received the current alive signal. Then a delete message eliminates

the dangling identi�ers of m in the su�x sj ; � � �sk. By assumptions (A2) and (A3) this delete

terminates before a new alive signal is sent. Assumptions (A4) and (A5) guarantee that an active

mobile host is found. Assumption (A6) ensures that the location-path of an active mobile host

is not eliminated.

4 Self-Stabilizing Location Management

The update and search procedures presented in Figure 1 do not guarantee self-stabilization. One

reason is that every update is triggered by an indication at the mobile support station. In case a

transient fault occurs, say, causing omission of an identi�er of a mobile host m from the location

information at a non-leaf location server, no join message will be sent. Thus, if m does not move

to a new cell and an update takes place, m is not reachable by a search that starts in the root.

We continue by de�ning the self-stabilizing location management requirement. Starting

with any (corrupted or non-corrupted) location database instance I , a self-stabilizing location

management scheme ensures that from some time forward every location database instance satis-

�es the following: for every active mobile host,m, there is a location-path from the (appropriate)

root to a mobile support station that is within distance i from m's current location.

To overcome transient faults each location server s checks periodically that a mobile host

identi�er does not appear in more than one list of s. If an identi�er appears more than once

then all but one (say, the one in the list with the largest index) are eliminated. This ensures the

existence of at most one location-path for every mobile host.

An identi�er m is a static dangling identi�er , at a location server s in an instance I , if (1) m

is a dangling identi�er at s in I , (2) there is no delete message for m pending in the link from s's

parent to s in I , and (3) there is no join message for m pending in the link from s to s's parent.

Note that non static dangling identi�ers are eliminated by the pending delete or join messages.



(* Self-Stabilization *)

Periodically:

8k; 8m 2 listk if 9j 6= k, m 2 listj then listk := listk � fmg

8k send msg := (refresh; listk) to the k
0th child

(* Remove Static Dangling Identi�ers *)

Receive msg from parent, msg.type=refresh:

8k; 8m 2 listk if m 62 msg:list and

no pending msg = (join;m) to parent then

listk := listk � fmg

send msg:=(delete,m) to the k'th child

Figure 2: Extension for the Update Procedure

The existence of static dangling identi�ers might result in an unsuccessful update | every

join message reaches a static dangling identi�er (or a descendant of a static dangling identi�er)

instead of reaching the location path. Our extension for the update procedure eliminates static

dangling identi�ers. Each non-leaf location server, si, sends the list of mobile host identi�ers,

listj , to its j'th child. si's j'th child uses the list received from si to eliminate every static

dangling identi�er. For this procedure we need the following assumption:

(A7) A location server that sends a join message to its parent is able to detect whether the

join message has been received (an acknowledgment mechanism may be used; note that

we assume bounded delay, and hence we do not contradict [7]).

Thus, during a join update a location server s is able to discard refresh messages that arrive

after m has been included in s's lists and before m is included in s's parent's list.

In Figure 2 we present the portion of the code that is executed periodically to ensure stability.

Correctness Proof:

We now prove that the location management with the extended update procedure is self-

stabilizing. To do so we have to show that eventually a location database instance is reached

such that there are no dangling identi�ers. This ensures the correct update as proved in the

previous section.

Lemma 4.1 Starting from any instance of the location database that follows a �nite time t1 it

holds that for each location server si, no mobile host identi�er m appears in more than one of

si's lists.

Proof: A location server repeatedly veri�es that each identi�er appears in at most one of

its lists and deletes identi�ers that appear in more than one list when necessary (see the �rst

statement in Figure 2). We now show that following such a veri�cation (and deletion if necessary)



no addition of a mobile host identi�er to a list of a location server si occurs unless this identi�er

does not appear in any other list of si. This is certainly true when si deletes an identi�er from

its lists. The only addition of an identi�er to a list of a non-leaf location server is due to a

join message. The proof is completed since before adding a mobile host identi�er due to a join

message any other appearance of m is deleted.

Note that t1 is bounded by the maximal time it takes for every location servers to reach and

execute the �rst statement in Figure 2.

Lemma 4.2 Starting from any instance of the location database that follows a �nite time t2 it

holds that no static dangling identi�er exists.

Proof: Let I be the location database instance following t1. Static dangling identi�ers may

exist in I . We �rst show that no update operation increases the number of static dangling

identi�er. A static dangling identi�er may be produced by:

1. Eliminating a mobile host identi�er from one list without sending a delete message to

the corresponding child location server. The updates of a non-leaf location server si are

triggered by either join, delete, non-active or refresh messages. When a location servers si
receives a join, delete or refresh message and eliminates an identi�er from a list, si sends

a delete message to the appropriate child. By the argument used in the proof of Lemma

4.1, following t1 the identi�er of a mobile host m appears in at most one list of a location

server. Thus, when a location server receives a non-active message from a child and deletes

m no new static dangling identi�er is produced.

2. Adding a mobile host identi�er to a list while not adding this identi�er to the list of the

parent. Addition of an identi�er to a leaf location server triggers a join message sent

towards the root. Thus, no static dangling identi�er is added. An addition of an identi�er

due to a join message either produces a join message towards the parent or eliminates the

mobile host identi�er from another list. Thus, the number of static dangling identi�ers

does not grow.

Note that the period of time t2 � t1 is bounded by the maximal duration of time between

two successive executions of the code in Figure 2 by a location server, multiplied by the number

of levels of the tree.

Now we prove that the number of static dangling identi�ers is reduced. A location server with

a static dangling identi�er periodically receives a refresh message from its parent and deletes

every identi�er that does not exist in this list. Thus, the minimal level in which a static dangling

identi�er exists monotonically grows | until elimination.

