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Abstract

Managing a connection between two hosts in a network is an important service to

provide in order to make the network useful for many applications. The two main sub-

problems are the management of serial incarnations of a connection and the transfer of

messages within an incarnation. This paper investigates whether it is necessary for con-

nection management protocols to retain state information across node crashes and between

incarnations. The following results were obtained:

� When information is not retained across node crashes, incarnation management is

not possible at all.

� When information is not retained between incarnations, incarnation management is

possible if the network is FIFO and not possible if the network is non-FIFO.

� When information is not retained across node crashes, message transfer can be ac-

complished in networks that lose packets if the network is FIFO and the protocol

is allowed a variable length grace period after a crash during which it need not de-

liver messages. However, message transfer cannot be accomplished if the network is

non-FIFO or the grace period allowed is �xed.

� When information is not retained across node crashes, message transfer can be ac-

complished in networks that do not lose packets if the network is FIFO or the protocol

need not be FIFO. Message transfer is not possible when the network is non-FIFO

and the protocol must be FIFO.

� If the network has bounded capacity, then message transfer is possible without us-

ing stable storage. This indicates, somewhat surprisingly, that there is a data link

initialization protocol that can withstand node crashes without stable storage.
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1 Introduction

A major problem in the area of communication protocols is managing connections between

two hosts across a wide-area network. Each connection between two speci�c hosts may have

many incarnations over time. The task of managing connections between two hosts consists of

incarnation management, managing serial incarnations of connections, and message transfer,

transferring messages within an incarnation. Each host is associated with a node in the net-

work; one node is the sender and the other is the receiver. The sender and receiver interact

with the hosts and carry out a protocol to establish an incarnation of the connection, transfer

messages from the sender's host to the receiver's host, and eventually release the connection.

It is possible that a new incarnation of the connection will be requested later. Connection

management forms the transport layer in the OSI network hierarchy and is built on top of the

network layer. Transport protocols are at the heart of any wide-area communication network

and form the basis for common protocols such as electronic mail, remote procedure call, talk,

ftp, and rlogin.

A connection management protocol keeps information about the state of a connection in a

connection record [34]. Most incarnation management protocols depend on having connection

records available after a crash and before opening a new incarnation. But there are costs

associated with maintaining connection records. A common technique to retain connection

records across a crash is to keep them in stable storage, whose contents are una�ected by

a crash. Even in systems which provide stable storage, updating it typically requires long

access time and using it burdens the protocol. In addition, over a long period of time each

host may have connections with many other hosts1, while at any speci�c moment only a few

of these connections have active incarnations. It can become prohibitively expensive to keep

connection records inde�nitely on each potential or past connection. (Cf. the protocol in [22]

that uses synchronized clocks in order to avoid keeping information about inactive connections.)

Consequently, we want to know whether it is necessary for the sender and receiver to retain

connection records across crashes and between incarnations.

Since connection management is such a basic task, it is important to develop a rigorous

basis for precise understanding of the issues concerning the appropriate network assumptions,

the desired protocol speci�cations, and the interactions between the two. This theory should

capture the important features of the problem, and still be simple enough that results can be

proved formally. We make a step in this direction, focusing on the issue of retaining information

for establishing and releasing connections, as well as for message transfer.

For our results, we assume a connectionless network layer, that is, a network layer that

only supports primitives to send and receive packets, but does no error checking or 
ow control

(e.g., IP in the TCP/IP protocol suite [14]). We assume that the network does not duplicate

packets, and also that any corrupted packets are detected and discarded. In this environment,

packets can be lost due to congestion, fragmentation, or a crash of an intermediate node. The

network layer may or may not deliver packets in FIFO order. We consider only two extreme

1For example, the Internet, which runs TCP/IP, connects more than 200; 000 hosts [14].
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types of ordering behavior by the network, perfectly FIFO and arbitrarily non-FIFO, and our

results are stated as if these are the only possibilities. Dealing with intermediate ordering

assumptions is left for further research.

Our formal treatment of the connection management problem models the ability to release

a connection based on network misbehavior. Actual networks can \throw in the towel" and

decide a connection should be terminated because of poor performance (cf. [29, pp. 377{378],

and the usage of ICMP packets in TCP/IP [14, 32]). To capture this phenomenon, our formal

model includes a special NProblem event by which the underlying network indicates that some

severe packet transportation problem has occurred, e.g., all packets in transit were lost, or no

packet is received during \too long" a time. A protocol that uses these indications can close

the connection (and stop delivering messages) when some criterion on packet transportation

is below its threshold. The use of NProblem makes it easier to design a protocol, since the

nodes can \give up" and close a connection when it occurs. Not surprisingly, it makes proving

impossibility results more di�cult2. In order to make our results as strong as possible, we

prove our impossibility results for protocols that rely on NProblem, while our protocols do not

rely on NProblem to release connections.

We �rst consider incarnation management (IM) in the presence of crashes, without stable

storage. Our results for this case are summarized in Fig. 1. In this case incarnations cannot be

managed correctly, although the severity of the misbehavior exhibited depends on the speci�c

network assumptions. In more detail, we show that incarnations cannot be managed correctly,

even if the network is FIFO and does not lose packets. The error demonstrated is that actions

of the two ends of the connection are not properly interleaved. In particular, one host may

transfer messages assuming there is an active incarnation while the other does not participate in

this incarnation. Since a \one-sided" connection could be considered non-hazardous, (and thus

in Fig. 1 we use the term \weak NO" for it), we then show impossibility for FIFO networks that

can lose packets. In this case, the error demonstrated is to fuse together into one incarnation at

the receiver the delivery of messages that were transmitted at the sender on behalf of separate

incarnations. (In Fig. 1 we use the term \strong NO" for such behavior since it demonstrates

a severe violation of the requirements). This result assumes that the protocol is �nite-state, a

reasonable assumption satis�ed by any real protocol.

We then consider incarnation management when information is not retained between in-

carnations and nodes do not crash. The results for this case are summarized in Fig. 2. They

indicate that correct incarnation management is not possible for poorly behaved networks.

Speci�cally, we show that correct incarnation management is not possible for networks which

are not FIFO and can lose packets, but it is possible for networks either that are FIFO, even

if packets can be lost, or that do not lose packets, even if delivery is non-FIFO.

We then turn to the subproblem of transferring messages within an incarnation. Ideally,

every message transmitted by the sender's host is delivered to the receiver's host exactly once,

and no messages are delivered that were not previously sent. In order to focus on the issues

2For example, one of the techniques in [17]|losing all the packets in transit and still requiring the protocol

to perform a particular task|cannot be used (or requires more care).
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network loss no loss

non-FIFO strong NO (follows from below) weak NO (follows from below)

FIFO strong NO (Theorem 3.2) weak NO (Theorem 3.1)

Figure 1: IM, Information not Retained Across Crashes

network loss no loss

non-FIFO NO (Theorem 3.3) YES (modify protocol below)

FIFO YES (Theorem 3.4) YES (follows from left)

Figure 2: IM, Information not Retained Between Incarnations

related to message transfer (MT), we assume a single in�nitely long incarnation that remains

open even if crashes occur.

We �rst consider the message transfer problem when the network can lose packets. One of

the main factors in this case is whether the protocol is allowed a \grace period" after a crash,

during which messages that are transmitted do not necessarily have to be delivered. Our

results for this case are summarized in Fig. 3. They imply that message transfer is possible

if the network is FIFO and the protocol is allowed a variable length grace period. However,

message transfer is not possible if the network is non-FIFO or the grace period allowed the

protocol is �xed. In more detail, we show that if the grace period must be �xed, then there is

no protocol for this problem, even if the network is FIFO and the message delivery need not

be. We further show that if the grace period is allowed to be variable, then there is a protocol

for this problem that guarantees FIFO delivery of messages if the network is FIFO but can

lose packets. If the network is not FIFO then there is no protocol for this problem.

Next we consider networks that do not lose packets. We show that in non-FIFO networks,

achieving FIFO message delivery is impossible in the presence of node crashes, even if the

liveness property to be satis�ed is very weak. In the other three cases, there are simple

protocols for message transfer; see Fig. 4.

The previous impossibility results for message transfer rely on the network having un-

bounded capacity to store up old packets. We also consider the case where the capacity (the

number of packets that can be in transit at any given time) of the network is bounded. For this

case, we have a message transfer protocol which can withstand crashes without stable storage.

The protocol works even if the network can lose packets and is not FIFO but it is ine�cient

if the capacity is large. The protocol can be made more e�cient for any capacity when the

network is FIFO.

The statements of several of our impossibility results formalize beliefs held by practitioners.

