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1 Introduction

Many applications in a distributed system rely on processors having synchronized local clocks. Many stud-
ies have been dedicated to algorithms and lower bounds for clock synchronization under various network
assumptions. We consider the problem of synchronizing the clocks of processors in a failure-free distributed
system when the hardware clocks do not drift but there is uncertainty in the message delays. Our goal is to
develop closed form expressions for how closely the clocks can be synchronized.

Lundelius and Lynch [5] showed that the local clocks:girocessors in a fully connected network with
the same uncertainty on each link cannot be synchronized any more closely thdih — %). They provide
a simple algorithm that achieves this bound. Halpstral. [3] subsequently extended this work to consider
arbitrary topologies in which each directed edge may have a different uncertainty. They established a closed
form expression for the optimal synchronization in a tree and a triangle. For the tree, the bound is equal to
%diam, wherediamis the diameter of the tree with respect to the uncertainties on the links. For the general
case, they show that the optimal synchronization is the solution of an optimization problem using linear

programming techniques, but they do not give a closed form expression.

In this paper we address open question 7 in [3]: “...it would be interesting to obtain precise formulas
for the imprecision for a number of graphs that arise in practice.” For an arbitrary undirected topology with
arbitrary symmetric uncertainties, we prove a lower bounéaﬁam on the closeness of synchronization
achievable, wherdiam is the diameter of the graph when the edges are weighted with the uncertainties.
Taken together with the upper bound raflius (the radius of the graph with respect to the uncertainties)
previously shown in [3], our result indicates that the tight bound for any (symmetric) topology is known to
within a factor of two, since the radius is at most the diameter.
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We then consider the class of topologies described&-asy m-cubes, both with and without wrap-

around. The number of nodes, equalsk™. We assume that every edge has the same uncertainty,

For thek-ary m-cube without wrap-around, we show that our lower bogdiam = Lum(k — 1) is tight,

by analyzing the synchronization achieved by a simple algorithm. Since chains, (square) meshes, and hy-
percubes are special cases of this topology, we have the following tight bounds: rigpranessor chain

(k =n,m = 1), 3u(n — 1); for a\/n x \/n mesh ¢ = \/n,m = 2), u(y/n — 1); for alog n-dimensional
hypercubek = 2, m = logn), %ulog n.

For thek-ary m-cube with wrap-around, we show using the same algorithm that our lower t%adjmm
= Lum| %] is tight whenk is even and is almost tight whéris odd. We restrict attention to the case> 3;
otherwise wrap-around does not add any additional communication possibilities. Memen, the tight
bound isfumk. Whenk is odd, the lower bound igum(k — 1) and the upper bound Sum(k — 7).

This result implies tight or almost tight bounds for rings and tori. In particular, we have the following
tight bounds: fom-processor ring witm even ¢ = n,m = 1), %un; for \/n x 4/n torus with/n even

(k =+/n,m = 2), %u\/ﬁ The analogous bounds wheris odd are not quite tight. In particular, for the
ring the lower bound is;u(n — 1) and the upper bound isu(n — 1); for the torus the lower bound is
1u(y/n — 1) and the upper bound &u(y/n — ﬁ).

Attiya et al.[1] take a different approach to the problem. They consider arbitrary topologies under dif-
ferent delay assumptions. Instead of trying to establish the optimal closeness of synchronization achievable
in a given network, they consider the problem of establishing the tightest clock synchronization for any
given execution In other words, given the information collected by any algorithm strategy, they give the
optimal synchronization possible. They show how an external observer who has access to all the views of
the processors can compute the optimal adjustment to each clock. Patt-Shamir and Rajsbaum [6] extended
this work to provide an on-line algorithm optimal for every execution.

In Section 2, we present our model and review relevant prior results. In Section 3, we establish a lower
bound for an arbitrary topology. Section 4 is dedicated to establish closed forms for the upper bounds for
k-ary m-cube networks, first for networks without wrap-around and then for networks with wrap-around.
We conclude in Section 5 with some open problems.

