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Abstract

This paper studies the time required to solve the session problem in a new timing model,

called the periodic model, for shared memory distributed systems. In the periodic model, each

process runs at a constant unknown rate and di�erent processes may run at di�erent rates.

Nearly matching upper and lower bounds are shown on the time complexity of the session prob-

lem in the model. These bounds indicate the inherent cost of synchronizing periodic processes

in shared memory distributed systems, and the existence of time complexity gaps among the

synchronous, periodic, and asynchronous timing models.

Keywords: Distributed Computing, Time Bounds, Session Problem, Periodic Model

1 Introduction

The (s; n)-session problem, �rst formulated in [2], is an abstraction of the synchronization needed to

solve some distributed computing problems. Informally, a session is a minimal-length computation

fragment that involves at least one \synchronization" step by every process in a distinguished set

of n processes. An algorithm that solves the (s; n)-session problem must guarantee that in every

computation, there are at least s disjoint sessions, and eventually all the processes become idle.

A direct example of the session problem can be found in a system that solves a set of linear

equations by successive relaxation, where each process holds some of the input parameters to the
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linear equations. (cf. [4]). Each process takes one synchronization step when it changes its values.

Su�cient interleaving of synchronization steps by di�erent processes ensures that a correct answer

is computed, since it implies su�cient interaction among the intermediate values computed by the

processes. Solutions for the session problem can be used to solve the successive relaxation problem.

Since the time complexity of the session problem is very sensitive to the timing assumptions of

the underlying model, it has been used as a test-case to demonstrate the theoretical di�erences in

the time needed to solve problems in various timing models [2, 3, 11]. In order for our results to be

comparable with prior work, we concentrate on shared memory systems with a constant parameter

b, which is the maximum number of distinct processes that are ever allowed to access any given

shared variable. When b is smaller than the total number of processes in the system, it is not

possible for every pair of processes to exchange information in a single step. Instead, information

must be propagated from process to process. Thus, as b gets smaller, the amount of propagation

required increases. The motivation for this restriction on communication comes from the fact that

in a distributed shared memory system, some part of memory is local to a process and can be

accessed quickly, while the rest is remote and requires more time for accesses.

The upper and lower bounds on the time required to solve the session problem shown by Ar-

jomandi, Fischer and Lynch [2] demonstrated the �rst such case where asynchronous systems are

less e�cient than synchronous systems. In the synchronous model, all processes run in lockstep,

while in the asynchronous model, no bounds on process running rates exist. Their result showed an

inherent time complexity gap between the synchronous and asynchronous models: s steps are su�-

cient for the synchronous model, i.e., no interprocess communication is needed, but (s� 1)blog
b
nc

steps are necessary for the asynchronous model. The blog
b
nc factor is essentially the cost of com-

munication, since no more than b processes can access any shared variable. Thus, one interprocess

communication per session is needed in the asynchronous model.

The session problem has been studied in a semi-synchronous shared memory model as well, in

which there are upper and lower bounds on process step time, denoted cu and cl respectively. In this

model, the time complexity upper bound is O((s� 1) � cu �minf cu

c
l

; logb ng) [11]. A nearly matching

lower bound (within a factor of 2 of the upper bound) appears in [11, 9]. In the semi-synchronous

model, the existence of known bounds on the running rate allows processes to determine when

enough sessions have elapsed by simply counting the number of local process steps, as in the

synchronous model. However, if the di�erence between the bounds is su�ciently large, then explicit

communication per session, as in the asynchronous model, can solve the problem more e�ciently.

This implies that the e�ciency of the semi-synchronous shared memory model lies between those

of the synchronous and asynchronous models.
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Results concerning the session problem in message passing models can be found in [3, 8, 11].

In this paper, the session problem continues to be used to compare timing models quantitatively

for shared memory systems. In particular, we study a new timing model, called the periodic model,

in which each process takes steps at an unknown constant rate and di�erent processes may run at

di�erent rates.

Though the periodic model requires stringent timing guarantees such as constant running rates,

a time complexity lower bound for any problem in that model is also applicable to other models

with less stringent timing guarantees. In particular, these weaker models include the models with

unknown bounds in which the running rates of processes may change over time, but are always

bounded by unknown constants [1, 7]. These models provide stronger timing guarantees than the

asynchronous model, but weaker guarantees than the periodic models. Thus, the time complexity

study in the periodic model can provide indications of the cost to solve problems in these weaker

models.

The main result of this paper is a lower bound on the time complexity of solving the

session problem in the periodic shared memory model. We show that it requires at least

cmax � maxfs; blog2b�1(2n � 1)cg time to solve the session problem in the periodic shared mem-

ory model, where cmax is the step time of the slowest process. An almost matching upper bound

cmax � (s + �(log
b
n)) is also presented. Intuitively, these bounds imply that to solve the session

problem in the periodic model, a total of one interprocess communication delay is necessary and

su�cient.

Taken together with the results in [2], our results indicate that, with respect to the session

problem, the time complexity of the periodic model falls strictly between those of the synchronous

and asynchronous models.