Known \folk" theorems in the practical community argue that unless some non-trivial timing

assumptions are satis�ed, nodes must keep connection records inde�nitely and possess stable

storage that can withstand crashes (cf. [29, Ch 6]). Roughly speaking, the argument is based on

the \delayed duplicates" attack, in which old duplicate packets somehow collect in the network
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protocol/network non-FIFO FIFO

�xed grace period NO (follows from below and right) NO (Theorem 4.1)

variable grace period NO (Theorem 4.3) YES (Theorem 4.2)

Figure 3: MT, Network Loses Packets

protocol/network non-FIFO FIFO

FIFO NO (Corollary 4.5) YES (simple protocol)

non-FIFO YES (simple protocol) YES (simple protocol)

Figure 4: MT, Network does not Lose Packets

and are then delivered to a node in such a way as to trick it into thinking a connection is open

when it is not. It is true that (connectionless) network protocols do not detect and eliminate

duplicates, but where can these duplicates come from and how can they be collected? For

any reasonable type of hardware, duplicates are only caused by some protocol at some layer

retransmitting a packet. The popular network protocol IP does not itself do retransmissions3;

thus the only other possibility is that they come from the data link layer (which is concerned

with reliable transmission between adjacent nodes over a physical link). But duplicates at

the data link layer are easily avoided.4 Furthermore, �ber optic networks of the near future

may not even have a data link layer. Thus the assumption of arbitrarily delayed duplicates

collecting in the network is too pessimistic in many reasonable situations.

Our results imply that even under a seemingly more benign assumption about the network

(namely, no spontaneous duplicates), it is in many cases possible to collect duplicates so as

to attack protocols for incarnation management and message transfer. This holds even for

relaxed protocol requirements, including the existence of a grace period and the possibility of

releasing a connection upon network misbehavior.

Our results that assume a non-FIFO network are clearly applicable to the environment of a

connectionless network layer, where packets are routed independently. The results that assume

a FIFO network layer are theoretically interesting since the lower bounds are made technically

stronger. They also have practical relevance to a connection-oriented network layer, which

manages connections between hosts, but at the network level, with speci�c control over routing

decisions; in some cases, when a �xed route is used, packets arrive in FIFO order. They are

also relevant to data link initialization procedures, which provide a reliable connection between

nodes that are physically connected. The protocol for bounded capacity networks is particularly

relevant to the data link layer, since the capacity of a physical link will generally be constant.

3Cf. [14], p. 98, where the speci�cation of the protocol does not include retransmission, although implemen-

tations are not prohibited from retransmitting.
4The alternating bit protocol with stable storage to tolerate node crashes could be used [9]; the amount

of stable storage needed at a node is just one bit for every adjacent link, which is feasible, unlike keeping a

connection record for thousands of connections. Alternatively, our bounded capacity protocol, which does not

rely on stable storage, can be used.
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The other protocols serve more as counter-examples and show that speci�c assumptions used

to prove an impossibility result cannot be relaxed.

Connection management has been studied intensively in the practical literature and many

ingenious protocols have been suggested (e.g., [12, 13, 28, 29, 31, 34, 35]). All these protocols

rely on some combination of timers, packet delay bounds, synchronized clocks and unique incar-

nation identi�ers; it has been argued informally that some combination of these assumptions is

necessary [35]. Our work complements these protocols by identifying precisely which assump-

tions on the system are necessary and su�cient, and exactly which requirements from the

protocol it is impossible to achieve in certain cases. Other work that complements ours is the

vast literature on veri�cation of communication protocols, including, for example, [18, 20, 26].

These papers concentrate on verifying known protocols rather than investigating whether the

assumptions they rely on are necessary.

There is some prior work on impossibility results for connection management. Our impossi-

bility result for message transfer, when a �xed grace period is allowed, on a FIFO network that

can lose packets improves the result in [17], which assumed the stronger progress property that

starting immediately after the last crash, all messages transmitted must be delivered. Belsnes

[11] studies how many packet exchanges are necessary in order to manage incarnations, under

various requirements and assumptions. LeLann and LeGo� [21] show that a connection cannot

be established by protocols of a particular form. Other theoretical studies of communication

protocols have mostly concentrated on the data link layer [1, 3, 17, 19, 23, 25, 30, 33]. Most

of this work concerns implementing protocols using bounded size packets, an issue we do not

address. Our protocols for message transfer on bounded-capacity FIFO networks use an idea

from self-stabilizing protocols for cleaning the system with a new label. (This idea was �rst

employed in [15] and later used in [2, 8, 16].)

Our impossibility result for amnesic incarnation management protocols requires that the

hosts discard all information after a connection is released. This condition does not allow hosts

to maintain, e.g., a single global counter that is common to all connections a host might have.

Following our work, and using a very similar framework, it was shown ([7, 6]) that in this case,

a three-way handshake incarnation management protocol is possible, but there is no two-way

handshake protocol unless some information is maintained for each possible connection.

The rest of this paper is organized as follows. In the next section, we describe our model.

Section 3 concerns the problems caused by di�erent incarnations of the same connection, while

Section 4 includes the message transfer results. We conclude, in Section 5, with a discussion

of our results and directions for future research.

2 De�nitions

In this section we present our model of computation. Then we describe the architecture of the

system, which consists of two hosts, two nodes (one per host), and a network connecting the

two nodes. Our description of the problem is somewhat simpli�ed since we ignore two-way
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tra�c at the message level (one node only transmits messages and the other node only delivers

messages). We then present a modular technique for proving impossibility in many situations,

called pumping.

2.1 I/O Automata

In this subsection, we brie
y describe the input-output automaton model [24], as simpli�ed for

our purposes. Each system component is modeled by an automaton. The automaton is a state

machine whose state transitions are labeled with actions. If there is a transition from a state

labeled with an action, then that action is enabled in that state. The actions of an automaton

are classi�ed as either internal or external. External actions model communication with the

environment and are further classi�ed as either input (providing stimuli from the environment)

or output (generating information to the environment). Since the component has no control

over when inputs occur, each input action is enabled in every state. Internal actions are private

to the component, i.e., not visible to its environment.

An execution of an automaton is an alternating sequence of states and actions, beginning

with an initial state, in which each action is enabled in the previous state and each state

change correctly re
ects the transition relation for the intervening action. An occurrence of an

action in an execution is an event. An execution is fair if every output or internal action that

is continuously enabled eventually occurs. Informally, an execution is fair if the automaton

eventually gets to perform a pending output or internal action (and is not, say, swamped with

inputs). We will require liveness properties only of fair executions. A (fair) schedule of an

automaton is the sequence of events in a (fair) execution.

The system as a whole is also modeled by an automaton, the automaton resulting from the

composition of the components. In order for the composition to be de�ned, each action must

be shared by at most two automata, and then the action must be an input of one and an output

of the other. The state set of the composition is the Cartesian product of the state sets of the

component automata. There is a transition from state s0 of the composition to state s labeled

with action � if and only if (1) � is enabled in each component of s0 that corresponds to an

automaton with that action, and (2) each component in s correctly re
ects the corresponding

transition for � (or is unchanged if the corresponding automaton lacks �). Each action of

the composition retains its previous classi�cation as input, output, or internal, except that an

action that is input to one component and output to another becomes internal.

We use the following notation: If � is a schedule of a composite automaton A and X is a

component of A, then �jX denotes the restriction of � to actions of X .

2.2 System Architecture

The system consists of two nodes S (sender) and R (receiver), a host at each node, and a

network connecting S and R. S, R and the network are explicitly modeled as I/O automata.
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S

�DisS

-Req-DisS

-Transmit(m)
�ConS

-Req-ConS

�NProblemS

�RecvS(p)
-SendS(p)?

CrashS

R

-DisR

�Req-DisR

-Deliver(m)
�ConR

-Req-ConR

-NProblemR

�SendR(p)
-RecvR(p) ?

CrashR

Network

?

LoseSR(p)
LoseRS(p),

Figure 5: System architecture; hosts are not shown.

The hosts are not explicitly modeled. The system is the composition of S, R, and the network.

(See Figure 5.)

2.2.1 De�ning the Network

The actions of the network are (X is either S or R and Y is the other node):

� input SendX(p), X sends packet p,

� output RecvX(p), packet p is received by X ,

� input Lose(p), packet p in transit is lost, and

� output NProblemX , X is given an indication that there is a problem in the network.

A state of the network is two sets of packets, one set PSR for packets from S to R and another

set PRS for packets from R to S. The e�ect of a SendS(p) action is to add p to the set PSR.

A RecvS (p) action is enabled whenever p is in the set PRS ; the e�ect of a RecvS(p) or Lose(p)

action is to remove p from the set PRS (if it is in the set). A packet is in transit (from R to

S) if it is in PRS . (Analogous de�nitions are obtained by reversing S and R.) We have just

described a network that can lose packets|whether a packet is delivered or lost depends on

which event happens �rst, Recv or Lose.

We will only require correctness of S and R for schedules of the system in which the network

behaves \properly". We now de�ne the various types of networks studied in this paper. (NA

stands for network assumption.)