2 Definitions and Prior Results

We first describe our formal model and problem definition (following [2], which is based on those in [5]
and [3]). Then we summarize previous results upon which our results rely, namely the conversion of any
communication network to an equivalent clique and the technique of shifting executions.

2.1 Model

We consider a set of processorg, throughp,, 1, connected via point-to-point links. Each link, say the one
betweerp; andp;, reliably delivers messages fropato p; and vice versa subject to some arbitrary delay
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within a known range. (We assume the range is the same in both directions.) The topology and message
delay ranges are represented with an undirected giaph(V, E'), whose nodes represent processors and
whose edges represent links, together with two mappinged H from E to nonnegative realsL(i, j) is

the minimum delay on the edge betwegrandp; and H (i, j) is the maximum delay on the edge between

p; andp;. (ThusH (i,j) must be at least as large &¢i,5).) The difference,H (i,5) — L(¢,7), is the
uncertaintyon the edgeG = (V, E, L, H) is said to be @ommunication network

Theeventghat can occur at a processor include the arrival of messages from processors that are neigh-
bors in the given topology, as well as internal happenings. Procgs$as ahardware clock value HE
which is a function from reals (real time) to reals (clock time) of the fb1@}(¢) = ¢ + ¢; for some constant
¢;- This is a hardware clock with no drift; it runs at the same rate as real timgroéessorp; is a state
machine with a set of initial states and a transition function. The transition function takes as input the current
state, the current value of the hardware clock, and the current event and produces a new state and a set of
messages to send tg's neighbors. The hardware clock is not part of the processor’s state and cannot be
modified by the processor.

A history of processop; is a sequence of alternating states and (event,hardware clock value) pairs for
pi, beginning withp;’s initial state. We require that each subsequent state follows correctly, according to
p;'s transition function, fronp;’s previous state, event and hardware clock valudinfed historyof p; is
a history ofp; together with an assignment of real times to each (event,hardware clock value) pair. The
real times must be consistent with the hardware clock values, i.e., the isgigned tde, T') must satisfy
HC;(t) = T. An execution(of the entire system) is a set oftimed histories, one per processor. For every
pair of processorg; andp;, there must be a bijection from messages seni;lty messages received py
(i.e., every message sent is received, and only messages sent are receivadBlajboka message is the
difference between the real time when it was sent and the real time when it was received.

Two executions; and ae are indistinguishableif, for each processop;, p; has the same (untimed)
history ina; as inas.

An executiona is admissiblefor communication networks = (V, E, L, H) if every message between
any two processorg; andp; has delay within the interval (i, ), H (i, j)].

2.2 The Clock Synchronization Problem

We now precisely define the problem of synchronizing clocks. We assume that each prpglssa state
componentadj; which is used to adjust the clock value. We define the procesadjissted clock Agt)
to be equal tdHC;(¢) + adj;(t) (the second term is the value aflj; at real timet). The algorithm has
terminatedin an execution at a point if no processor ever changesljtgariable thereafter.

Achieving e-Synchronized Clocks(in communication networks): In every execution that is admissible for
G, there exists a real tim&; such that the algorithm has terminated by real titpeand, for all processors
pi andp;, and allt > ¢, |AC;(t)— AC;(t)| < e.



Given a communication netwoKk, letopt(G) be the smallest such that-synchronized clocks can be
achieved inG. This quantity is theoptimal clock synchronizatiothat can be achieved in the network. We
are interested in obtaining tight bounds @pt(G) for variousG’s.

2.3 The Equivalent Clique

If two communication network€? and G’ satisfy opt{G) = opt(G’), then we say that they aequiva-
lent Consider any communication netwoék = (V,E, L, H). Let G' be the communication network
(V,E',L' H"), whereE' =V x V (i.e.,G' is a clique), and for all andj, L'(i,j) = 0 andH'(i, j) is the
length of the shortest path betwegrandp; in G with respect to the uncertainties. Section 6 of [3] shows:

Theorem 1 The communication networks and G’ are equivalent.

