
Using Adaptive Timeouts to Achieve

At-Most-Once Message Delivery �

Soma Chaudhuri,1 Brian A. Coan,2 and Jennifer L. Welch3

1Iowa State University, Ames, IA 50011, USA
2Bellcore, 445 South Street, Morristown, NJ 07960, USA
3Texas A&M University, College Station, TX 77843, USA

April 18, 1995

Abstract

We extend the at-most-once message delivery algorithm of Liskov, Shrira, and Wro-

clawski to adapt dynamically to changes in message transmission time and degree of

clock synchronization. The performance of their algorithm depends on its being sup-

plied with a good estimate of the maximummessage lifetime|the sum of the message

delivery time and the di�erence in processor clock values between sender and recipient.

We present two algorithms that are suitable for use in a system where the message life-

time is unknown or may change. Our extensions allow the automatic and continuous

determination of a suitable value for the maximum lifetime. We prove that whenever

the actual message lifetime is bounded, then our adaptive algorithms converge to an

accurate estimate of its true value. Our two algorithms di�er in the behavior they re-

quire from the network and achieve di�erent performance levels. Our formal statement

of convergence is expressed in terms of the number of messages received, rather than

time elapsed. We show that this formulation is necessary by proving that no method

for estimating the lifetime can achieve convergence in a bounded amount of time.

Key words: At-most-once message delivery { Communication algorithms { Synchro-

nized clocks { Adaptive algorithms

�This work was done while the �rst and third authors were at the University of North Carolina at
Chapel Hill, supported in part by NSF grant CCR-9010730, an IBM Faculty Development Award and NSF
PYI Award CCR-9158478. A preliminary version of this paper appeared in the Proceedings of the Fifth
International Workshop on Distributed Algorithms, pp 151{166, 1991.

1

1 Introduction

Delivering messages from one computer to another over a communication network is nec-

essary in order to make distributed systems usable. In an ideal world, a message delivery

algorithm would deliver exactly one copy of each message sent. This ideal behavior is gen-

erally impossible to implement in the presence of network and processor misbehavior. In

practice, it is common for a message delivery protocol to make an at-most-once guarantee.

In the at-most-once message delivery problem, each of a number of senders wishes to send

messages to a receiver. The protocol should never deliver multiple copies of a sent message,

even in the presence of failures. Additionally, it should make a best e�ort to deliver one copy

and fail at this only in the presence of network or processor misbehavior. Such at-most-once

messages can be combined with other low-level communication primitives, including un-
reliable datagrams, to provide higher-level communication primitives. An apt example is
connection management|at-most-once messages are used for connection set-up, and then
datagrams are used for the data stream. (Cf. discussion in [7].)

Liskov et al. [7] describe an algorithm for at-most-once message delivery that takes ad-
vantage of synchronized clocks. It uses an estimate of the maximum message lifetime|the
sum of the maximum message delay and the maximum deviation of the sender's clock from

the recipient's clock|to allow the recipient to \forget" all state information about senders
that have been inactive for su�ciently long. This state information is stored in a data struc-
ture called a connection table. Because of the \forgetting," the connection table may be
substantially smaller than would otherwise be required. Crash resiliency of the server can
be achieved without storing the connection table in stable storage. Instead a loose upper

bound su�ces, thus reducing the number of disk writes required.

The Liskov et al. algorithm must be supplied with an estimated upper bound� on the
message lifetime. Mistakes in making this estimation do not compromise correctness, but
they can damage performance. The cost of having too small an estimated bound is that
many messages can be \lost," i.e., erroneously discarded as duplicates. The cost of having
too large an estimated bound is that connection-speci�c information is retained for longer

than necessary.

We present two extensions to the Liskov et al. algorithm for at-most-once message deliv-

ery. Each algorithm uses a di�erent method for dynamically determining an estimate of the

message lifetime. Our idea of dynamically changing the estimate of the lifetime is inspired
by prior work on adaptively changing timeout intervals [3, 10]. We demonstrate that both

our methods converge to an appropriate value whenever the actual message lifetime in the
system is su�ciently well-behaved. Speci�cally, we demonstrate that our estimate is not

too high by proving that it is no more than twice the true value, and we demonstrate that

our estimate is not too low by proving that, as the length of an execution tends to in�nity,
the fraction of messages that are erroneously rejected because of the estimate tends to some

�As Liskov et al. discuss, the clients can be partitioned into di�erent classes (e.g., local and remote) with
di�erent estimates of the maximum message lifetime maintained independently for each class. We will not
discuss this point any further in this paper.

2

suitable value. Our formal statement of the rate at which the message-lifetime estimate

converges to the true value is expressed in terms of the number of messages received, rather

than time elapsed. We conclude the paper by showing that this formulation is necessary.

Speci�cally, we prove that no method for estimating the lifetime can achieve convergence in

a bounded amount of time.

There are three reasons why it is useful for a distributed algorithm to have the ability to

continuously adapt to the current prevailing message lifetime. First, it simpli�es the job of

con�guring a system. There is no need to determine the lifetime and there is no need to install

this parameter in the code for the algorithm. Second, in many systems the load, and hence

the lifetime, varies in an approximately periodic way. For instance, days may be relatively

busy and nights relatively idle. In such systems using an adaptive algorithm makes it possible

to automatically adjust the estimate of the lifetime accordingly. Third, it is reasonable to
expect that over the long term there may well be a change in the message lifetime in a

system. Failure to use an adaptive algorithm could result in sudden and unexpected system
collapse should the actual message lifetime drift beyond the expected range.

