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1 Introduction

Many applications in a distributed system rely on processors having synchronized local clocks. Many stud-

ies have been dedicated to algorithms and lower bounds for clock synchronization under various network

assumptions. We consider the problem of synchronizing the clocks of processors in a failure-free distributed

system when the hardware clocks do not drift but there is uncertainty in the message delays. Our goal is to

develop closed form expressions for how closely the clocks can be synchronized.

Lundelius and Lynch [5] showed that the local clocks ofn processors in a fully connected network with

the same uncertaintyu on each link cannot be synchronized any more closely thanu � (1� 1

n
). They provide

a simple algorithm that achieves this bound. Halpernet al. [3] subsequently extended this work to consider

arbitrary topologies in which each directed edge may have a different uncertainty. They established a closed

form expression for the optimal synchronization in a tree and a triangle. For the tree, the bound is equal to
1

2
diam, wherediam is the diameter of the tree with respect to the uncertainties on the links. For the general

case, they show that the optimal synchronization is the solution of an optimization problem using linear

programming techniques, but they do not give a closed form expression.

In this paper we address open question 7 in [3]: “...it would be interesting to obtain precise formulas

for the imprecision for a number of graphs that arise in practice.” For an arbitrary undirected topology with

arbitrary symmetric uncertainties, we prove a lower bound of1

2
diam on the closeness of synchronization

achievable, wherediam is the diameter of the graph when the edges are weighted with the uncertainties.

Taken together with the upper bound ofradius (the radius of the graph with respect to the uncertainties)

previously shown in [3], our result indicates that the tight bound for any (symmetric) topology is known to

within a factor of two, since the radius is at most the diameter.
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We then consider the class of topologies described ask-ary m-cubes, both with and without wrap-

around. The number of nodes,n, equalskm. We assume that every edge has the same uncertainty,u.

For thek-arym-cube without wrap-around, we show that our lower bound1

2
diam=

1

2
um(k � 1) is tight,

by analyzing the synchronization achieved by a simple algorithm. Since chains, (square) meshes, and hy-

percubes are special cases of this topology, we have the following tight bounds: for ann-processor chain

(k = n;m = 1), 1
2
u(n� 1); for a

p
n�p

n mesh (k =
p
n;m = 2), u(

p
n� 1); for a log n-dimensional

hypercube (k = 2;m = log n), 1
2
u logn.

For thek-arym-cube with wrap-around, we show using the same algorithm that our lower bound1

2
diam

=
1

2
umbk

2
c is tight whenk is even and is almost tight whenk is odd. We restrict attention to the casek � 3;

otherwise wrap-around does not add any additional communication possibilities. Whenk is even, the tight

bound is1
4
umk. Whenk is odd, the lower bound is1

4
um(k � 1) and the upper bound is1

4
um(k � 1

k
).

This result implies tight or almost tight bounds for rings and tori. In particular, we have the following

tight bounds: forn-processor ring withn even (k = n;m = 1), 1

4
un; for

p
n � p

n torus with
p
n even

(k =
p
n;m = 2), 1

2
u
p
n. The analogous bounds whenn is odd are not quite tight. In particular, for the

ring the lower bound is1
4
u(n � 1) and the upper bound is1

4
u(n � 1

n
); for the torus the lower bound is

1

2
u(
p
n� 1) and the upper bound is1

2
u(
p
n� 1p

n
).

Attiya et al. [1] take a different approach to the problem. They consider arbitrary topologies under dif-

ferent delay assumptions. Instead of trying to establish the optimal closeness of synchronization achievable

in a given network, they consider the problem of establishing the tightest clock synchronization for any

given execution. In other words, given the information collected by any algorithm strategy, they give the

optimal synchronization possible. They show how an external observer who has access to all the views of

the processors can compute the optimal adjustment to each clock. Patt-Shamir and Rajsbaum [6] extended

this work to provide an on-line algorithm optimal for every execution.

In Section 2, we present our model and review relevant prior results. In Section 3, we establish a lower

bound for an arbitrary topology. Section 4 is dedicated to establish closed forms for the upper bounds for

k-ary m-cube networks, first for networks without wrap-around and then for networks with wrap-around.