An automaton with the above actions is a network if every schedule satis�es NA1, NA2,

and NA3 below:

NA1. There exists a one-to-one function causepSR from the set of RecvR events in the schedule

to the set of SendS events in the schedule such that if causepSR(RecvR(p)) = SendS (p
0),

then p = p0 (i.e., p and p0 have the same contents) and SendS (p
0) precedes RecvR(p) (and
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analogously for packets from R to S). I.e., the network does not duplicate or corrupt

packets, nor deliver spurious packets.

NA2. If the schedule is fair and if there is an in�nite number of SendS events, then there is

an in�nite number of RecvR events (and analogously for packets from R to S). I.e., the

network delivers in�nitely many packets in each direction.5

NA3. For every pre�x � of the schedule and X 2 fS;Rg:

1. if � = �0 NProblemX for some �0, then PX(�
0jN) is true.

2. if PX(�jN) is true, then the next output event by the network involving X in the

schedule is NProblemX .

The NProblemS action of the network will be triggered depending on some predicate PS
on sequences of network actions that gives a necessary and su�cient condition for the event

NProblemS to occur. (For example, PS might be that ten packets in a row are lost going from

S to R.) Similarly, the predicate PR controls the occurrence of NProblemR. Throughout this

paper, we will only consider predicates PX that are loss(2)-only, meaning that PX is not true

unless there have been at least two Lose events (in either direction) since the last NProblemX

event. Thus, the network ignores minor 
uctuations which cause single packets to be lost, and

triggers an NProblem only when things get worse.6

A network is FIFO if every schedule satis�es NA4 below; otherwise it is non-FIFO.

NA4. If causepSR(RecvR(p)) precedes causepSR(RecvR(p
0)), then RecvR(p) precedes

RecvR(p
0) (and analogously for packets from R to S). I.e., packets are delivered in

the same order as they are sent.

A network is non-losing if every schedule satis�es NA5 below; otherwise it is losing.

NA5. If the schedule is fair, then causepSR is onto (and analogously for packets from R to

S). I.e., no packets are lost. (Note that NA5 implies NA2.)

2.2.2 De�ning Incarnation Management

Ideally what happens is that the host at S requests a connection (Req-ConS), S communicates

this to R and R checks with its host (Req-ConR). If R's host is agreeable (ConR), R com-

municates this to S, who then tells its host (ConS). Now the host at S transmits messages

(Transmit) and S and R run a message transfer protocol so that they are delivered to R's host

5If this assumption does not hold, then there is a partition separating S and R, and clearly not much of

interest can be achieved.
6Even if the network satis�es NA2, there is scope for misbehavior, such as losing a sequence of packets of

any �nite length. Such behavior might or might not trigger NProblem, depending on the choice of PS and PR.
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(Deliver). The host at either S or R can unilaterally decide to end the connection (Req-DisS
or Req-DisR); once S and R have terminated the connection, the hosts are noti�ed (DisR and

DisS). There is a third way that a connection can be released: if the network is experiencing

problems, either S or R is noti�ed (NProblemS and NProblemR) and then they are free to

decide whether to terminate any existing connection.

We now proceed more formally. The actions of S are

� input Req-ConS , request from the host at S to establish a connection with R,

� output ConS , indication to the host at S that the connection is established, at least as

far as S is concerned,

� input Transmit(m), the host at S wants to transmit message m to the host at R,

� output SendS(p), send packet p over the network to R,

� input RecvS(p), receive packet p from R over the network,

� input Req-DisS , request from the host at S to disconnect the connection,

� output DisS , indication to the host at S that the connection is disconnected,

� input NProblemS , indication that there is a problem in the network,

� input CrashS (optional), S crashes and recovers, and

� internal StepS , S takes a local step.

The actions of R are

� output Req-ConR, query to host at R whether it is willing to establish a connection with

S (note that this is not symmetric, in that Req-ConR is an output from the host at R,

while Req-ConS is an input to the host at S),

� input ConR, indication from the host at R that it is willing to establish the connection

(note that this is not symmetric, in that ConR is an input to the host at R, while ConS
is an output from the host at S),

� output Deliver(m), deliver message m to the host at R,

as well as actions SendR(p), RecvR(p), Req-DisR, DisR, NProblemR, CrashR (optional), and

StepR, which are completely analogous to those of S.

When we consider the case that nodes can crash, we use the Crash actions noted as optional

above. To model the lack of stable storage, we require that there be a unique state recS of S

that results from the CrashS action (and analogously for R). No matter what the state of S

is immediately before a crash, it always returns to state recS immediately after the crash.
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We will require a certain pattern of interactions between the hosts and the nodes. We

now specify this pattern, called \well-formedness". De�ne the host interface of a schedule to

be its restriction to the actions of the hosts, i.e., Req-Con, Con, Transmit, Deliver, Req-Dis,

and Dis (but not Crash, NProblem, Send or Recv). A sequence of host events is de�ned to

be well-formed if it can be extended to satisfy the following. Partition the sequence into

sections, separated by Req-ConS events. Each section that begins with Req-ConS , which is

every section except possibly the �rst, is called an incarnation. If the �rst section is not

an incarnation, then it must consist only of Dis events. Each incarnation must satisfy the

following.

� The restriction of the incarnation to actions of the host at S has the form7

Req-ConS [ConS Transmit�] [Req-DisS ] Dis
+

S .

� The restriction of the incarnation to actions of the host at R has the form

Dis�R [Req-ConR [ConR Deliver�] [Req-DisR] Dis
+

R].

� If Req-ConR occurs, it follows Req-ConS , and if ConS occurs, it follows ConR. So if

we restrict to just Req-Con and Con actions, the sequence up to ConS is Req-ConS
Req-ConR ConR ConS . This is called the real-time overlap condition.

The disconnects in the �rst section would be due to Crashes that occur initially: below we will

require a Crash to cause the incarnation to disconnect, but since crashed nodes cannot tell if

there was an incarnation in progress or not, they can initiate a disconnect procedure even if

there is no incarnation in progress. This is also the reason for the appearance of Dis+ at the

end of the conditions for S and R and the appearance of Dis�R at the beginning of the condition

for R. (Since an incarnation is de�ned to begin with Req-ConS , there are no DisS events at

the beginning of the condition for S.)

If an incarnation includes DisS and DisR, then it is complete. If an incarnation includes

ConS but no Dis or Req-Dis, then it is open, and messages can be transferred. An incarnation

in which one side wants to connect or disconnect but the other side has not yet done so is

neither complete nor open.

We now de�ne properties of schedules that re
ect the assumptions on the hosts (HA*) and

requirements on the protocol (IM*).

HA1. The hosts preserve well-formedness of the host interface. (I.e., if the schedule is well-

formed so far, then any step by a host results in a schedule that is also well-formed).

IM1. The protocol preserves well-formedness of the host interface.

7Brackets mean optional, j gives alternatives, � means repeat 0 or more times, and + means repeat 1 or more

times.
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Next we put safety requirements on the message transfer function. IM2 states that every

message delivered was previously transmitted within the same incarnation; IM3 is the FIFO

property.

IM2. There is a one-to-one function causem from the set of Deliver events to the set of

Transmit events in the schedule such that if causem(Deliver(m)) = Transmit(m0), then

m = m0 (i.e., m and m0 have the same contents) and Transmit(m0) precedes Deliver(m)

in the same incarnation. This is called the message grouping condition.

IM3. If causem(Deliver(m)) precedes causem(Deliver(m0)), then Deliver(m) precedes

Deliver(m0).

Next we require that every DisS event can be attributed to a unique Req-Dis or Crash

or NProblem event, and the same for every DisR. I.e., the protocol cannot simply decide to

issue disconnects for no good reason. A natural notion would be that the event triggering a

disconnect of an incarnation must occur in that incarnation. However, a crash might occur atR

just before an incarnation starts at S and this crash should be allowed to close the incarnation.

Thus our de�nition is looser. We only present impossibility results for the cases when crashes

can occur; in our protocols, all of which are for no-crash cases, disconnects are only triggered

by events in the same incarnation.

IM4. There is a one-to-one mapping from DisS events to previous Req-Dis, Crash, and NProb-

lem events, and the same for DisR events. This is the no unwarranted disconnects

condition.

(Our restriction to loss(2)-only predicates for the occurrence of NProblem implies that the loss

of only one packet cannot cause a connection to be closed.)

We also require that any open incarnation must be closed in response to a crash. The

motivation for this condition is that the most likely condition desired of the message transfer

aspect of connection management is that the sequence of messages delivered in an incarnation

should be a pre�x of the sequence transmitted (and not have any messages skipped in the

middle). In order to ensure this property in the face of crashes, an ongoing incarnation would

have to disconnect in case crucial information for maintaining the pre�x property had been

lost.

IM5. If the schedule is fair, and if a Crash event occurs in an incarnation, then the incarnation

is �nite.

Since a node does not know whether an incarnation was in progress when it recovers from a

crash, it must disconnect even if no incarnation is open.