Our two algorithms, called the unlimited horizon algorithm and the limited horizon algo-
rithm, di�er in the following three respects: the requirements for the system to be considered
well-behaved, the convergence properties that they ensure in well-behaved executions, and
the extent to which the current behavior of the algorithm depends on history.

For the unlimited horizon algorithm, an execution is considered well-behaved if there

is some time after which there is an upper bound on the lifetime of any message. This
algorithm ensures that in well-behaved executions, as the length of the execution tends to
in�nity, the fraction of messages that are erroneously rejected (due to the lifetime estimate)
tends to 0. To achieve this convergence property, the behavior of this algorithm depends
heavily on history: the longer the execution, the more reluctant the server is to reduce its

estimate of message lifetime.

The limited horizon algorithm eliminates this undesirable dependence on history and
has a more lenient notion of well-behaved executions. For this algorithm an execution is

considered well-behaved if there is some time after which there is an upper bound that holds
on the lifetime of most messages. (A more precise de�nition is in the body of the paper.)
This algorithm ensures that in well-behaved executions, as the length of the execution tends

to in�nity, the ratio of messages that are erroneously rejected (due to the lifetime estimate)

to messages that are accepted tends to �, for (almost) any �xed �. Note that this is a
weaker convergence property than that of the unlimited horizon algorithm. We believe that

its reduced sensitivity to history and its ability to ignore the occasional very late message
contribute to the practical utility of the limited horizon algorithm.

Our algorithms, like the Liskov et al. algorithm on which they are based, are examples
of the type of algorithm advocated by Liskov [6] that takes advantage of practical, yet

probabilistic network clock synchronization algorithms, such as that of Mills [8]. Because

of its great e�ciency, the Mills algorithm makes it completely feasible to write distributed
algorithms that use approximately synchronized processor clocks. However, because there

is a small possibility that processor clocks will have a larger deviation than expected, it is

3

important to avoid distributed algorithms whose correctness relies on synchronized clocks.

Rather, the clocks should be used as a \hint," which is important for performance, but is not

needed for correct operation. In the at-most-once protocols, should the clocks deviate more

than expected, the upper bound on message lifetime may be violated, causing lost messages

(a performance problem), but the at-most-once property (correctness) is not violated. Other

examples of algorithms that use time as a hint include the orphan elimination algorithm of

Herlihy and McKendry [2] and the Kerberos authentication protocol [9].

Time-based algorithms may become more important as network throughput increases.

In the connection management application, the sequence of control messages for connection

set-up (for a speci�c pair of nodes) can be viewed as the sequence of messages for at-most-

once message delivery. Unlike in TCP-IP (the Internet transmission control protocol) [1],

in a time-based algorithm no handshake is required between the sender and recipient to
initiate the connection. As the transmission speed of a network increases, the ratio between

the time it takes to do a handshake|which is bounded below by the propagation time of
light|and the time it takes for each packet to enter (or leave) the network increases. Thus,
the elimination of the handshake becomes proportionately more valuable as the speed of the
network goes up. It is also particularly advantageous when a connection is used for very few
messages, as is often the case in client-server interactions such as remote-procedure calls.

2 Problem statement and assumptions

The system in which an at-most-once message delivery algorithm operates consists of one
server process and a collection of client processes. These processes run on a collection of
processors. They interact by sending messages over a communication network. The network
can lose, duplicate and reorder messages, delivering zero, one, or many copies of each message
that is sent.

Each client has a sequence of unique messages to be sent to the server. The speci�c

behavior of each client is to progress through its message sequence one message at a time,

sending a single copy of the current message. Each message is sent at a di�erent time and the
times are monotonically increasing. Before proceeding on to send the next message in the
sequence, the client waits until either it has learned of the acceptance of the current message

(due to an acknowledgment received from the server) or it has given up on the acceptance of

the current message. A message on which the client has given up may or may not eventually
be accepted by the server, but it will not be accepted out of order. Clients do not retransmit

(possibly lost) messages. When the server receives a message from a client it either accepts
or rejects it. Absolute requirements on the server are that it never accept a second copy

of a message that it has already accepted (a duplicate message) and that it never accept

a message that was sent earlier than the last accepted message from the same client. The
server may on occasion reject messages that are not duplicates and are not out-of-order. To

ensure that progress is made, it is desirable for the server to accept as many non-duplicate,
in-order messages as practicable.

4

We restrict our attention to algorithms that conform to a framework suggested by the

Liskov et al. algorithm. We now describe that framework. Throughout this paper, all times

referred to are times on the server's clock (unless otherwise explicitly stated).

Every message sent by a client is tagged with the current value of the client's clock, the

\timestamp." The server keeps a cache CT (\connection table") with an entry for each

client. CT [i] holds the timestamp of the most recent message from client i that has been

accepted by the server. If the server does not hear from client i for a su�ciently long time,

then the entry is replaced with nil (\garbage collected"). The server also keeps a variable

upper, which is an upper bound on the largest timestamp of any entry that has ever been

garbage collected from the connection table.

We now describe what happens when the server receives a message with timestamp t

from client i. If t is greater than the (non-nil) entry in CT for i, then this message is not a
duplicate and is not out-of-order and it is accepted. If t is less than or equal to the (non-nil)
entry in CT for i, then this message is a duplicate or is out-of-order and it is rejected. If

the entry in CT for i is nil, then t is compared against upper. If t is larger, then this
message is not a duplicate and is not out-of-order, since upper is an upper bound on the
largest garbage-collected entries in CT . The message is accepted, and t is stored in CT [i].
If t is less than or equal to upper, then this message is either (1) a duplicate or out-of-order
message or (2) a late-arriving message that is neither a duplicate nor out-of-order. Because

these two situations are indistinguishable, the message is rejected.