We conclude in Section 5 with some open problems.

2 Definitions and Prior Results

We first describe our formal model and problem definition (following [2], which is based on those in [5]

and [3]). Then we summarize previous results upon which our results rely, namely the conversion of any

communication network to an equivalent clique and the technique of shifting executions.

2.1 Model

We consider a set ofn processorsp0 throughpn�1, connected via point-to-point links. Each link, say the one

betweenpi andpj, reliably delivers messages frompi to pj and vice versa subject to some arbitrary delay
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within a known range. (We assume the range is the same in both directions.) The topology and message

delay ranges are represented with an undirected graphG = (V;E), whose nodes represent processors and

whose edges represent links, together with two mappingsL andH from E to nonnegative reals.L(i; j) is

the minimum delay on the edge betweenpi andpj andH(i; j) is the maximum delay on the edge between

pi andpj. (ThusH(i; j) must be at least as large asL(i; j).) The difference,H(i; j) � L(i; j), is the

uncertaintyon the edge.G = (V;E;L;H) is said to be acommunication network.

Theeventsthat can occur at a processor include the arrival of messages from processors that are neigh-

bors in the given topology, as well as internal happenings. Processorpi has ahardware clock value HCi,

which is a function from reals (real time) to reals (clock time) of the formHCi(t) = t+ ci for some constant

ci. This is a hardware clock with no drift; it runs at the same rate as real time. Aprocessorpi is a state

machine with a set of initial states and a transition function. The transition function takes as input the current

state, the current value of the hardware clock, and the current event and produces a new state and a set of

messages to send topi’s neighbors. The hardware clock is not part of the processor’s state and cannot be

modified by the processor.

A history of processorpi is a sequence of alternating states and (event,hardware clock value) pairs for

pi, beginning withpi’s initial state. We require that each subsequent state follows correctly, according to

pi’s transition function, frompi’s previous state, event and hardware clock value. Atimed historyof pi is

a history ofpi together with an assignment of real times to each (event,hardware clock value) pair. The

real times must be consistent with the hardware clock values, i.e., the timet assigned to(e; T ) must satisfy

HCi(t) = T . An execution(of the entire system) is a set ofn timed histories, one per processor. For every

pair of processorspi andpj, there must be a bijection from messages sent bypi to messages received bypj
(i.e., every message sent is received, and only messages sent are received). Thedelayof a message is the

difference between the real time when it was sent and the real time when it was received.

Two executions�1 and�2 are indistinguishableif, for each processorpi, pi has the same (untimed)

history in�1 as in�2.

An execution� is admissiblefor communication networkG = (V;E;L;H) if every message between

any two processorspi andpj has delay within the interval[L(i; j);H(i; j)].

2.2 The Clock Synchronization Problem

We now precisely define the problem of synchronizing clocks. We assume that each processorpi has a state

componentadji which is used to adjust the clock value. We define the processor’sadjusted clock ACi(t)

to be equal toHCi(t) + adji(t) (the second term is the value ofadji at real timet). The algorithm has

terminatedin an execution at a point if no processor ever changes itsadj variable thereafter.

Achieving "-Synchronized Clocks(in communication networkG): In every execution that is admissible for

G, there exists a real timetf such that the algorithm has terminated by real timetf , and, for all processors

pi andpj, and allt � tf , jACi(t)� ACj(t)j � ".
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Given a communication networkG, let opt(G) be the smallest" such that"-synchronized clocks can be

achieved inG. This quantity is theoptimal clock synchronizationthat can be achieved in the network. We

are interested in obtaining tight bounds onopt(G) for variousG’s.

2.3 The Equivalent Clique

If two communication networksG andG0 satisfy opt(G) = opt(G0
), then we say that they areequiva-

lent. Consider any communication networkG = (V;E;L;H). Let G0 be the communication network

(V;E0; L0;H 0
), whereE0

= V � V (i.e.,G0 is a clique), and for alli andj, L0
(i; j) = 0 andH 0

(i; j) is the

length of the shortest path betweenpi andpj in G with respect to the uncertainties. Section 6 of [3] shows:

Theorem 1 The communication networksG andG0 are equivalent.