We prove our lower bound and analyze our algorithm for cliques, instead of more complicated topolo-
gies. Theorem 1 shows that the results obtained on the cliques apply to the original topologies. Note that
the uncertainties i’ satisfy the triangle inequality, sindé’ is defined using shortest path lengths.

2.4 Shifting

Like those in [5] and [3], our lower bound result is obtained by “shifting” executions, that is, by shifting the
real times at which events occur. More formally, det= (19,71, - .., 7,—1) be an execution and let be a

real number) < i < n — 1. Defineshift(«, (g, ..., z,-1)) to be(ng, i, -..,n,_1), where eachy; is the

timed history resulting fromy; by addingz; to the real time associated with each eveni;inShifting an
execution changes the hardware clocks and the delays experienced by messages. Lundelius and Lynch [5]
quantified the changes as follows:

Lemma 2 Let o be an execution with hardware clocks H&hd letz; be a real numbe) < 7 < n — 1.
Then shifta, (xg, ..., z,—_1)) iS an execution that is indistinguishable fremand in which

(a) the hardware clock gf;, HC,(¢), is equal to HG(t) — z; for all ¢, and

(b) every message frop to p; has delay — x; + x;, whereé is the delay of the messagedn

Note that shifting an execution might not result in an admissible execution.

3 Lower Bound for Arbitrary Topology
Let diam(G) denote the diameter of communication netwGkkvith respect to the uncertainties.

Theorem 3 For any communication netwoik, opt(G) > 1diam(G).



Proof Let G’ be the clique from Section 2.3 that is equivalenGtoLet u;; denoteH’ (i, j), the uncertainty
on edge(p;,p;) in G'. We will show thatopt(G') is at leastidiam(G’). Since Theorem 1 implies that
opt{G') = opt(G) and since the diameter 6f is the same as that ¢¥, the result follows.

Let p, andp, be two processors i@’ such thatu,;, equals the diameter @¥'.

Choose any algorithm fag’ that achieves-synchronized clocks. Consider the admissible execution
in which the delays are as follows. For any two procesgp@ndp;, whereuq; < uq; (i.€.,p; is at least
as close tg,, w.r.t. uncertainties, gg; is), the delay of every message frgmto p; is 0, and the delay of
every message fromy to p; is u;;. Whenu,; = uq;, we choose the delay of every message fggno p; to
be 0, and the delay of every message figno p; to bewu;;.

Since the algorithm must work correctly én

AC, > AC) — ¢. (1)

Let o = shift(a, &), wherez; = uq; — uqp, 0 < ¢ < n — 1. Note thatp, is shifted by—u,;, andp is
shifted by 0.

By Lemma 2, the delay of every messagevidrom p; to p; is0— (va;i — ugp) + (Uaj — Uab) = Uaj — Uai-
This expression is at mos;, by the triangle inequality, so the new delay is not too big. This expression is
atleast 0, since,; < u,j, SO the new delay is not too small.

By Lemma 2, the delay of every messageninfrom p; to p; is uij — (uqj — Uap) + (Uai — Uap) =
Uij + Uq; — Uqj. THIS €Xpression is at most;, sinceuq; < uqj, SO the new delay is not too big. This
expression is at least 0, by the triangle inequality, so the new delay is not too small.

Thereforea’ is admissible. Since the algorithm must work correctlyinwe have:
ACy > AC —e. (2

SinceAC, = AG, + 0 andAC, = AC, + uq, inequalities (1) and (2) imply that > %uab.