Every so often the connection table is garbage collected based on an estimate of the
maximum message lifetime (the sum of the message delivery time and the uncertainty in
the clock synchronization). For each entry in CT , the di�erence between that entry and the
current clock value at the server is calculated. If this di�erence is greater than the estimate
of maximum message lifetime, then the entry is garbage collected. When an entry is garbage

collected, it is replaced by nil and upper is updated if necessary. The updating of upper is
done to maintain the invariant that upper is at least as big as the largest entry that has ever
been garbage collected from the connection table.

The Liskov et al. algorithm uses a �xed value for the lifetime estimate. In this paper

we develop two methods for automatically and continually estimating the lifetime. We
use these methods in conjunction with the basic framework of the Liskov et al. algorithm.

Throughout the remainder of this paper we use the term standard-form algorithm to refer to
an algorithm that uses the basic framework of the Liskov et al. algorithm (e.g., a connection

table, upper, and periodic garbage collection), but with estimates of the maximum lifetime
that are computed as the execution proceeds.

We now de�ne some terms that we will be using to discuss our algorithms.

The lifetime of a message received by the server in an execution is the di�erence between

the time on the server's clock when the server receives the message and the time on the

client's clock when it sends the message. The lifetime has two components, the message

delay plus the di�erence (either positive or negative) in clock skew between the server's

clock and the client's clock. The server can calculate the lifetime of a message if the sender
appends its current clock time to the message. In our algorithms, the client always does this.

5

A message m from client i is out-of-order in an execution if it arrives at the server after

message m0 from client i arrives at the server, where i sent m before it sent m0. A message

is lost if it is not a duplicate, is not out-of-order, and, when it arrives at the server, it is

rejected. A message is summary-rejected if it is rejected by comparing its timestamp with

upper. A message is table-rejected if it is rejected based on a comparison with a non-nil

entry in CT . Note that no table-rejected messages are lost, but that some summary-rejected

messages may be lost.

Given a time t in an execution, let At be the number of messages accepted by the server

up to time t, and let Lt be the number of messages lost by the server up to time t.

For time t and positive integer X, an execution is (t;X; S;H)-bounded provided that

in every consecutive group of S messages arriving after time t, at most H messages have

lifetime greater than X. If H = 0, then the parameter S gives no information, and we use

the simpler notation (t;X)-bounded.

We would like to guarantee the following conditions for �xed integers S and H and real
number � � 0.

� Condition 1: No duplicate or out-of-order messages are accepted by the server in any
execution.

� Condition 2: In any execution that is (t;X; S;H)-bounded for some t and X, there

is some time t0 > t after which the server's estimate of the lifetime is always less than
2X.

� Condition 3: In any execution that is (t;X; S;H)-bounded for some t and X, the
limit of Lu=Au is at most � as u tends to in�nity.

The �rst condition is the basic safety condition for any at-most-once message delivery

algorithm: speci�cally, it is that no duplicate or out-of-order messages ever be accepted by
the server. The next two conditions ensure that the performance of our algorithm is adequate.
The second condition implies that the algorithm does not use an excessive amount of memory
in the connection table or store old connection information for an excessively long period

of time. The third condition requires that there be an adequate amount of progress (i.e.,

number of non-duplicate, non-out-of-order messages accepted).

In order to achieve these conditions, we must make �ve assumptions. The �rst assumption
is needed because our conditions are inherently about executions in which an in�nite number

of messages are sent and received.

� Assumption 1: The server receives an in�nite number of non-duplicate messages in
any in�nite execution.

The second assumption is needed to prevent an adversary from swamping an algorithm

with messages during some brief period when the bound on message lifetime is set too low.
Without assuming an upper bound on the rate with which messages arrive at the server, the

most we can guarantee is this: for the chosen �, there is an in�nite number of times u in the

execution where Lu=Au � �.

6

� Assumption 2: There is an integer R such that for any times t1 and t2 in any

execution, t1 < t2, the server receives at most (t2 � t1) � R messages in the interval

[t1; t2].

Since, even when the execution is well-behaved, at least H messages (the ones making up

the transient spike) can be summary-rejected out of every S messages received, we cannot

hope to achieve our goals unless the desired value of � is not too small.

� Assumption 3: � � H=(S �H).

Because we use timestamps to deduce the order in which messages are sent, we require

that a client never make a negative adjustment to its clock. It is known [4, 5] that this
assumption does not preclude the use of clock synchronization algorithms.

� Assumption 4: A client never sets its clock backwards.

Our last assumption is that message lifetimes are always positive. The underlying network
layer can enforce this by arti�cially delaying messages if necessary. However, we believe that
such delaying would seldom be necessary, due to clocks being closely synchronized and the

time overhead to send a message. As a technical convenience, we select our time units so
that one clock tick of a correctly running clock is exactly one unit of time. Because of this
selection Assumption 5 actually gives us the property that the lifetime of every message is
greater than or equal to 1.

� Assumption 5: The lifetime of every message received by the server is positive.

3 The algorithms

We begin this section with a general de�nition of standard-form algorithms for at-most-once

message delivery; these are algorithms that follow the basic framework given by Liskov et al.
[7]. We give the code for a general standard-form algorithm in Section 3.1 and we prove that
any standard-form algorithm satis�es Condition 1. Then we give our two speci�c standard-

form algorithms|the unlimited horizon algorithm and the limited horizon algorithm|and

prove that each of them satis�es Conditions 2 and 3.