Theorem 4.3 The location management scheme presented in Figure 1 and 2 is self-stabilizing.



Proof: By Lemma 4.2 there exists time t2 after which there is no static dangling identi�er.

First note that by the de�nition of ta and tu, following t2 there exists a time interval of length tu
during which m does not send an alive signal. Let I be the �rst instance that follows this time

interval. I follows a period of time that ensures the completion of an update. Thus, there is no

(static or non-static) dangling identi�er in I . Therefore, the alive signal following I reaches the

single location path | this implies correct update.

5 Concluding Remarks

In this paper we have suggested a new structure for location management in mobile networks.

The structure is based on the tree location database structure. We suggested replacing the

root and some of the higher levels of the tree with another structure that balances the average

load of search requests. For this modi�cation we used a set-ary buttery network which is a

generalization of the well-known k-ary buttery. We also suggested modifying the lowest level of

the tree to reect better the neighboring relation between geographic cells and to support simple

location data management. The modi�cation of the lower lever supports a simple follow-me

hando�.

Beyond the self-stabilization property of the location database, our modi�cation of the tree

structure is more robust than the original tree structure|if the location information of any

mobile host is maintained by two embedded trees, then, even if one of the roots is crashed, still

the location of this mobile host can be found.

Acknowledgments: Many thanks to Pattabhiraman Krishna and Nitin H. Vaidya for helpful

discussions and suggestions.

References

[1] A. Acharya, B. R. Badrinath and T. Imielinski, \Checkpointing distributed applications

on mobile computers," Tech. Rept., Dept. of Computer Science, Rutgers University, 1993.

[2] B. Awerbuch and D. Peleg, \Concurrent online tracking of mobile users," Proc. ACM

SIGCOMM Symposium on Communication, Architectures and Protocols, October 1991.

[3] B. R. Badrinath, T. Imielinski and A. Virmani, \Locating Strategies for Personal Com-

munication Networks," Proc. of the IEEE GLOBECOM Workshop on Networking of

Personal Communication, December 1992.

[4] P. Bhagwat and C. E. Perkins, \A Mobile Networking System Based on Internet Pro-

tocol(IP)," Proc. of the USENIX Symposium on Mobile and Location-Independent Com-

puting, 1993.

[5] E.W. Dijkstra, \Self-Stabilizing Systems in Spite of Distributed Control", Communica-

tions of the ACM 17,11 (1974), pp. 643-644.



[6] S. Dolev, \Optimal Time Self Stabilization in Dynamic Systems," Proc. of the 7th Inter-

national Workshop on Distributed Algorithms (Springer-Verlag LNCS 725), pp. 160{173,

September 1993.

[7] Dolev, S., Israeli, A., and Moran, S., \Resource Bounds for Self Stabilizing Message

Driven Protocols," Proc. of the 10th Annual ACM Symp. on Principles of Distributed

Computing, pp. 281-293, 1991.

[8] R. J. Fowler, \The complexity of using forwarding addresses for decentralized object

�nding," Proc. of the 5th ACM Symp. on Principles of Distributed Computing, pp. 108-

120, 1986.

[9] T. Imielinski and B. R. Badrinath, \Mobile wireless computing: solutions and challenges

in data management," Technical Report, Rutgers DCS-TR-296/WINLAB TR-49, Feb.

1993.

[10] J. Ioannidis, D. Duchamp and G. Q. Maguire Jr., \IP-based Protocols for Mobile Inter-

networking," Proc. of ACM SIGCOMM, pp. 235-245, 1991.

[11] J. Ioannidis and G. Q. Maguire Jr., \The Design and Implementation of a Mobile Inter-

networking," Proc. of Winter USENIX, Jan. 1993.

[12] K. Keeton, B. A. Mah, S. Seshan, R. H. Katz and D. Ferrari, \Providing connection-

oriented network services to mobile hosts," Proc. of the USENIX Symposium on Mobile

and Location-Independent Computing, Cambridge, Massachusetts, August 1993.

[13] P. Krishna, Nitin H. Vaidya and D. K. Pradhan, \Recovery in distributed mobile envi-

ronments," IEEE Workshop on Advances in Parallel and Distributed Systems, pp. 83-88,

Oct. 1993.

[14] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,

Hypercubes, Morgan Kaufmann Publishers, Inc., 1992.

[15] Jean-Paul Linnartz, \Narrowband Land-Mobile Radio Networks," Artech House, 1993.

[16] Charles Perkins, \Providing Continuous Network Access to Mobile Hosts Using

TCP/IP," Joint European Networking Conference, May 1993.

[17] J. Spinelli and R.G. Gallager, \Event Driven Topology Broadcast Without Sequence

Numbers", IEEE Transactions on Communication, Vol. 37, No. 5, (1989) pp. 468-474.

[18] M. Spreitzer and M. Theimer, \Providing Location Information in a Ubiquitous Com-

puting Environment," Tech. Rept., Xerox PARC, 1993.

[19] F. Teraoka, Y. Yokote and M. Tokoro, \A Network Architecture Providing Host Migra-

tion Transparency," Proc. ACM SIGCOMM Symposium on Communication, Architec-

tures and Protocols, 1991.



[20] T. Watson and B. Bershad, \Local Area Mobile Computing on Stock Hardware and

Mostly Stock Software," Proc. of USENIX Symp. on Mobile and Location-Independent

Computing, 1993.

[21] S. F. Wu and Charles Perkins, \Caching Location Data in Mobile Networking," IEEE

Workshop on Advances in Parallel and Distributed Systems, October 1993.



Figure 3: Buttery

Figure 4: k-ary Buttery, k = 3

Figure 5: set-ary Buttery, set = (3; 2)

Figure 6: The Lower Level Modi�cation