Thus for the arbitrary algorithng, is at least half the diameter. [

4 Upper Bounds

4.1 The Algorithm

We consider the averaging algorithm of [5] for a clique, slightly modified to handle the fact that different
edges have different uncertainties. (The description of the algorithm and Lemma 4 are modeled after [2].)
Each processags; begins by sending its current hardware clock value to all the other processors. It has an
array diff whosej-th entry is set equal tp;’s estimated difference betweegi's hardware clock ang;’s
hardware clock. Foj # i, this difference is estimated using the valliecontained in the message that

p; receives fromp; and assuming that this message té@ktime to arrive. Once; has an estimate for
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initially diff;[¢] =0

at first computation step:
1. sendHC; (current hardware clock value) to all other processors

upon receiving messagefrom somep;:

2: diff;[j] :== T + % — HC;

3. if a message has been received from every other processor then
4:  adj = 2 Y70 diff;[k]

Figure 1: Averaging algorithm; code for procesggro < <n — 1.

every processor, it sets its adjustment to the average of all the estimated differences. (See Figure 1.) We
will analyze the clock synchronization achieved by the averaging algorithm for a aiiqueth arbitrary
symmetric uncertainties (denoteg};). Then we will show how the general result can be specialized into
closed forms for specific cliques that are equivalent to certain topologies. Theorem 1 shows that the upper
bounds obtained for these cliques also hold for the other topologies. The applicability of the averaging
algorithm to general topologies requires all-pairs shortest-paths computation.

Lemma 4 Consider any execution of the averaging algorithm that is admissiblé&folFor any two pro-
cessorg; andp; and any time after the algorithm terminates (executes Line 4),

1 n—1 n—1
[ACi(t) — AC; ()] < o~ Yoowit Y ow .
" \iZ0,14i 1=0,l#£j

Proof For every timet afterp; setsdiff;[], diff;[j](t) = HC;(t)— HC;(t)+ errj; , whereerr;; is a constant.
The definition of the algorithm shows that

1 n—1
|AC;(t) — AC;(t)] < - (|errz~j| + |errj;| + Z lerry; — errlj|> .
1=0,lF#1,j

The bounds omrr;; and the rules of absolute value give the result. u

4.2 Generalized Hypercubes Without Wrap-around

The k-ary m-cube network is a generalization of the hypercube architecture where2. In the k-ary
m-cube, there are: dimensions an& nodes on each dimension (see [4], p. 86). More formally, each node
is represented as a vecta, a1, . . . ,am—1), Where eacla, is an element 0{0,1, ...,k — 1}. Thus there



aren = k™ nodes. There is an edge between two natlesdb if they differ in exactly one component,
say ther-th, anda, = b, + 1. We need the following fact about distances in (unweighted}y m-cubes

without wrap-around. Given such a gragh let dists(d, b) be the minimum number of edges in any path
from@tobin G.

Lemma 5 For anyk-ary m-cubeG = (V, E') without wrap-around, for any nod@in V,

o1
> distq(d,b) < Em(kmﬂ — k™).
3

Proof Consider a particular node The distance betweehandb is the sum, over all dimensions of the

distance froma, to b,. With no wrap-around, this distancelis — a,|. Itis obvious tha®_; distg(d, b) <
> distc(0, b) whered is the vector of all zeroes.

Let us then computg_; distg(6, 5). This sum can be written:
m—1
SN b )
p r=0

Now let us concentrate on dimensionFor how many vectorsis b, equal to 0? There afeindependent
choices for each of the: — 1 other entries, so the answerk®~!. The same is true for every value lpf
between 0 an@ — 1. Thus the contribution to the sum in expression (3) from dimensisn

k—1
E™1S
h=0

This sum can be written a§(km+1 — k™). We multiply this expression by, to account for all the
dimensions. m

Theorem 6 For anyk-ary m-cube (without wrap-around) communication netwéfkvith uncertaintyu on
each edgeopt(G) is at mostgum(k — 1).