The unlimited horizon algorithm achieves a ratio of lost to accepted messages that ap-

proaches 0 (i.e., � = 0), but it requires that there be a time after which every message

received, without exception, has a �xed upper bound on its lifetime. Also, the longer the
system has been running, the longer it takes the estimated lifetime to be reduced once the

observed lifetimes become small.

The limited horizon algorithm only achieves a ratio of lost to accepted messages that ap-

proaches a constant �, where the choice of � is subject to the constraint given in Assumption

7

3 and to the additional constraint that � = 1=p for some positive integer p. However, it can

tolerate transient spikes in the lifetimes of messages received, and the convergence behavior

of the estimated lifetime does not depend on the entire history.

The times at which garbage collections can be done a�ect the method that can be used to

tolerate server crashes, as discussed in Liskov et al. [7]. In the unlimited horizon algorithm,

garbage collection can be done at arbitrary times, as long as there is an upper bound on the

time between garbage collections. Thus either of the two crash recovery methods presented

by Liskov et al. can be used. In the limited horizon algorithm, garbage collection must be

done exactly when a certain number of messages have been received since the last garbage

collection. Since there is no �xed upper bound on the elapsed time between two garbage

collections, only one of the two crash recovery methods of Liskov et al. can be used with this

algorithm.

3.1 Standard-form algorithms

A standard form algorithm has as its skeleton the code given in Fig. 1. The only additions

that are permitted to the skeleton are arbitrary (terminating) code for the computation
of the variable ltime-est (\lifetime-estimate") and an arbitrary collection of auxiliary state
variables to be used in the the computation of ltime-est. The role of the auxiliary state
variables is to permit the computation of ltime-est to be based on any arbitrary property of
the prior execution. Code to update the auxiliary state variables can be added anywhere in

the skeleton. The only permitted dataow back from the auxiliary variables to the skeleton
code is through the variable ltime-est.

Each client is assumed to timestamp each message it sends with the current value of its
clock. The variable CT would actually be implemented in a more space-e�cient way than a
static array, say with a hash table or a balanced tree.

Theorem 2 states that standard-form algorithms never accept duplicate or out-of-order
messages. Its proof makes absolutely no assumptions about the way that the variable ltime-

est is computed. It is proved using a collection of auxiliary functions lim i whose behavior is

characterized in Lemma 1. For any state of the algorithm (i.e., after the execution of any

line of code), lim i is de�ned to be CT [i] if CT [i] is not nil and upper otherwise.

Lemma 1 In any execution of a standard-form algorithm, for any i, the sequence of values

taken on by lim i is non-decreasing.

Proof: Consider the three places in the code that could potentially change the value of

lim i.

Case 1: (CT [i] is set to the timestamp of an accepted message.) The precondition for
accepting this message is exactly that its timestamp be at least as big as the current value

of lim i.

8

State variables:

clock: integer, current value of the clock

CT [1::n]: array of integer, initially all entries are nil

ltime-est: integer

upper: integer, initially 0

Transitions:

� Receive message m from client i with timestamp stamp:

if ((CT [i] 6= nil) and (stamp > CT [i])) or ((CT [i] = nil) and (stamp > upper)) then

accept m and send acknowledgement

CT [i] := stamp

else

reject m

� Garbage collect CT :
ltime-est := any function of the state variables
for i = 1 to n do

if (CT [i] 6= nil) and (CT [i] � clock � ltime-est) then
upper := max(upper;CT [i])

CT [i] := nil

Figure 1: The skeleton of a standard-form algorithm

Case 2: (upper is changed.) This only happens when CT [i] is not nil and so does not change
the value of lim i.

Case 3: (CT [i] is set to nil.) This happens in only one place in the code. In the previous
statement upper is set equal to the maximum of CT [i] and something else. Thus lim i is not
decreased.

Theorem 2 A standard-form algorithm never accepts the same message more than once

and never accepts an out-of-order message in any execution.

Proof: Suppose message (m;u; i), denoting a message with content m and timestamp u

from client i, arrives at the server and is accepted, and subsequently message (m0; u0; i) arrives

at the server with u0 � u. (If u0 = u, then the second message is a duplicate, otherwise it is

out-of-order.) When (m;u; i) arrives, CT [i] is set equal to u and so lim i is u. Consider the
time t when (m0; u0; i) arrives. By Lemma 1, at time t, lim i � u and thus the precondition

for accepting (m0; u0; i) is not satis�ed and the message is rejected.

3.2 The unlimited horizon algorithm

In Fig. 2 we describe the unlimited horizon algorithm for the server, assuming n clients. The

unlimited horizon algorithm is obtained by making some additions to the skeleton standard-

form algorithm. Each line added to the standard-form code is marked with an asterisk.