We prove our lower bound and analyze our algorithm for cliques, instead of more complicated topolo-

gies. Theorem 1 shows that the results obtained on the cliques apply to the original topologies. Note that

the uncertainties inG0 satisfy the triangle inequality, sinceH 0 is defined using shortest path lengths.

2.4 Shifting

Like those in [5] and [3], our lower bound result is obtained by “shifting” executions, that is, by shifting the

real times at which events occur. More formally, let� = (�0; �1; : : : ; �n�1) be an execution and letxi be a

real number,0 � i � n� 1. Defineshift(�; hx0 ; : : : ; xn�1i) to be(�00; �
0
1; : : : ; �

0
n�1), where each�0i is the

timed history resulting from�i by addingxi to the real time associated with each event in�i. Shifting an

execution changes the hardware clocks and the delays experienced by messages. Lundelius and Lynch [5]

quantified the changes as follows:

Lemma 2 Let� be an execution with hardware clocks HCi and letxi be a real number,0 � i � n � 1.

Then shift(�; hx0; : : : ; xn�1i) is an execution that is indistinguishable from�, and in which

(a) the hardware clock ofpi, HC0
i(t), is equal to HCi(t)� xi for all t, and

(b) every message frompi to pj has delayÆ � xi + xj, whereÆ is the delay of the message in�.

Note that shifting an execution might not result in an admissible execution.

3 Lower Bound for Arbitrary Topology

Let diam(G) denote the diameter of communication networkG with respect to the uncertainties.

Theorem 3 For any communication networkG, opt(G) � 1

2
diam(G).
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Proof LetG0 be the clique from Section 2.3 that is equivalent toG. Letuij denoteH 0
(i; j), the uncertainty

on edge(pi; pj) in G0. We will show thatopt(G0
) is at least1

2
diam(G0

). Since Theorem 1 implies that

opt(G0
) = opt(G) and since the diameter ofG is the same as that ofG0, the result follows.

Let pa andpb be two processors inG0 such thatuab equals the diameter ofG0.

Choose any algorithm forG0 that achieves"-synchronized clocks. Consider the admissible execution�

in which the delays are as follows. For any two processorspi andpj, whereuai < uaj (i.e., pi is at least

as close topa, w.r.t. uncertainties, aspj is), the delay of every message frompi to pj is 0, and the delay of

every message frompj to pi is uij . Whenuai = uaj , we choose the delay of every message frompi to pj to

be 0, and the delay of every message frompj to pi to beuij.

Since the algorithm must work correctly in�,

ACa � ACb � ": (1)

Let �0 = shift(�; ~x), wherexi = uai � uab, 0 � i � n � 1. Note thatpa is shifted by�uab andpb is

shifted by 0.

By Lemma 2, the delay of every message in�0 from pi to pj is 0�(uai�uab)+(uaj�uab) = uaj�uai.

This expression is at mostuij, by the triangle inequality, so the new delay is not too big. This expression is

at least 0, sinceuai � uaj , so the new delay is not too small.

By Lemma 2, the delay of every message in�0 from pj to pi is uij � (uaj � uab) + (uai � uab) =

uij + uai � uaj . This expression is at mostuij , sinceuai � uaj , so the new delay is not too big. This

expression is at least 0, by the triangle inequality, so the new delay is not too small.

Therefore�0 is admissible. Since the algorithm must work correctly in�0, we have:

AC 0
b � AC 0

a � ": (2)

SinceAC0
b = ACb + 0 andAC0

a = ACa + uab, inequalities (1) and (2) imply that" � 1

2
uab.

Thus for the arbitrary algorithm," is at least half the diameter.

4 Upper Bounds

4.1 The Algorithm

We consider the averaging algorithm of [5] for a clique, slightly modified to handle the fact that different

edges have different uncertainties. (The description of the algorithm and Lemma 4 are modeled after [2].)