Finally we have the liveness conditions, both for connecting and disconnecting (IM6) and

for delivering messages (IM7). IM6 depends on R's host eventually responding to requests to

open a connection, so we make a second host assumption, HA2.
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HA2. If the schedule is fair, then every Req-ConR event is eventually followed by a ConR or

DisR event.

IM6. If the schedule is fair and consists of a �nite number of incarnations, then the last

incarnation is either complete or open.

Well-formedness alone guarantees that the schedule will consist of a �nite or in�nite sequence

of complete incarnations, and if the number is �nite, then there might be a �nal incomplete

incarnation. IM6 says that neither the host nor the protocol can \stop playing" at inopportune

times. It is possible for an in�nite schedule to consist of a �nite number of incarnations, where

the last incarnation is in�nitely long; it's important to allow for the possibility of an in�nitely

long incarnation in order to state liveness properties for the message transfer of the style of

eventual delivery: e.g., in any incarnation with no Dis event, every message transmitted is

delivered.

Any application-speci�c liveness properties on the type of message delivery to be supported

should go here. For the lower bounds, we would like a weak condition that is still strong enough

for our results to hold. We use IM7 below, but �rst we must make a de�nition. A schedule is

ping-pong if the scheduling discipline for packet sends and receives in its associated execution

is as follows. Every packet that is sent is received before the next packet is sent (thus no packet

is lost). Furthermore, after each state in which both R and S have a Send action enabled, the

next Send that occurs is at the node which did not perform the previous Send.

IM7. If the schedule is �nite and is of the form � Req-ConS �, where � contains no Crash, no

Req-Dis, no NProblem, at most one Lose, and at least one Transmit, then there exists

an extension 
 Deliver(m) of the schedule such thatm is the last message transmitted in

�, 
 is ping-pong, and 
 contains no Crash, Req-Dis, NProblem, or Transmit(m) events.

IM7 says that if we are in an open incarnation where everything is behaving beautifully, the

latest pending Transmit must have a Deliver.

We now de�ne the various types of incarnation management protocols. Let N be a certain

type of network, i.e., every schedule of N satis�es NA1, NA2, NA3, and possibly NA4 and/or

NA5.

The composition of S, R, and N forms an incarnation management protocol for that

type of network if every schedule of the composition with no Crash events satis�es the following

implication: If HA1 and HA2 are true, then IM1, IM2, IM4, IM6 and IM7 are true.

An incarnation management protocol is FIFO if IM3 is added to the list of IM properties

in the above implication.

A (possibly FIFO) incarnation management protocol is crash resilient if Crash events are

allowed to occur and IM5 is added to the list of IM properties in the above implication.
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2.2.3 De�ning Message Transfer

When focusing on the message transfer problem, the incarnation management model is simpli-

�ed by considering only the actions Transmit, Deliver, Send, Recv, Step, Crash, and optionally

Lose.

We now de�ne the various types of message transfer protocols. Let N be a certain type of

network, i.e., every schedule of N satis�es NA1, NA2, NA3, and possibly NA4 and/or NA5.

The composition of S, R, and N forms a crash-resilient message transfer protocol

for that type of network if every schedule of the composition satis�es MT1:

MT1. There is a one-to-one function causem from the set of Deliver events in the sched-

ule to the set of Transmit events in the schedule such that if causem(Deliver(m)) =

Transmit(m0), then m = m0 (i.e., m and m0 have the same contents) and Transmit(m0)

precedes Deliver(m). The one-to-one function requirement means that there are no du-

plications and no spurious messages; the m = m0 requirement means that there is no

corruption of message contents. (This condition is the analog of IM2.)

A crash-resilient message transfer protocol is FIFO if every schedule satis�es MT2:

MT2. If causem(Deliver(m)) precedes causem(Deliver(m0)), then Deliver(m) precedes

Deliver(m0). This is the FIFO property (and is the analog of IM3).

Next we specify di�erent liveness conditions achieved by a message transfer protocol, in

the presence of node crashes.

A (possibly FIFO) crash resilient message transfer protocol is exactly-once if every schedule

satis�es MT3:

MT3. If the schedule is fair and in�nite but only has a �nite number of Crash events, then

every Transmit event following the �nal Crash event has a matching Deliver event.

Let t be a nonnegative integer. A (possibly FIFO) crash resilient message transfer protocol is

exactly-once with t-�xed grace period if every schedule satis�es MT4:

MT4. If the schedule is fair, then every Transmit(m) event that is not one of the �rst t Trans-

mit events after a CrashS or CrashR event has a matching Deliver(m) (w.r.t. causem).

I.e., following a crash, up to t messages that are transmitted may fail to be delivered,

but after that, the messages must be delivered. (Condition MT4 with t = 0 is the same

as condition MT3.)

Let t be a function from system states to nonnegative integers. A (possibly FIFO) crash-

resilient message transfer protocol is exactly-once with t()-variable grace period if every

schedule satis�es MT5:
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MT5. Suppose the schedule is fair. Choose an aribtrary Transmit(m) event. Let � be the

latest preceding crash event and c be the system state immediately after � in the cor-

responding execution. (In case there is no such �, c is the initial system state.) If

Transmit(m) is not one of the �rst t(c) Transmit events after �, then it has a matching

Deliver(m) (w.r.t. causem). This condition is similar to MT4, except that the number of

messages after a crash that may fail to be delivered can depend on the system state. In-

tuitively, we allow the number of messages lost to depend on the behavior of the network

in the execution leading to this state8.

A (possibly FIFO) crash-resilient message transfer protocol is at-most-once if every schedule

satis�es MT6 (a very weak condition):

MT6. If the schedule is fair and has only a �nite number of Crash events but an in�nite

number of Transmit events, then there is an in�nite number of Deliver events.

2.3 Pumping

Pumping is used in two results concerning incarnation management (Theorems 3.1 and 3.2)

and two results concerning message transfer (Theorems 4.1 and 4.4). This technique is a slight

generalization of the main technique used to prove the impossibility result of [17]. Pumping

does not rely on non-FIFO or losing behavior of the network, although it does assume node

crashes. We begin with a speci�c \reference" execution and modify it so that at the end of the

modi�ed execution a sequence of packets is in transit from S to R that will cause R to mimic

its behavior in the original execution but without any further activity by S. We obtain the

desired sequence of packets in transit by strictly alternating between S and R and each time

replaying a little more of each one's history from the reference schedule and crashing the other

one (thus \pumping up" the sequence of packets in transit).

Let P be any one of the crash-resilient protocols de�ned above, either for incarnation

management or message transfer, for any one of the type of networks de�ned above. Let � be

a schedule of P . Thus � satis�es

� NA1, NA2, NA3, possibly NA4, and possibly NA5;

� HA1, HA2, IM1, IM2, IM4, IM5, IM6, IM7, and possibly IM3 if P is an incarnation

management protocol;

� MT1, possibly MT2, and one of MT3, MT4, MT5, and MT6 if P is a message transfer

protocol.

Assume further that �

8Variations similar in 
avor to the requirement that a protocol is \bounded" were studied in [30, 33].
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� is �nite;

� is ping-pong;

� begins with CrashS CrashR;

� has no Lose events;

� when restricted to host actions begins with DisS and DisR in some order, if P is an

incarnation management protocol.

Let S1; R1; : : : ; Sk; Rk be the sequence of packets sent in � (which is also the sequence in

which they are received, by the ping-pong property), divided into maximal length subsequences

Si and Ri such that all the packets in Si are sent by S and all the packets in Ri are sent by R.

For any i, 1 � i � k, let sender(�; i) be the restriction of � to actions of S from the

beginning of � through the sending of all the packets in Si. Similarly, for any i, 1 � i � k,

let receiver(�; i) be the restriction of � to actions of R from the beginning of � through the

sending of all the packets in Ri. Let pump(�; 0) be the empty sequence. For any i, 1 � i � k,

let pump(�; i) = pump(�; i� 1) sender(�; i) receiver(�; i).

For example, pump(�; 3) = sender(�; 1) receiver(�; 1) sender(�; 2) receiver(�; 2)

sender(�; 3) receiver(�; 3). In words and ignoring host events: S crashes and sends all the

packets in S1. Then R crashes and as it receives the packets in S1 (which are in transit), R

sends all the packets in R1. Then S crashes again and sends all the packets in S1, and as it

receives the packets in R1 (which are in transit), S sends all the packets in S2. Then R crashes

again and as it receives the packets in S1 and S2 (which are in transit), R sends all the packets

in R1 and R2. Then S crashes again and sends all the packets in S1, and as it receives the

packets in R1 and R2 (which are in transit), S sends S2 and S3. Then R crashes again and as

it receives the packets in S1, S2 and S3 (which are in transit), R sends all the packets in R1,

R2 and R3. The next lemma generalizes this example.

Lemma 2.1 For any i, 1 � i � k,

(a) pump(�; i� 1) sender(�; i) is a schedule satisfying the same network and host assump-

tions as �, and the packets S1; : : : ; Si are in transit after it.