9

State variables:

clock: integer, current value of the clock

CT [1::n]: array of integer, initially all entries are nil

ltime-est: powers of 2, initially 1

upper: integer, initially 0

� p: integer, initially 1

� numacc: integer, initially 0

� numrej: integer, initially 0

� maxltime: integer, initially 0
� ltimes: multiset of integer, initially empty

Transitions:

� Receive message m from client i with timestamp stamp:

� ltimes := ltimes[fclock � stampg
if ((CT [i] 6= nil) and (stamp > CT [i])) or ((CT [i] = nil) and (stamp > upper)) then

accept m and send acknowledgement
CT [i] := stamp

� numacc := numacc+ 1

else
reject m

� if (CT [i] = nil) and (stamp � upper) then numrej := numrej + 1
� Garbage collect CT :

� maxltime := the largest element in (ltimes[f0g)
� if maxltime > ltime-est then
� ltime-est := 2j , where j = minfk : 2k � maxltimeg
� else if (numacc > p � numrej) and (ltime-est > maxltime > 0) then
� ltime-est := 2j , where j = minfk : 2k � maxltimeg
� numacc := numacc� p � numrej

� numrej := 0
� p := p+ 1

� ltimes := empty set
for i = 1 to n do

if (CT [i] 6= nil) and (CT [i] � clock � ltime-est) then
upper := max(upper;CT [i])

CT [i] := nil

Figure 2: The unlimited horizon algorithm

10

The server has two transitions. Whenever a message arrives, the transition includes the

lifetime of the current message in the multiset ltimes.y It increments numacc if the message

is accepted, and increments numrej if the message is summary-rejected.

The server's transition for garbage collecting the connection table can occur at arbitrary

times as long as there is an upper bound G on the amount of (server's clock) time elapsing

between two consecutive garbage collections. Within each garbage-collection period, the

server keeps a multiset of the lifetimes of all the messages received. At the end of each

garbage-collection period, the server has the option of changing its current maximum lifetime

estimate. The change can be either an increase or a decrease.

If the maximum lifetime observed is greater than the current estimate, then the current

estimate is increased to be the smallest power of 2 at least as large as the maximum lifetime

observed. The allowable values for the lifetime estimates are restricted to powers of 2 in
order to reduce the number of step increases needed, and thus the number of messages lost,
until the maximum estimate is achieved, once the execution is well-behaved.

If the maximum lifetime observed is smaller than the current estimate, then the current
estimate may be decreased to be the smallest power of 2 at least as large as the maximum
lifetime observed. The decrease happens if the number of messages accepted is \su�ciently

larger" than the number of messages summary-rejected. What we mean by \su�ciently
larger" depends on the number of times the estimate has been decreased thus far. The p-
th time the estimate is decreased, the number of messages accepted must be larger than p

times the number of messages summary-rejected. (This condition is implemented with the
variables numacc, numrej, and p.) Once the lifetime estimate has been adjusted, it is used

to garbage collect the connection table in the usual way.

The unlimited horizon algorithm satis�es the three correctness conditions withH = 0 and
� = 0. Condition 1 follows from Theorem 2 since the unlimited horizon algorithm is a speci�c
type of standard-form algorithm. Conditions 2 and 3 follow from Theorem 4 and Theorem

6 respectively. Theorem 4 states that, once the execution is well-behaved, i.e., there is an

upper bound on the maximum lifetime, the lifetime estimate will eventually converge to a
value less than twice the upper bound. Theorem 6 states that in any well-behaved execution,
the ratio of lost to accepted messages tends to 0. The proofs of these two theorems rely on

Lemma 3, which gives an upper bound on how long it takes after the estimate stabilizes

until no message is summary-rejected. The proof of Theorem 6 also makes use of Lemma
5, which gives an upper bound on the number of messages that can be summary-rejected in

certain intervals of time.

Lemma 3 Let t1 be any garbage-collection time in any execution of the unlimited horizon

algorithm. Let B be the new value of ltime-est at time t1. If t2 is a garbage-collection time

such that t1 + B < t2, and ltime-est is non-increasing in the closed interval [t1; t2], then no

message is summary-rejected in [t1 +B; t2].

yThe multiset is used in order to parallel the code of the limited horizon algorithm, presented next; an
e�cient way to implement the unlimited horizon algorithm is only to keep track of the maximum lifetime
observed since the last garbage collection.

11

Proof: Consider a particular message that arrives at time t in the interval [t1+B; t2]. Let s

be the value of ltime-est at time t. Then, the timestamp of the message is at least t�s, since

ltime-est is not increased in this interval. To show that this message is not summary-rejected,

it is su�cient to show that the value of upper at time t is at most t� s.

Suppose there is no change in the value of upper between times t1 and t. The value of

upper at time t1 is at most t1. Thus, the value of upper at time t is still at most t1. Since

ltime-est is non-increasing in [t1; t2], this implies that B is an upper bound on the value of

ltime-est in this interval and hence on s. Because t � t1 + B and s � B, it follows that

t� s � t1. Therefore, the value of upper at time t is at most t� s.

Suppose there is a change in the value of upper between times t1 and t. (All changes to

upper are made during garbage collection.) Let t0 be the time of the last change to upper in

the interval [t1; t] and let s0 be the new value of ltime-est at time t0. At time t0, upper is set
to some value that is at most t0 � s0, since upper is the largest timestamp garbage-collected
and t0 � s0 is the threshold for garbage collection. Thus at time t, upper has not changed
and is still at most t0� s0, which is less than t� s0 (since t0 comes before t), which is at most

t� s (since ltime-est is non-increasing).

Theorem 4 Consider any execution of the unlimited horizon algorithm that is (t;X)-bounded
for some t and X. Then there exists some real time t0 > t such that the value of the variable

ltime-est at every time after t0 is less than 2X.

Proof: Suppose the value of ltime-est is always less than 2X after time t. Then, we are
done. Otherwise, let t1 > t be a point in time when the value of ltime-est is at least 2X.

We show that numacc > p �numrej at some point t00 after t1. Let s be the value of ltime-

est at time t1. Suppose the value of ltime-est decreases at some point after t1. This means
that numacc > p � numrej at that time. Otherwise, suppose ltime-est is never decreased.