2 The System Model

The system model de�nition is similar to that de�ned in [2].

There are �nite sets P of processes and V of shared variables. A process has a set of internal

states, including an initial state. Each shared variable has a set of values that it can contain,

including an initial value. A global state is a tuple of internal states of each process, and values

of each shared variable. The initial global state contains the initial state for each process and the

initial value for each shared variable.

Associated with each variable is a set of at most b processes that are allowed to access that

variable. A process can both read and write a shared variable in a single atomic step (i.e., the
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variable supports read-modify-write operations); we do not assume any upper bound on the size

of the variables. A step � consists of simultaneous changes to the state of some process p and the

value of some variable x (where p is allowed to access x), depending on the current state of that

process and current value of the variable. More formally, we represent the step � with a tuple

((q; p; r); (u; x; v)), where q and r are old and new states of a process p 2 P , and u and v are old

and new values of a shared variable x 2 V . We say that step � is applicable to a global state if p is

in state s and x has value u in the global state.

An algorithm consists of P , V , and set � of possible steps. For all processes p 2 P and all

global states g, there must exist some step in � involving process p that is applicable to global

state g. This condition ensures that p never blocks. A computation of a system is a sequence of

steps �1; �2; : : : such that: (1) �1 is applicable to the initial global state, (2) each subsequent step

is applicable to the global state resulting from the previous step, and (3) if the sequence is in�nite,

then every process takes an in�nite number of steps. That is, there is no process failure.

A timed computation (�; T ) of a system is a computation � = �1; �2; : : : together with a mapping

T from positive integers to nonnegative real numbers that associates a real time with each step in

the computation. T must be nondecreasing and, if the computation is in�nite, increase without

bound. A timed computation is admissible if for each process p in P , there is a positive constant cp

such that the time between every pair of consecutive steps of p in the timed computation is cp and

p's �rst step is taken at time cp. Since cp can be di�erent in di�erent timed computations, in essence

it is unknown and thus cannot be hard-wired into an algorithm. When the timed computation is

clear from context, we use cmax to represent the maximum cp, over all p in P , for that computation.

3 The (s; n)-Session Problem

We now state the conditions that must be satis�ed for a system to solve the (s; n)-session problem

within a certain amount of time.

There must be a distinguished set Y of n shared variables called ports; Y is a subset of V .

There must be a unique process in P corresponding to each port, which is called a port process,

and no two port processes can be assigned to the same port. A port step is any step involving a

port and its corresponding port process. A port can be accessed by processes in addition to its own

port process, but such a step is not a port step. There may be some processes which are not port

processes, i.e., it is possible for jP j to be larger than n.1

1This possibility is implicitly contained in [2], which refers to making the port processes the leaves of a tree

network.
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Each port process in P must have a subset of special states, called idle states. The set � of

steps of the system must guarantee that once a process is in an idle state, it always remains in an

idle state, and after a process enters an idle state, it does not access a port.

A session is a minimal sequence of steps containing at least one port step for each port in Y .

A computation performs s sessions if it can be partitioned into s segments, each of which is one

session.

An algorithm solves the (s; n)-session problem within time X if, in every in�nite admissible

timed computation of the algorithm, there are at least s sessions and each process is in an idle state

by time X .

4 Upper Bound

We present an algorithm Aper for the (s; n)-session problem in this model, whose running time is

cmax � (s+ �(log
b
n)).

In describing the algorithm, we use a subroutine called broadcast as a generic operator for

communication in the model. Recall that communication in our system model is constrained by

the fact that at most b processes can access any speci�c shared variable. We conceptually organize

the processes and shared variables into a tree. In order for a port process to broadcast information

to all other port processes, the information travels up the tree to the root and then down from the

root to all the leaves.

In more detail, consider a (b � 1)-ary tree with n leaves in which each level, except possibly

the lowest, has the maximum number of nodes. Note that the number of levels in the tree is

dlog
b�1 ne+1. Associated with each node in the tree are a process and a shared variable. Each port

process and its port variable are associated with a leaf node; the processes and variables associated

with internal nodes are called relay processes and variables. The relay variable associated with a

node is accessed by the process associated with the node and the processes associated with that

node's children in the tree. Figure 1 illustrates a tree with b = 4 and n = 7.

Each relay variable has two �elds, up and down. Each process has two local variables, lup

and ldown; initially they are empty except that lup at a port process holds the information to be

propagated.

Each relay process p other than the root repeats the following two steps. First, p accesses its

own shared variable, saving the contents of the up �eld in lup and appending the contents of ldown

to the down �eld. Second, p accesses its parent's variable, appending lup to the up �eld and saving

the down �eld in ldown.
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Figure 1: A tree network with b = 4 and n = 7 where circles represent processes, empty squares

relay variables, dark squares port variables, solid lines memory access patterns of processes. Port

processes are p1 through p7.

The root continuously accesses its own variable; at each access it copies the up �eld to the down

�eld.