Each processorpi begins by sending its current hardware clock value to all the other processors. It has an

arraydiff whosej-th entry is set equal topi’s estimated difference betweenpi’s hardware clock andpj ’s

hardware clock. Forj 6= i, this difference is estimated using the valueT contained in the message that

pi receives frompj and assuming that this message tookuij
2

time to arrive. Oncepi has an estimate for
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initially diffi[i] = 0

at first computation step:

1: sendHCi (current hardware clock value) to all other processors

upon receiving messageT from somepj:

2: diffi[j] := T +
uij
2
� HCi

3: if a message has been received from every other processor then

4: adji := 1

n

Pn�1
k=0 diffi[k]

Figure 1: Averaging algorithm; code for processorpi, 0 � i � n� 1.

every processor, it sets its adjustment to the average of all the estimated differences. (See Figure 1.) We

will analyze the clock synchronization achieved by the averaging algorithm for a cliqueG0 with arbitrary

symmetric uncertainties (denoteduij). Then we will show how the general result can be specialized into

closed forms for specific cliques that are equivalent to certain topologies. Theorem 1 shows that the upper

bounds obtained for these cliques also hold for the other topologies. The applicability of the averaging

algorithm to general topologies requires all-pairs shortest-paths computation.

Lemma 4 Consider any execution of the averaging algorithm that is admissible forG0. For any two pro-

cessorspi andpj and any timet after the algorithm terminates (executes Line 4),

jACi(t)�ACj(t)j � 1

2n

0
@ n�1X

l=0;l 6=i
uli +

n�1X
l=0;l 6=j

ulj

1
A :

Proof For every timet afterpi setsdiffi[j], diffi[j](t) = HCj(t)� HCi(t)+ errji , whereerrji is a constant.

The definition of the algorithm shows that

jACi(t)�ACj(t)j � 1

n

0
@jerrij j+ jerrjij+

n�1X
l=0;l 6=i;j

jerrli � errljj
1
A :

The bounds onerrji and the rules of absolute value give the result.

4.2 Generalized Hypercubes Without Wrap-around

The k-ary m-cube network is a generalization of the hypercube architecture wherek = 2. In thek-ary

m-cube, there arem dimensions andk nodes on each dimension (see [4], p. 86). More formally, each node

is represented as a vectorha0; a1; : : : ; am�1i, where eachar is an element off0; 1; : : : ; k � 1g. Thus there
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aren = km nodes. There is an edge between two nodes~a and~b if they differ in exactly one component,

say ther-th, andar = br + 1. We need the following fact about distances in (unweighted)k-arym-cubes

without wrap-around. Given such a graphG, let distG(~a;~b) be the minimum number of edges in any path

from~a to~b in G.

Lemma 5 For anyk-ary m-cubeG = (V;E) without wrap-around, for any node~a in V ,X
~b

distG(~a;~b) � 1

2
m(km+1 � km):

Proof Consider a particular node~b. The distance between~a and~b is the sum, over all dimensionsr, of the

distance fromar to br. With no wrap-around, this distance isjbr � arj. It is obvious that
P

~b
distG(~a;~b) �P

~b
distG(~0;~b) where~0 is the vector of all zeroes.

Let us then compute
P

~b
distG(~0;~b). This sum can be written:

X
~b

m�1X
r=0

br: (3)

Now let us concentrate on dimensionr. For how many vectors~b is br equal to 0? There arek independent

choices for each of them � 1 other entries, so the answer iskm�1. The same is true for every value ofbr
between 0 andk � 1. Thus the contribution to the sum in expression (3) from dimensionr is

km�1
k�1X
h=0

h:

This sum can be written as1
2
(km+1 � km). We multiply this expression bym, to account for all the

dimensions.

Theorem 6 For anyk-arym-cube (without wrap-around) communication networkG with uncertaintyu on

each edge,opt(G) is at most1
2
um(k � 1).

Proof LetG0 be the equivalent clique communication network from Section 2.3. By Theorem 1, it suffices

to show that the averaging function onG0 achieves"-synchronized clocks, where" =
1

2
um(k � 1).