Since the execution is (t;X)-bounded, every message received after t1 has lifetime at most
X, and thus ltime-est is never increased. Then Lemma 3 applies to any interval starting at

t1, with B = s, and no message that arrives after t1 + s is summary-rejected. Therefore,

numacc > p � numrej at some point t00 � t1.

Now, at every garbage collection after t00, the server sets ltime-est to be the smallest

power of 2 at least as large as the largest message lifetime it observed since the last garbage

collection. By the (t;X)-bounded assumption, the largest lifetime observed is X, and thus

ltime-est is always set to less than 2X. So, starting at the time t0 of the �rst garbage
collection after t00, ltime-est is less than 2X.

Plotting the value of ltime-est versus time produces a step function. Let u0 = 0 and let ui

identify the point in time when ltime-est is decreased for the i-th time. At this time, numrej

and numacc are reset and p is incremented. De�ne the i-th interval Ii to be the half open

interval [ui�1; ui), i � 1. Consider the behavior of ltime-est in Ii. Ii consists of a sequence of

one or more maximal sub-intervals which have the property that ltime-est is constant within

12

each sub-interval. Each sub-interval consists of a sequence of consecutive garbage-collection

periods.

Let ri be the number of messages summary-rejected in Ii. Notice that this is equal to

the value of numrej at the end of Ii just before it is reset to 0. The variable p is set to the

value i at the beginning of Ii. Let ai be the amount subtracted from numacc at the end of

Ii, namely i � ri.

Lemma 5 Consider any execution of the unlimited horizon algorithm that is (t;X)-bounded

for some t and X. Then there exists a constant Z (depending on X) such that for all i with

Ii beginning after t, ri � Z.

Proof: Consider any i with Ii beginning after t. Ii consists of one or more sub-intervals,

where the value of ltime-est in each sub-interval is larger than its value in the preceding sub-

interval. Each time ltime-est is increased, ltime-est is at least doubled, and the maximum
value that ltime-est can reach is 2X. Thus there are at most dlogXe+ 1 sub-intervals in Ii.

Now, since ltime-est is constant in each sub-interval, the sub-intervals satisfy the condition

of Lemma 3. Therefore, we can apply Lemma 3, with B = 2X, to each sub-interval (note that
the maximum value of ltime-est in each sub-interval is at most 2X). So, it follows that, in each
sub-interval, messages are only summary-rejected in the last garbage-collection period before
ltime-est is increased, and in the �rst 2X time units after the beginning of the sub-interval.
Therefore, the messages can be summary-rejected for at most 2X + G time in every sub-

interval, where G is the maximum length of a garbage-collection period. Thus the maximum
number of messages that can be summary-rejected in Ii is Z = (dlogXe+ 1) � (2X +G) �R,
where R is the maximum rate at which the server receives messages.

Theorem 6 Consider any execution of the unlimited horizon algorithm that is (t;X)-bounded
for some t and X. Then the limit of Lu=Au as u tends to in�nity is 0.

Proof: We must show that for any �, there exists a time t� such that for all u � t�,

Lu=Au � �.

Suppose there exists a time tf � t after which ltime-est never changes. Lemma 3 gives
the result.

Now suppose that ltime-est changes in�nitely often. Clearly ltime-est is always at least
1. By Theorem 4, there exists a t0 > t such that ltime-est never exceeds 2X after time t0.

Thus, ltime-est increases in�nitely often and decreases in�nitely often.

Choose q to be a positive integer such that � � 1=q. We show that there exists t� such
that Lu � q � Au for all u � t�.

Pick any time u such that u is in Ii for some i > q and Ii begins after t. Then Lu �
r1 + � � �+ ri�1 + ri and Au � a1 + � � �+ ai�1. By de�nition, aj = j � rj for all j. Thus

a1 + � � �+ ai�1 = 1 � r1 + � � �+ (i� 1) � ri�1

= q � (r1 + � � �+ ri�1)�Q+Ri�1;

13

where Q = (q�1) �r1+(q�2) �r2+ � � �+rq�1 and Ri�1 = rq+1+2 �rq+2+ � � �+(i�1�q) �ri�1.
Thus,

Lu � q � q � (r1 + � � �+ ri�1) + q � Z; since ri � Z by Lemma 5

= a1 + � � �+ ai�1 +Q�Ri�1 + q � Z

� Au +Q�Ri�1 + q � Z:

We have two cases. If there exists m such that rj = 0 for all j > m, then Lu is bounded

above by some constant for all u. Therefore, Lu � q is bounded above by some constant for

all u. Since Au approaches in�nity as u increases, there is some t� such that Lu � q � Au for

all u � t�.

If, on the other hand, there is an in�nite number of non-zero rj's, then Ri�1 approaches

in�nity as i increases. Since Q and q � Z are constants, there is some i0 such that for all
i � i0, Ri�1 � Q+ q �Z. Let t� be the beginning of Ii0. For all times u � t�, Lu � q � Au.

3.3 The limited horizon algorithm

In Fig. 3 we describe the limited horizon algorithm for the server, assuming n clients. The
limited horizon algorithm, like the unlimited horizon algorithm, is obtained by making some
additions to the skeleton standard-form algorithm. Each addition is marked with an asterisk.

The limited horizon algorithm achieves the three correctness conditions for any �xed S,
H, and �, where the choice of � is subject to the constraint given in Assumption 3 and to
the additional constraint that � = 1=p for some positive integer p. The three constants S,
H, and p are embedded in the server's code.