(b) pump(�; i) is a schedule satisfying the same network and host assumptions as �, and

the packets R1; : : : ; Ri are in transit after it.

Proof: By induction on i. When i = 1, (a) and (b) are obvious. Suppose the inductive

hypothesis is true for i� 1 � 1.

(a) To show that pump(�; i�1) sender(�; i) is a schedule, it is su�cient to show that all the

packets received in sender(�; i), namely R1 through Ri�1, are in transit after pump(�; i� 1).

This is true by the inductive hypothesis for (b) and the fact that NProblem never occurs (since

there are no Lose events).
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S1; : : : ; Si are in transit at the end of pump(�; i � 1) sender(�; i) because they are sent

during sender(�; i), but none of them is received since there are no actions of R in sender(�; i).

Clearly none of the network assumptions satis�ed by � is violated; HA1 is satis�ed because

of the Dis events at the beginning of �; HA2 is vacuously true because the schedule is not fair

(packets are in transit at the end of �).

(b) Recall that pump(�; i) = pump(�; i � 1) sender(�; i) receiver(�; i). To show that

pump(�; i) is a schedule, it is su�cient to show that all the packets received in receiver(�; i),

namely S1 through Si, are in transit after pump(�; i� 1) sender(�; i). This is true by part (a).

R1; : : : ; Ri are in transit at the end of pump(�; i) because they are sent during receiver(�; i),

but none of them is received since there are no actions of S in receiver(�; i).

Clearly none of the network assumptions satis�ed by � are violated; HA1 is satis�ed because

of the Dis events at the beginning of �; HA2 is vacuously true because the schedule is not fair

(packets are in transit).

Corollary 2.2 pump(�; k) sender(�; k) satis�es the following.

1. It is a schedule.

2. S and R are in the same states after it as they are at the end of �.

3. No packets are lost in it.

4. S1; : : : ; Sk are in transit after it.

5. It satis�es the same network and host assumptions as �.

Proof: 1. By Lemma 2.1, the packets R1; : : : ; Rk are in transit at the end of pump(�; k),

and thus pump(�; k) sender(�; k) is a schedule.

2. Since pump(�; k) ends in receiver(�k), which is �jR, and begins with CrashR, R is in

the same state at the end of pump(�; k) as it is at the end of �. Since R takes no steps in

sender(�; k), R is still in the same state at the end of pump(�; k) sender(�; k). By de�nition

of sender(�; k), S is in the same state at the end of pump(�; k) sender(�; k) as it is at the end

of �.

3. By construction, no packets are lost.

4. Since R takes no steps in pump(�; k) and no packets are lost, S1; : : :Sk are in transit

after pump(�; k) sender(�; k).

5. Clearly none of the network assumptions satis�ed by � are violated; HA1 is satis�ed

because of the Dis events at the beginning of �; HA2 is vacuously true because the schedule is

not fair (packets are in transit).

16



3 Incarnation Management

In this section we investigate the memory requirements for incarnation management. The

requirements are to open and close connections correctly and to distinguish between messages

belonging to di�erent incarnations. We �rst study incarnation management when crashes are

possible but nodes do not have stable storage. We then investigate the issue of incarnation

management when crashes do not occur, but no state information is preserved between di�erent

incarnations of the same connection.

3.1 Crashes are Possible

We present two impossibility results for incarnation management when nodes can crash but

have no stable storage. They both indicate that connection management is not possible; they

di�er in the particular bad behavior exhibited and the particular restrictions placed on the

structure of the protocol.

The �rst result, Theorem 3.1, shows that even if the network is completely reliable, never

losing packets and delivering them in FIFO order, there is no protocol. The contradiction

is reached by showing that any proposed protocol can be forced into violating the real-time

overlap condition. (Note that NProblem events never occur since no packets are lost.)

Theorem 3.1 There is no crash-resilient incarnation management protocol for a FIFO non-

losing network.

Proof: Suppose in contradiction there is one. We claim there exists a �nite ping-pong sched-

ule � beginning with CrashS CrashR whose restriction to host actions begins with Dis events

for S and R (in some order) and ends with

Req-ConS Req-ConR ConR ConS Transmit(m) Deliver(m) Req-DisS DisX DisY

for some m where X = S and Y = R or vice versa. We now justify this claim. Since Crashes

and Req-ConS are inputs, they can happen at any time; IM5 implies that the Dis events

follow the initial Crashes; Req-ConS is a possible input; IM6 implies that Req-ConR occurs;

ConR is a possible input; IM6 implies that ConS occurs; Transmit(m) is a possible input; IM7

implies that Deliver(m) occurs; Req-DisS is a possible input; and IM6 implies that the Dis

events occur. The schedule can be forced to be ping-pong by using the appropriate policy for

delivering packets.

By Corollary 2.2 (the pumping technique), pump(�; k) sender(�; k) is a schedule that sat-

is�es HA1, HA2 and NA1 through NA5. Thus, by the assumed correctness of the protocol,

it should also satisfy IM1, preserving well-formedness. However, in the su�x sender(�; k),

S opens a connection without R doing so, violating the real-time overlap condition of well-

formedness.
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While the above result shows a violation of the speci�cation for incarnation management,

one might argue that opening a \one-sided" connection is not so bad. In particular, since R

does not establish a connection R is not receiving any wrong data. We remark that it is also

possible to apply the pumping in reverse and trick R instead of S. In this case we will obtain a

schedule whose su�x, restricted to host events, is Req-ConS ConS Transmit(m) Req-DisS DisS
Req-ConR ConR Deliver(m) DisR. Note that this also violates the real-time overlap condition

of well-formedness (IM1), but it does not violate the message grouping condition (IM2).

This reasoning motivates our second impossibility result, which shows that any �nite-state

protocol can be tricked into fusing together two separate connections at S into one at R. That

is, messages from an earlier incarnation are delivered during a later incarnation, thus violating

the message grouping property. This is a severe violation since di�erent incarnations can be

established on behalf of completely di�erent application programs. These results rely on the

network losing packets.

An incarnation management protocol is �nite-state if both S and R are �nite-state ma-

chines. We assume there are at least two distinct messages in the message alphabet.

Theorem 3.2 There is no �nite-state crash-resilient incarnation management protocol for a

FIFO losing network.

Proof: Assume there is such a protocol. Consider all ping-pong schedules with no Lose

events of the form: S and R crash and disconnect and then establish an incarnation, Transmit

and Deliver m1, Transmit and Deliver m2, : : :, Transmit and Delivermk , and �nally release the

incarnation in response to Req-DisS . Restrict further the schedules so that each input action

(namely, Req-ConS , ConR, Transmit, and Req-DisS ) happens as soon as possible subject to the

constraint that no packets are in transit (and well-formedness is preserved, of course). These

schedules exist by IM5, IM6, IM7, and the fact that inputs are always enabled. The sequence

m1; : : :mk of messages uniquely determines the schedule, which we denote by sch(m1; : : : ; mk).

Since the protocol is �nite-state but there are in�nitely many message sequences, there ex-

ist two sequences m1; : : : ; mk and m0
1; : : : ; m

0
l, such that m1; : : : ; mk�1 6= m0

1; : : : ; m
0
l�1 and

mk 6= m0
l; furthermore, S and R are in the same states immediately before Transmit(mk) in

sch(m1; : : : ; mk) as they are immediately before Transmit(m0
l) in sch(m0

1; : : : ; m
0
l). Call these

states qS and qR.

Let � be a ping-pong schedule with no Lose events in which S and R crash, establish an

incarnation, Transmit and Deliver m1 throughmk, release the incarnation in response to DisS ,

crash, establish another incarnation, Transmit and Deliver m0
1 through m0

l, and release the

incarnation. All Transmits occur when there are no packets in transit. Such a schedule exists

by IM6, IM7, and the fact that inputs are always enabled.

Let S1 be the sequence of packets sent by S in � between the �rst CrashS and the

Transmit(mk), S2 between the Transmit(mk) and the second CrashS , S3 between the second

CrashS and the Transmit(m0
l), and S4 between the Transmit(m0

l) and the end.
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Intuitively, the proof proceeds by using the pumping technique to build another schedule

such that all the packets sent by S in � are in transit at the end of the new schedule. We

then lose the subsequence S2; S3 of packets from the middle. As a result, when the remaining

sequence is delivered, R establishes a connection and delivers m1; : : :mk�1; m
0
l in the same

incarnation, violating IM2, the message grouping condition. The details follow.

Note that �0, the result of concatenating the pre�x of � up to just before Transmit(mk)

with the su�x of � starting with Transmit(m0
l) is a schedule, since the system state in � is the

same at both points (namely, S is in qS , R is in qR, and no packets are in transit).

By Corollary 2.2 (the pumping technique), pump(�; k) sender(�; k) is a schedule.