Proof Let G’ be the equivalent clique communication network from Section 2.3. By Theorem 1, it suffices
to show that the averaging function 6 achieves-synchronized clocks, wheee= %um(k -1).

Consider any execution of the algorithm that is admissiblesfoBy Lemma 4, for any two processors
p; andp; and any time after the algorithm terminates

1 n—1 n—1
|AC;(t) — AC;(t)] < o SNoowi+ D wy |-
1=0,1#i 1=0,l#j
By the definition ofG’, u;;, = u - distg(l, h), for h = i,j. By Lemma 5, forh = i, j,
n—1 1
Z urp < umi(ka — k™).
1=0,l#h

Sincen = k™, the result follows.



4.3 Generalized Hypercubes With Wrap-around

The definition of thek-ary m-cube with wrap-around is the same as for thary m-cube without wrap-
around, except that we add “mé¢tito the condition under which there is an edge between two nodes. That
is, there is an edge between two nodeandb if they differ in exactly one component, say theh, and if
ar = b, + 1 mod k.

Given a graphG, let distg(a, 5) be the minimum number of edges in any path fr@no bin G. We
need the following fact about distances in (unweightedyy m-cubes with wrap-around.

Lemma 7 For any k-ary m-cubeG = (V, E) with wrap-around, for any nod&in V',

Zd. te(@ g) %mkm"'1 when k is even
istq(d,b) =
z “ Im(k™ — k™1 when k is odd.

Proof Consider a particular node The distance betweenandb is the sum, over all dimensions of the
distance fromu,. to b,.. However, we must take into account the wrap-around edges. In this case the distance
is |b, — a| if this quantity is at most£ |, otherwise it isk — [b, — a,|.

Thus the desired sum can be written:

m—1
Z Zmin(|br—ar|,k—|br—ar|). 4)
r=0

g =

Now let us concentrate on dimensionFor how many vectorsis b, equal to 0? There afeindependent
choices for each of the: — 1 other entries, so the answerk®~!. The same is true for every value lpf
between 0 an@ — 1. Thus the contribution to the sum in expression (4) from dimensisn

k—1
E™1 S min(|h — apl,k — |k — ag)). (5)
h=0

This sum contains two terms equal to 1 (there are two nodes at distance & flmmg dimension), two
terms equal to 2, etc., up to two terms equa[lﬁ@lj, and, ifk is even, one term equal ép(there is one
node at distancé from & along dimensiomn).

First consider the case wheris odd. Then expression (5) becomes

155

2™ Y
7=1

Algebraic manipulations reduce thisia@k"”r1 — k™~1). We multiply this expression by, to account for
all the dimensions.
Now consider the case whétis even. Expression (5) now becomes
m—1 %_1 . m—1 k
2k ]z::I j+k '3

Algebraic manipulations reduce this i@m“. We multiply bym to account for all dimensions. [
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Theorem 8 For any k-ary m-cube (with wrap-around) communication netwagkwith uncertaintys on
each edgeopt(G) is at most;umk whenk is even andium(k — ) whenk is odd.

Proof The proof is essentially the same as that for Theorem 6. The differences a:fe:th]fﬁmk whenk
is even andium(k — %) otherwise, and that Lemma 7 is invoked instead of Lemma 5. ]

5 Open Questions

The obvious open question in our work is to tighten the bound&-fany m-cubes with wrap-around when

k is odd. We believe that the algorithm is optimal and that a more involved shifting argument is needed
to strengthen the lower bound. The evidence for this is that a 3-ary 1-cube is a ring with three processors,
which is also a clique. Lundelius and Lynch [5] showed in this case that the tight bo%ndv’uhich is what

the algorithm gives, and nétu as given by the lower bound of this paper.

It would be interesting to characterize the class of networks and uncertainty assumptions for which the
simple algorithm is optimal, and similarly those for which %Idaiamlower bound is tight.

Further work is needed to obtain closed form expressions for other networks and delay assumptions.
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