The server has two transitions. The behavior when a message arrives in the limited

horizon algorithm is identical to the behavior in the unlimited horizon algorithm.

The transition for garbage collecting the connection table occurs after every S-th message

arrival. The server keeps a multiset of the lifetimes of all the messages received during

the current garbage-collection period. When S messages have been received (and either
accepted or summary-rejected), then the server tries to update the lifetime estimate and
garbage collects the connection table. In determining how to adjust the estimate, the server

compares the (H + 1)-st largest element in the multiset of recorded lifetimes against the

current lifetime estimate. Based on this comparison, the estimate is updated in much the
same way used in the unlimited horizon algorithm.

There are two main ways in which the update procedure used in the limited horizon

algorithm di�ers from that used in the unlimited horizon algorithm. First, the variable p has
a �xed value throughout. As will be shown, this allows the ratio of lost to accepted messages

to converge to 1=p, as long as p is at most (S �H)=H. No advantage regarding the ratio

can be gained with a larger p since H out of every S messages might be summary-rejected

simply due to transient spikes in the lifetimes. Second, whenever the lifetime estimate is

decreased, numrej is set to 0 and numacc is decreased by p times numrej plus 1. The
plus 1 is important for achieving the desired ratio|it allows us to build up a reserve of

14

State variables:

clock: integer, current value of the clock

CT [1::n]: array of integer, initially all entries are nil

ltime-est: powers of 2, initially 1

upper: integer, initially 0

� p: integer, initially some predetermined value at most (S �H)=H

� numacc: integer, initially 0

� numrej: integer, initially 0

� maxltime: integer, initially 0
� ltimes: multiset of integer, initially empty

Transitions:

� Receive message m from client i with timestamp stamp:
� ltimes := ltimes[fclock � stampg

if ((CT [i] 6= nil) and (stamp > CT [i])) or ((CT [i] = nil) and (stamp > upper)) then
accept m and send acknowledgement
CT [i] := stamp

� numacc := numacc+ 1

else
reject m

� if (CT [i] = nil) and (stamp � upper) then numrej := numrej + 1
� Garbage collect CT : (do when ltimes has exactly S entries)

� maxltime := the (H + 1)-st largest element in ltimes

� ltimes := empty set
� if maxltime > ltime-est then
� ltime-est := 2j , where j = minfk : 2k � maxltimeg
� else if (numacc > p � numrej) and (ltime-est > maxltime > 0) then

� ltime-est := 2j , where j = minfk : 2k � maxltimeg
� numacc := numacc� p � numrej � 1
� numrej := 0

for i = 1 to n do
if (CT [i] 6= nil) and (CT [i] � clock � ltime-est) then

upper := max(upper;CT [i])

CT [i] := nil

Figure 3: The limited horizon algorithm

15

extra accepted messages to counteract temporary surges in the number of summary-rejected

messages.

The analysis of the limited horizon algorithm parallels that of the unlimited horizon

algorithm. It depends on the notion of a normal message, a message whose lifetime is not

among the H highest lifetimes in the multiset ltimes when garbage collection occurs. As

before, Condition 1 holds by Theorem 2. Lemma 7, analogously to Lemma 3, gives an upper

bound on the time after the estimate stabilizes until no more normal messages are summary-

rejected. Theorem 8 states that eventually the estimate converges, and is proved similarly

to Theorem 4 using Lemma 7. Lemma 9, analogously to Lemma 5, gives a constant upper

bound on the number of normal messages that can be summary-rejected in any interval.

(The constant is slightly di�erent however.) It is used in the proof of Theorem 10, which

states that the ratio of lost to accepted messages approaches 1=p.

To show the desired liveness behavior of the limited horizon algorithm in (t;X; S;H)-
bounded executions, we need a modi�ed version of Lemma 3, which only refers to normal

messages.

Lemma 7 Let t1 be any garbage-collection time in any execution of the limited horizon

algorithm. Let B be the new value of ltime-est at time t1. If t2 is a garbage-collection time

such that t1 + B < t2, and ltime-est is non-increasing in the closed interval [t1; t2], then no

normal message is summary-rejected in [t1 +B; t2].

Proof: The proof is essentially the same as the proof of Lemma 3.

The next theorem is the analog of Theorem 4.

Theorem 8 Consider any execution of the limited horizon algorithm. Let t and X be such

that the execution is (t;X; S;H)-bounded. Then there exists some real time t0 > t such that

the value of the variable ltime-est at every time after t0 is less than 2X.

Proof: The proof is essentially the same as the proof of Theorem 4.

To show that Lu=Au converges to � = 1=p in any (t;X; S;H)-bounded execution, we must

modify Lemma 5 to refer only to normal messages. (The de�nitions of Ii, ri, and ai are the

same as before.)

Lemma 9 Consider any execution of the limited horizon algorithm that is (t;X; S;H)-

bounded for some t and X. Then there exists a constant Z (depending on X) such that

for all i with Ii beginning after t, the number of normal messages summary-rejected in Ii is

at most Z.

Proof: The proof is essentially the same as the proof of Lemma 5, except that Z is equal

to (dlogXe + 1)(2XR + S), since S is the maximum number of messages received in any

garbage-collection period.

16

Theorem 10 Consider any execution of the limited horizon algorithm. Let t and X be such

that the execution is (t;X; S;H)-bounded. Then the limit of Lu=Au as u tends to in�nity is

1=p.

Proof: We show that for the �xed p, there exists t0 such that Lu � p � Au for all u � t0.