Corollary 2.2 implies that at the end of pump(�; k) sender(�; k) the sequence S1; S2; S3; S4
of packets is in transit from S to R. Extend pump(�; k) sender(�; k) by appending a Lose

event for every packet in S2 and S3. Then let NProblemS and/or NProblemR occur (if the

predicates PS and/or PR are true). Then append CrashR.

Finally, deliver the packets in S1; S4 to R, appropriately interleaved with output actions of

R (i.e., Req-ConR, SendR) and a ConR response from R's host, so as to mimic R's behavior in

�0. R has incorrectly combined the delivery of m1; : : :mk�1 with the delivery of m0
l, data sent

in distinct incarnations, violating IM2.

A similar impossibility result can be proved for protocols that handles every message as

a \black-box". In such a protocol, the state of the sender, the receiver, and the network

immediately following the transmission of a message can depend on any aspect of the execution

so far, except for the contents of the messages transmitted so far. Thus, in�nitely many states

are allowed. Nevertheless, a technique similar to the one used in the proof of Theorem 3.2 can

be used to fuse two incarnations into a single incarnation at R, during which a sequence of

messages that was not transmitted in either of the original incarnations is delivered.

3.2 No Crashes But No Storage Between Incarnations

We now consider a well-behaved system in which nodes do not crash; thus there are no Crash

actions. However, we do not allow the nodes to keep information in between incarnations of

a connection. Formalizing this condition takes some work in order to prevent a protocol from

\cheating" by storing incarnation information in packets that are in the network. We assume

that S's state contains a queue of outgoing packets that are waiting to be introduced into the

network, and the same for R. The remaining state components comprise the accessible state.

The state transitions of S and R depend only the accessible state. We then assume that the

following conditions are satis�ed by the code for S and R:

1. Immediately after any DisS event, S's accessible state has its initial value, aS . S's

accessible state does not change subsequently until Req-ConS occurs (although incoming

packets can be handled and cause packets to be added to the outgoing packet queue).
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2. Immediately after any DisR event, R's accessible state has its initial value, aR. R's

accessible state does not change subsequently until the receipt of a packet that was sent

by S between the occurrences of Req-ConS and ConS for some incarnation (although

incoming packets can be handled and cause packets to be added to the outgoing packet

queue) 9.

That is, after a disconnect, S returns to its initial state (except possibly for its queue of

outgoing packets) and remains in this state until a new incarnation is requested, and similarly

for R. While S and R are between incarnations, they can generate packets (in response to

packets received) but no information about the packets handled can be recorded. We call such

protocols amnesic. We show that there is an amnesic protocol if and only if the network is

FIFO.

The next theorem is proved by \stealing" packets. We take a speci�c \reference" execution

and we replay successively longer pre�xes of the reference execution. Each replay ends with

the loss of a di�erent packet. Because the protocol must tolerate the loss of a single packet, it

must gracefully �nish any pending task. Yet it is possible that the lost packet was not lost but

only delayed in the non-FIFO network. Thus we can steal a single packet from each replay and

keep it in the network. Then we deliver the packets we have collected to the receiver, tricking

it into acting as if the reference execution is executed.

Theorem 3.3 There is no amnesic incarnation management protocol for a non-FIFO losing

network.

Proof: Assume in contradiction there is such a protocol. We claim there exists a ping-pong

schedule 
 with no Lose events whose restriction to host actions is

Req-ConS Req-ConR ConR ConS Transmit(m) Deliver(m)

for some message m. We now justify this claim. Since Req-ConS is an input, it can happen

any time; IM6 implies that Req-ConR occurs; ConR is an input; IM6 implies that ConS occurs;

Transmit(m) is an input; IM7 implies that Deliver(m) occurs. The schedule can be forced to

be ping-pong by using the appropriate policy for delivering packets.

Let s1; : : : ; sk be the sequence of packets sent by S in 
. We inductively build a schedule


1�1�1 : : : 
k�k�k as follows. Let 
i be the pre�x of 
 through the sending of si.

Let �0 be the empty schedule. Clearly after �0, S and R are in their initial states and no

packets are in transit.

Assume �i�1 = 
1�1�1 : : :
i�1�i�1�i�1 is a schedule after which S and R are in their initial

states and s1; : : : ; si�1 are in transit.

9The de�nition is asymmetric since in our de�nitions only the host at S can request to establish an

incarnation.
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Then �i�1
i is a schedule since every packet received in 
i is sent in 
i, S and R start 
i in

the same states that they end �i�1 in, the network is non-FIFO, and there are no Lose events

(implying NProblem does not occur). Clearly, s1; : : : ; si�1 are still in transit and si is also in

transit.

We now de�ne �i. If Transmit(m) is not in 
i, then let �i be the empty string. Suppose

Transmit(m) is in 
i. Clearly 
i Lose(si) is a schedule. By IM7, there exists an extension of


i Lose(si) with no Lose or Transmit(m) events in which Deliver(m) occurs. (Since PS and

PR are loss(2)-only predicates, the loss of si alone will not trigger any NProblem.) Let �i be

the shortest such extension. Since the network is not FIFO and the sender and receiver are in

the same states after �i�1
i as they are after 
i Lose(si), it follows that �i�1
i�i is a schedule.

Furthermore, si is not received in �i and only packets sent after �i�1 are received in �i. Thus

s1; : : : ; si are still in transit.

We now de�ne �i. By IM6, there exists an extension of �i�1
i�i with no Lose event whose

restriction to host actions is Req-DisS DisX DisY (where X = S and Y = R or vice versa).

Let �i be the shortest such extension, followed by enough Send events to empty the outgoing

packet queues at S and R.

Clearly �i�1
i�i�i is a schedule. After DisS occurs in �i, S's accessible state remains aS
since there is no later Req-ConS . After DisR occurs in �i, R's accessible state remains aR since


i is ping-pong and thus there are no undelivered packets sent by S between Req-ConS and

ConS . Thus at the end of �i, S and R are in their initial states. The packets s1; : : : ; si are still

in transit.

Note that �k is a schedule with no Lose events after which s1; : : : ; sk are in transit. Thus

�k (
jR) is a schedule and it has an extension in which only R takes steps that ends with

Deliver(m). However, in each 
i�i�i making up �k there is a matching delivery in �i if the

message m is transmitted in 
i. Thus the last Deliver(m) has no matching Transmit, which is

a violation of IM2, the message grouping condition.

We now show that there is an amnesic FIFO incarnation management protocol when the

network is FIFO but can lose messages. Moreover this protocol uses bounded memory and only

releases incarnations if explicitly requested to do so by either host; i.e., it doesn't depend on

any NProblem events. The message transfer liveness requirement satis�ed is that in an in�nite

incarnation of a fair schedule, the sequence of messages delivered is equal to the sequence

transmitted.

Roughly speaking the incarnation management protocol synchronizes S and R on the in-

carnation by using the header 2 for packets that indicate the opening of a connection. Then,

similarly to [10], the alternating bits 0 and 1 are used within an incarnation, both to transfer

data items and to synchronize disconnections. More details follow.

When Req-ConS occurs, S repeatedly sends open with header 2 until receiving an acknowl-

edgment. When R receives (open,2) for the \�rst" time (i.e., the most recent header received

was not 2), it performs Req-ConR; when ConR occurs, then R repeatedly sends (ack,2). When
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S receives (ack,2) for the \�rst" time, it performs ConS and sets its header to 1. When

Transmit(m) occurs, S adds m to its bu�er (unless the bu�er holds dis, indicating that dis-

connection is underway due to a Req-DisR).

To transfer the next message m in the bu�er (which could be dis), S negates the current

header and repeatedly sends m with the new header until receiving an acknowledgment; data

messages are sent with alternating headers 0 and 1. When R receives a packet (m; h) for the

\�rst" time, it performs Deliver(m) and repeatedly sends an acknowledgment with header h.

When S receives an acknowledgment for the current header, it goes to the next message. If

Req-DisR occurs, R changes the contents of the acknowledgment packets it is sending to hold

dis. If S gets a dis from R or Req-DisS occurs, it sets its bu�er to dis; note that a dis packet

can also serve as an acknowledgment for the current header. When R receives dis for the \�rst"

time, it performs DisR and repeatedly sends an (ordinary) acknowledgment. When S receives

an acknowledgment for the current dis message, it performs DisS .

Theorem 3.4 There is an amnesic FIFO incarnation management protocol for FIFO losing

networks that does not rely on NProblem.

The protocol requires R to continue sending acknowledgments for the packets it receives

even after DisR and before the next incarnation begins. Note that such a behavior does not

violate the amnesic property of the system because R does not need to have any information

on the closed connection in order to acknowledge incoming packets10. It can be shown that

such behavior is necessary in any protocol for this problem [4].

Note that the above protocol uses a small number of headers. Since the above protocol

assumes that the network is FIFO, it also tolerates duplicate packets.

We now discuss the no-loss column in Fig. 2. The above protocol will obviously still work

if the network does not lose any packets. It can also be modi�ed to work even if the network

is non-FIFO, as long as packets are not lost. The transformation consists of making sure that

only one packet is ever in transit at a time, which can be done since packets are not lost and

nodes do not crash [27]. In such cases, the network is essentially FIFO.