Consider any execution of the algorithm that is admissible forG0. By Lemma 4, for any two processors

pi andpj and any timet after the algorithm terminates

jACi(t)�ACj(t)j � 1

2n

0
@ n�1X

l=0;l 6=i
uli +

n�1X
l=0;l 6=j

ulj

1
A :

By the definition ofG0, ulh = u � distG(l; h), for h = i; j. By Lemma 5, forh = i; j,

n�1X
l=0;l 6=h

ulh � um
1

2
(km+1 � km):

Sincen = km, the result follows.
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4.3 Generalized Hypercubes With Wrap-around

The definition of thek-ary m-cube with wrap-around is the same as for thek-ary m-cube without wrap-

around, except that we add “modk” to the condition under which there is an edge between two nodes. That

is, there is an edge between two nodes~a and~b if they differ in exactly one component, say ther-th, and if

ar = br + 1 mod k.

Given a graphG, let distG(~a;~b) be the minimum number of edges in any path from~a to~b in G. We

need the following fact about distances in (unweighted)k-arym-cubes with wrap-around.

Lemma 7 For anyk-ary m-cubeG = (V;E) with wrap-around, for any node~a in V ,

X
~b

distG(~a;~b) =

(
1

4
mkm+1 when k is even

1

4
m(km+1 � km�1

) when k is odd:

Proof Consider a particular node~b. The distance between~a and~b is the sum, over all dimensionsr, of the

distance fromar to br. However, we must take into account the wrap-around edges. In this case the distance

is jbr � arj if this quantity is at mostbk
2
c, otherwise it isk � jbr � arj.

Thus the desired sum can be written:

X
~b

m�1X
r=0

min(jbr � arj; k � jbr � arj): (4)

Now let us concentrate on dimensionr. For how many vectors~b is br equal to 0? There arek independent

choices for each of them � 1 other entries, so the answer iskm�1. The same is true for every value ofbr
between 0 andk � 1. Thus the contribution to the sum in expression (4) from dimensionr is

km�1
k�1X
h=0

min(jh� arj; k � jh� arj): (5)

This sum contains two terms equal to 1 (there are two nodes at distance 1 from~a along dimensionr), two

terms equal to 2, etc., up to two terms equal tobk�1
2
c, and, ifk is even, one term equal tok

2
(there is one

node at distancek
2

from~a along dimensionr).

First consider the case whenk is odd. Then expression (5) becomes

2km�1
b k�1

2
cX

j=1

j:

Algebraic manipulations reduce this to1
4
(km+1 � km�1

). We multiply this expression bym, to account for

all the dimensions.

Now consider the case whenk is even. Expression (5) now becomes

2km�1
k
2
�1X

j=1

j + km�1 � k
2
:

Algebraic manipulations reduce this to1
4
km+1. We multiply bym to account for all dimensions.
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Theorem 8 For any k-ary m-cube (with wrap-around) communication networkG with uncertaintyu on

each edge,opt(G) is at most1
4
umk whenk is even and1

4
um(k � 1

k
) whenk is odd.

Proof The proof is essentially the same as that for Theorem 6. The differences are that" =
1

4
umk whenk

is even and1
4
um(k � 1

k
) otherwise, and that Lemma 7 is invoked instead of Lemma 5.

5 Open Questions

The obvious open question in our work is to tighten the bounds fork-arym-cubes with wrap-around when

k is odd. We believe that the algorithm is optimal and that a more involved shifting argument is needed

to strengthen the lower bound. The evidence for this is that a 3-ary 1-cube is a ring with three processors,

which is also a clique. Lundelius and Lynch [5] showed in this case that the tight bound is2

3
u, which is what

the algorithm gives, and not1
2
u as given by the lower bound of this paper.

It would be interesting to characterize the class of networks and uncertainty assumptions for which the

simple algorithm is optimal, and similarly those for which the1

2
diam lower bound is tight.

Further work is needed to obtain closed form expressions for other networks and delay assumptions.
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