Pick any time u, and let i be such that u is in interval Ii and Ii begins after time t. Let

k be such that u occurs in the k-th garbage-collection period of Ii. By Lemma 9,

Lu � r1 + � � �+ ri�1 + Z + k �H

and

Au � a1 + � � � + ai�1 + (k � 1) � (S �H) � Z:

Since p � (S �H)=H and aj = p � rj + 1 for all j,

Lu � p � Au � (i� 1) + (p+ 1) � Z + S �H:

Note that i� 1 tends to in�nity, while (p+1) �Z +S �H is a constant. Thus there is some

i0 such that for all i � i0, i � 1 � (p + 1) � Z + S �H. Thus for all times u starting with
interval i0, Lu � p � Au.

4 Lower bound

The proofs of Theorems 4 and 8 give us some information about how long it takes the
estimate ltime-est to converge to less than twice the actual upper bound. In both cases, the

time required for the estimate to converge depends on how long it takes to accept a certain
number of messages. It might be more desirable for this amount of time to be a constant,
but in this section we show that that is not possible. Speci�cally, we show that for any
standard-form algorithm, there can be no bound, based on the previous history, between the
time t after which the lifetime is at most X and the time t0 after which the estimate is less

than 2X.

To state the next theorem, we need two more de�nitions. Let qu be the state of the server

at time u, for any u. LetM be such that in any garbage-collection period in any execution, it
is possible for the server to receive at least M messages. In general, each garbage-collection

period may have a di�erent upper bound on the number of messages that can be received;M

is the minimum of all these upper bounds. (For the unlimited horizon algorithm as presented,

since no lower bound is speci�ed on the time between garbage collections, technically M is

0. However, if garbage collections were evenly spaced G apart, then M would be RG. For
the limited horizon algorithm, in every garbage-collection period exactly S messages are

received; thus M is S.)

The theorem actually only holds for algorithms that try to achieve a ratio of lost to

accepted messages that is smaller than M . Since M is a positive integer, any reasonable
algorithm would achieve a ratio much smaller than this.

17

Theorem 11 Choose any standard-form algorithm satisfying the three conditions for H = 0

and any � < M . Let B be any function mapping states of the server to integers. Then there

exists for some t, X, a (t;X)-bounded execution of the algorithm in which t0 � t > B(qt),

where t0 is the time after which the estimate is always less than 2X.

Proof: Suppose, for contradiction, that in any (t;X)-bounded execution for any t and X,

the time t0 after which the estimate is less than 2X is such that t0� t � B(qt). We construct

an in�nite execution that violates Condition 3 as follows.

Let e0 be any execution that is (t0;X)-bounded for some t0 and X and in which no

messages are received in the interval [t0; t0+B(qt0)]. Suppose execution ei�1, i > 0, is de�ned

so that it is (ti�1;X)-bounded for some ti�1 and no messages arrive in [ti�1; ti�1 +B(qti�1)].

Let t0i�1 be the time in that interval after which ltime-est is less than 2X.

Let ei be an execution that branches o� from ei�1 at time t0i�1 in which M messages with
lifetimes equal to 2X arrive in the next garbage-collection period and are lost. Furthermore,
suppose that there is a subsequent time ti at which a message with lifetime equal to X

arrives, no messages arrive in the interval [ti; ti +B(qti)], and ei is (ti;X)-bounded.

Let e be the limit of ei as i approaches in�nity. Note that e is (t0; 2X)-bounded and in
each interval [t0i; t

0

i+1] one message is accepted and M messages are lost. Thus in e, Lu=Au

approaches M as u increases. Since M > �, we have a contradiction.

A similar theorem can be shown even for a bound that does depend on the history after

time t, as long as it is independent of the number of messages received after time t.

Acknowledgment

We thank Ernst Biersack, David Feldmeier, Abel Weinrib, the conference reviewers, and the

journal referees for helpful comments on earlier versions of this paper, and Liuba Shrira and
Greg Bollella for enlightening conversations. The comments of Abel Weinrib inspired us to

develop the limited horizon algorithm.

References

[1] Comer D: Internetworking with TCP/IP: Principles, protocols, and architecture. Pren-

tice Hall, Englewood Cli�s 1988

[2] Herlihy MP, McKendry M: Timestamp-based orphan elimination. IEEE Transactions

on Software Engineering 15(7):825{831 (1989)

[3] Jain R: Divergence of timeout algorithms for packet retransmissions. Proc 5th Annual

International Phoenix Conference on Computers and Communications 1986, pp 174{179

18

[4] Lamport L: Time, clocks, and the ordering of events in a distributed system. Commun

ACM 27(7):558{565 (1978)

[5] Lamport L, Melliar-Smith P: Synchronizing clocks in the presence of faults. J ACM

32(1):52{78 (1985)

[6] Liskov B: Practical uses of synchronized clocks. Proc 10th Annual ACM Symposium on

Principles of Distributed Computing 1991, pp 1{9.

[7] Liskov B, Shrira L, Wroclawski J: E�cient at-most-once messages based on synchronized

clocks. ACM Trans Computer Systems 9(2):125{142 (1991)

[8] Mills DL: Internet time synchronization: The network time protocol. IEEE Transactions

on Communications 39(10):1482{1493 (1991)

[9] Steiner JG, Neuman BC, Schiller JI: Kerberos: An authentication service for open
network systems. Usenix Conference Proceedings 1988, pp 191-202

[10] Zhang L: Why TCP timers don't work well. Proc ACM SIGCOMM Symposium 1986,
pp 397{405

19