4 Message Transfer

We now consider the problem of recovering from crashes while guaranteeing some sort of reliable

message transfer within a single in�nitely long incarnation. We are interested in whether or

not stable storage is required in the presence of crashes11. Thus throughout this section we

assume nodes can crash.

10Tanenbaum [29, page 399] does not consider the possibility of this behavior, although no reason is given.
11Since the message transfer problem does not consider multiple incarnations, studying message transfer

without node crashes would not provide any possibilities for failing to retain information according to our

de�nition.

22



We �rst investigate message transfer when the capacity is unbounded, an assumption that

approximates the situation in a wide-area network. Section 4.1 studies networks that can lose

packets and Section 4.2 those that do not. We then consider, in Section 4.3, the situation when

the capacity of the network is bounded.

4.1 Losing Networks

We now consider networks that can lose packets. We allow a message-transfer protocol to have

a \grace period" after a crash during which messages need not be delivered. If the length of the

grace period (in terms of the number of messages that don't have to be delivered) is �xed, then

there is no protocol, even if the network is FIFO. However, if the length of the grace period

can depend on the current state of the system (i.e., is \variable"), then there is a protocol if

and only if the network is FIFO.

Theorem 4.1 For any t � 0, there is no non-FIFO crash-resilient exactly-once message trans-

fer protocol with t-�xed grace period for a FIFO losing network.

Proof: Suppose in contradiction there is such a protocol. Let �0 be a fair schedule that

starts with CrashS and CrashR, and then includes Transmit(m1); : : : ;Transmit(mt+1) with no

further crashes and no Lose events. By MT4 (the de�nition of the grace period), �0 must

include Deliver(mt+1). Let � be the truncation of �0 after the Deliver(mt+1) event.

By Corollary 2.2 (the pumping technique), pump(�; k) sender(�; k) is a schedule. Corollary

2.2 also implies that at the end of pump(�; k) sender(�; k), S and R are in the same states as

they are at the end of �. The su�x sender(�; k) contains a CrashS event, no further crashes,

and t + 1 Transmit events.

Let pump(�; k) sender(�; k)�1 be a fair schedule such that �1 has no Crash and no Trans-

mit events and begins with Lose events for all packets in transit at the end of pump(�; k)

sender(�; k). By MT4, there must be a Deliver(mt+1) event in �1 to match the last Transmit

event in pump(�; k) sender(�; k). Since all the packets received in �1 were sent in �1 and S

and R are in the same states at the end of � as at the end of pump(�; k) sender(�; k), ��1 is

also a schedule. But in this schedule, a duplicate message is delivered, namely mt+1, violating

MT1.

Note that the proof of Theorem 4.1 no longer holds when the notion of a grace period is

modi�ed as above. Since the number of messages not delivered during the grace period is not

bounded a priori, the value of t that guarantees delivery after the initial crashes of S and R

may not be big enough to guarantee delivery after the crashes in the pumping technique.

In fact, as we now show, for losing networks there is an exactly-once protocol with t()-

variable grace period if the underlying network is FIFO. t(c) is one greater than the number
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of packets in transit in c, the system state after a crash. The protocol is an adaptation of a

self-stabilizing algorithm from [16].

The protocol works as follows. Initially (and after a crash), S has an empty bu�er and

sends start with header 0. When Transmit(m) occurs, S adds m to its bu�er. To transfer the

next message m in the bu�er, S increments its header by 1 and repeatedly sends m with that

header until receiving an acknowledgment for that header. The �rst time R receives a packet

initially (or after a crash), R remembers the header and sends an acknowledgment for that

header, but does not deliver the message. Subsequently, whenever R receives a packet with a

certain header for the \�rst" time (i.e., the packet's header is di�erent from the remembered

header), R delivers the message in the packet as well as acknowledging it and remembers this

header as the last one received.

Theorem 4.2 There is a FIFO crash-resilient exactly-once message transfer protocol with t()-

variable grace period for a losing FIFO network, where t(c)�1 is equal to the number of packets

in transit in c.

We now show that the assumption that the network provides FIFO delivery of packets is

essential in order to obtain a protocol, even if the length of the grace period can depend on the

state of the system after the crash and even if the protocol need not maintain FIFO delivery

of messages. Note that this result relies on the assumption that the number of packets that

can accumulate in the network is not bounded.

Theorem 4.3 There is no non-FIFO crash-resilient exactly-once message transfer protocol

with t()-variable grace period for a non-FIFO losing network, for any function t.

Proof: To prove this theorem, we assume there is such a protocol and consider a schedule

� where R and S crash and then there are many Transmit events (but no further crashes).

After su�ciently many Transmits, there must be a Deliver(m) event that matches the last

Transmit(m) event. We now use the stealing technique (cf. the proof of Theorem 3.3) to steal

and hide packets from �, while still forcing Deliver(m) to occur. We then crash R and replay

the packets we collected to cause R to erroneously deliver m again. The details follow.

Suppose in contradiction there is such a protocol. It has a �nite ping-pong schedule CrashS
CrashR 
 that starts with CrashS and CrashR, resulting in system state c, then has t(c) + 1

unique Transmit events (but no further crashes), and ends with a Deliver event to match the

last Transmit event.

Let s1; : : : ; sk be the sequence of packets sent by S in 
. We inductively build a schedule

CrashS CrashR 
1�1�1 : : :
k�k�k as follows. Let 
i be the pre�x of 
 through the sending of si.

(Note that 
i has no Crash events in it.)

Assume �i�1 = CrashS CrashR 
1�1�1 : : : 
i�1�i�1�i�1 is a schedule after which S and R

are in their post-crash states recS and recR, and s1; : : :si�1 are in transit.
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First note that �i�1
i is a schedule after which s1; : : : ; si are in transit, since all packets

received in 
 were sent in 
.

We now de�ne �i. If Transmit(m) is not in 
i, then let �i be the empty string. Suppose

Transmit(m) is in 
i. Clearly CrashS CrashR 
i Lose(si) is a schedule. By MT5, there exists

an extension of it with no Lose or Transmit(m) events in which Deliver(m) occurs.

Let �i be the shortest such extension. Since the network is not FIFO and the sender and

receiver are in the same states after �i�1
i as they are after CrashS CrashR 
i Lose(si), it

follows that �i�1
i�i is a schedule. Thus s1; : : : ; si are in transit after it.

Let �i be CrashS CrashR
12. Since Crashes are inputs, �i�1
i�i�i is a schedule, and clearly

after it S and R are in their post-crash states. Note that s1; : : : ; si are still in transit.

Since the network is non-FIFO,

�k RecvR(s1) : : : RecvR(sk) �k (
jR)

is a schedule, and it has an extension in which only R takes steps that ends with Deliver(m).

However in each 
i�i�i making up �k, there is a matching delivery in �i if the message m is

transmitted in 
i. Thus the last Deliver(m) has no matching Transmit, violating MT1.

4.2 Non-Losing, but Non-FIFO, Networks

We now assume that the network never loses packets but might deliver them arbitrarily out of

order. Under this assumption, FIFO exactly-once message transfer is not possible. Note that

Theorem 4.3 does not imply this result, since that theorem relied on having a losing network;

yet this result does not imply Theorem 4.3, since this result only shows the impossibility of

a FIFO protocol. In fact, as we discuss below, there does exist a non-FIFO protocol when

the network does not lose packets. The impossibility can actually be shown for a very weak

liveness condition.

Theorem 4.4 There is no FIFO crash-resilient at-most-once message transfer protocol for a

non-FIFO non-losing network.

Proof: Suppose in contradiction that there is such a protocol. Let � be a �nite ping-

pong schedule that begins with CrashS CrashR and then contains a series of Transmit events,

Transmit(m1); : : : ; Transmit(mj), ending with a Deliver(mi) for some i � j. Let s1; : : : ; sh be

the sequence of packets sent from S to R in �. If R, starting in state recR (the state of R

immediately following any CrashR event), receives these packets, it will mimic its behavior in

� and perform a Deliver(m).

12As in the proof of Theorem 3.3, �i is used to make R and S \forget" the execution so far. In Theorem 3.3,

we caused R and S to close the connection, while here, we crash them instead.
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By Corollary 2.2) (the pumping technique), pump(�; k) sender(�; k) is a schedule at the

end of which S and R are in the same states as they are at the end of � and s1; : : : ; sh are in

transit.

We now show how to insert between pump(�; k) sender(�; k) and the later delivery of these

packets the Transmit and Deliver for a distinct m0
k, causing a violation of the FIFO property.

Let � be a �nite schedule that begins with CrashS CrashR and then contains a series of

Transmit events, Transmit(m0
1); : : : ; Transmit(m

0
l), where mi 6= m0

h for all h, ending with a

Deliver(m0
k) for some k � l.

Since � starts with S and R crashing and the network is non-FIFO, it follows that

pump(�; k) sender(�; k)� is a schedule. Also, s1; : : : ; sh are in transit after it. Hence,

pump(�; k)sender(�; k)�(�jR)

is a schedule, and it has an extension in which only R takes steps that ends with Deliver(mi).

In this schedule, mi is transmitted before m0
k, but delivered after m0

k, which contradicts MT2

(the FIFO property of the protocol).

The above theorem implies that, without stable storage, providing FIFO behavior for

messages, when packets are not delivered in FIFO manner, is impossible in the presence of

host crashes, even if the network does not lose packets and the protocol only has to deliver

some messages.

Corollary 4.5 There is no FIFO crash-resilient exactly-once message transfer protocol with

t()-variable grace period for non-FIFO non-losing networks.

The above corollary holds even if the grace period is allowed to be unbounded.

When the ordering properties of the protocol match those of the network, there is a simple

protocol: Whenever Transmit(m) occurs, S sends a single packet with messagem to R. When-

ever R receives a packet from S, R performs the matching Deliver event. It is easy to see that

this protocol guarantees (1) FIFO exactly-once message transfer on a FIFO non-losing net-

work and (2) non-FIFO exactly-once message transfer on a non-FIFO non-losing network (as

well as (3) FIFO at-most-once message transfer on a FIFO losing network and (4) non-FIFO

at-most-once message transfer on a non-FIFO losing network).

4.3 Bounded Capacity

In this subsection we assume that at any time, at most cap packets are in transit from S to

R (or vice versa), as will usually be the case when S and R are communicating directly over

a physical link. (This constraint is modeled formally by restricting attention to schedules in

which the Send and Lose events occur in such a way as to obey the capacity bound.)
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Our interest in this assumption was motivated by the observation that several impossibility

results for message transfer rely on the ability to collect an unbounded number of packets in the

network, including some in this paper (e.g., 4.3) and one in [17]. In contrast, we now describe

a crash-resilient exactly-once FIFO message transfer protocol for a FIFO losing network with

bounded capacity. The capacity is used by the protocol as an upper bound on the number of

packets from old transmissions to make sure that every transmitted message is delivered. A

similar idea was used in [1]; however, their protocol dynamically maintains the upper bound on

the number of packets in transit. Unfortunately, this upper bound grows exponentially during

the execution of the protocol of [1].

Our protocol has the pleasing property that the number of packets sent depends on the

capacity only after a crash has occurred at S. Note that 2cap is an upper bound on the total

number of packets that can be in transit in both directions.

As Transmit events occur at S, S stores the messages to be transferred in a bu�er and

deals with them in FIFO order. When recovering from a crash (which of course will empty

the bu�er of pending messages), S repeatedly sends (initializing) packets (start; 1) until it

receives (ack; 1); then, S repeatedly sends (start; 2) until it receives (ack; 2) and so on, until S

repeatedly sends (start; 2cap+ 2) and receives (ack; 2cap+ 2). Only at this point, S starts to

transfer messages (out of its pending bu�er) as follows: To transfer a message m, S repeatedly

sends packets (m; 1) until it receives (ack; 1); then, S repeatedly sends (m; 2) until it receives

(ack; 2). Once (ack; 2) is received, S is ready to send the next message m0 in the same manner;

that is, S sends (m0; 1) until it receives (ack; 1); then, S sends (m0; 2) until it receives (ack; 2).

R acknowledges any incoming packet with header h by sending the packet (ack; h). When

R recovers from a crash, it �rst waits (while acknowledging incoming packets) for a non-start

packet with header 1. Only at this point, R starts to deliver messages as follows: R delivers a

message m to its host only upon receiving (m; 1) and immediately afterwards (m; 2).

Theorem 4.6 There exists a FIFO crash-resilient exactly-once message transfer protocol for

a losing FIFO network, if a bound on the capacity of the network is known.

Proof: Consider the protocol just described.

We �rst prove the following invariant for any schedule of the protocol: Whenever S begins

to transfer message m, there is no (old) packet with header 1 in transit. This is true initially.

As long as no crashes occur, this continues to be true, since the network is FIFO.

A crash of R alone does not a�ect the invariant since R acknowledges every packet it

receives with the header in that packet.

Now we show that a crash of S does not a�ect the invariant. Let c be the system state

immediately after the last crash. Since the capacity is bounded, at most 2�cap distinct packet
headers are in transit between S and R (in both directions) in c. If R has received a packet

but not yet acknowledged it in state c, then at most one additional header could be sent by

R. Thus, there are at most 2�cap+1 distinct packet headers that are in the system but are not
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known to S in c. Let D be this set of 2� cap+1 distinct headers and let l(c) be one of 2� cap+2
header values that is not in D.

Before S starts sending non-start messages after the last Crash, S sends packets with all

possible header values and waits for acknowledgments. In particular, S also repeatedly sends

(start; l(c)) and waits for (ack; l(c)). S receives (ack; l(c)) only if R receives (start; l(c)) and

sends (ack; l(c)). By the FIFO property, when S receives (ack; l(c)), all packets in transit

have the header l(c); moreover, from this point on, whenever S receives (ack; h) while sending

packets with header h, all the packets in transit have the header h. This proves the correctness

of the invariant.

Using the above we prove that the requirement for message transfer hold. Consider a

schedule � of the protocol described above. We now de�ne a function causem satisfying MT1

and MT2.

R performs Deliver(m) when it receives packet (m; 2) immediately after receiving packet

(m; 1). S sends the packets (m; 1) and (m; 2) in response to a Transmit(m) event. Let causem

map this Deliver to this Transmit.

Consider two events Deliver(m) and Deliver(m0), where Deliver(m) occurs before

Deliver(m0). Then R receives at least one (m; 1) packet, followed by at least one (m; 2) packet,

followed by at least one (m0; 1) packet, followed by at least one (m0; 2) packet. Since the network

is FIFO, S sends (m; 1) packet(s) and then (m; 2) packet(s) in response to some Transmit(m)

event, and subsequently S sends (m0; 1) packet(s) and then (m; 2) packet(s) in response to

some subsequent Transmit(m0) event. Thus causem is one-to-one (MT1) and FIFO (MT2).

We now show MT3. Assume that � is fair, in�nite, and has a �nite number of Crash events.

Because of NA2, S never gets stuck sending the same packet forever, i.e., eventually it gets an

acknowledgment for the current packet. We will show that every Transmit(m) event occurring

after the �nal Crash has a matching Deliver(m).

Suppose the last Crash is by R. Let Transmit(m) be an event occurring after the last Crash.

Then, eventually after the last crash, S starts sending (m; 1) and then (m; 2). Eventually R

receives (m; 2) and performs Deliver(m).

Suppose the last Crash is by S. Let Transmit(m) be an event after the last crash. S

repeatedly sends (m; 1) in response, and then repeatedly sends (m; 2) once it receives (ack; 1).

By the invariant proved above, this ack is a current ack sent by R, and not a \leftover." Thus

R actually received one of the current (m; 1) packets and when R receives the �rst (m; 2)

message afterwards, R will perform Deliver(m).

There is even a bounded capacity protocol for non-FIFO networks; however it is more

ine�cient in that at least cap+1 packets must be sent to transfer each message. (Cf. [4].)
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5 Discussion

We have studied the necessity of retaining information between incarnations and across node

crashes for two aspects of the connection management problem: incarnation management and

message transfer. We proved that when state information is not saved between incarnations,

the problem is solvable if and only if the network is FIFO. We also showed that incarnation

management is not possible in the presence of crashes without stable storage. Furthermore, we

showed that message transfer is possible in the presence of crashes without stable storage when

packets can be lost if and only if the network is FIFO and the protocol is allowed a variable

grace period after a crash during which it need not deliver messages. When packets are not

lost, message transfer is possible if and only if either the network is FIFO or the protocol need

not be. On the positive side, we have devised a data link initialization procedure that can

withstand node crashes without stable storage, provided that the capacity of the physical link

is bounded.

Our work forms another step in formalizing issues that arise at the transport layer in

communication protocols. To the best of our knowledge, ours is the �rst theoretical study

of this problem to incorporate the following practical features: indication of severe network

misbehavior, grace period after a crash and bounded capacity of the physical links.

Many interesting issues remain to be studied, including 
ow control and bu�ering, analysis

of the time-based techniques used in practical connection management protocols, and problems

that arise in trying to do a clean disconnect [14, 29]. We hope that our model, de�nitions and

techniques will be of help in continuing in these directions. In particular, we believe the

NProblem action can be used to encapsulate timer-based mechanisms used to detect severe

errors, by using an appropriate choice of predicates.

Another interesting aspect is to explore quantitative considerations such as the number of

packets that have to be sent in the cases where incarnation management or message transfer

is possible. For example, it would be interesting to know whether 
(cap) packets are required

in order to clear the connection after a crash, when the network is FIFO and the capacity, cap,

is bounded.
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