In the example of Figure 1, a piece of information m is transferred from p2 to p6 as follows: p2

appends m to v9:up; p9 obtains the contents of v9:up and appends them to v10:up; p10 copies the

contents of v10:up to v10:down; p8 obtains the contents of v10:down and appends them to v8:down;

p6 obtains the contents of v8:down and gets m.

It takes at most cmax � dlogb�1 ne time for a piece of information (or a \message") to be relayed

up to the root for the following reason. In each time interval of length cmax, every process takes at

least one step, and thus every relay process other than the root passes the message up to its parent.

Likewise, it takes additional cmax � (dlogb�1 ne + 1) time for the message at the root to be relayed

down to a leaf node in the tree (the one additional cmax is for the root to move the message from

its up to its down). Thus, the broadcast is accomplished in cmax ��(logb�1 n) time. A similar tree

network is mentioned in [2].

AlgorithmAper: Each port process accesses its own port s�1 times. After its (s�1)-st

step, it broadcasts the fact that it has �nished its (s� 1)-st step, and keeps taking port

steps until it hears that all other processes have taken s � 1 steps. Then it takes one

more port step and enters an idle state.

Theorem 1 Aper solves the (s; n)-session problem in time cmax � (s + �(log
b
n)) in the periodic

model.

Proof: Pick any in�nite admissible timed computation of Aper. Let p be any port process with

the maximum step time cmax. By the de�nition of the periodic model, it is clear that s sessions
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have occurred and no process is yet idle by the time that p takes its (s� 1)-st step and broadcasts

the fact. It takes at most s � cmax time for p to take s steps; every process obtains p's message and

becomes idle after an additional �(log
b
n) � cmax time has elapsed.

5 Lower Bound

Theorem 2 No algorithm can solve the (s; n)-session problem in the periodic model in time less

than cmax �maxfs; blog2b�1(2n� 1)cg.

Proof: Suppose that s � blog2b�1(2n� 1)c. Since all processes must take at least s steps to have

s sessions, s � cmax is obviously the lower bound, which su�ces.

Suppose that s < blog2b�1(2n � 1)c. By way of contradiction we assume that there exists an

algorithmA that solves the (s; n)-session problem in the periodic model in time Z strictly less than

cmax � blog2b�1(2n � 1)c. Let the set of processes for the algorithm be P = fp1; : : : ; pmg, for some

m � n. We prove that there exists an in�nite admissible timed computation of A that contains

fewer than s sessions, contradicting the assumed correctness of A.

Let (�; T ) be the in�nite admissible timed computation in which processes take steps at the

same speed in round robin order (p1 through pm) and each process's ith step occurs at time i �cmax.

Each consecutive group of steps for p1 through pm is a round. (Round i occurs at time i � cmax and

consists of the i-th step of each process.) Since all port processes should enter idle states by time Z

in (�; T ) and all the step time periods are equal to cmax in (�; T ), there are at most r = bZ=cmaxc

rounds by time Z in (�; T ).

Now we change the step time of p1 to be cmax � blog2b�1(2n � 1)c, i.e., the steps of p1 occur

every cmax � blog2b�1(2n� 1)c time units. Note that this step time is bigger than Z. Run A with

this modi�ed process and the rest of the original processes to get a new in�nite timed admissible

computation (�0; T 0).

Since the steps of p1 occur at di�erent times in (�0; T 0) from those at which they do in (�; T ),

there will be other steps that are inuenced by the steps of p1. These steps will in turn inuence

others. We say that these steps are \contaminated" by the steps of p1. However, we prove that

there is at least one process pj whose steps are not contaminated through time Z. Thus, because

all processes are in an idle state at time Z in (�; T ), pj is also in an idle state at time Z in (�0; T 0).

However, there has not been even a single step of p1 by time Z in (�0; T 0). This is a contradiction.

We now formalize these ideas.
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We break �0 up into a sequence of disjoint pseudo-rounds. Pseudo-round 0 is the empty com-

putation fragment at the beginning of �0. For 1 � t � r, pseudo-round t consists of the t-th step in

�0 of every process except p1. Thus, every pseudo-round (except for 0) is a minimal computation

fragment of �0 that consists of one step by every process except p1.

A variable v is contaminated in pseudo-round t � 1 of �0 if there exists k � t and process pj such

that v's value in the global state of �0 following pj 's step in pseudo-round k is not equal to v's value

in the global state of � following pj 's step in round k. We de�ne no variable to be contaminated

in pseudo-round 0. A process pj is contaminated in pseudo-round t � 1 of �0 if pj 6= p1 and there

exists k � t such that in pseudo-round k of �0, pj accesses a variable that is contaminated in

pseudo-round k. We de�ne no processes to be contaminated in pseudo-round 0. Two comments

about this de�nition are in order. First, according to this de�nition p1 is not contaminated, which

makes subsequent analysis a little easier. Second, the de�nition provides an over-estimate of the

processes that are contaminated by a variable, since it includes cases when the variable does not

become contaminated until after the process accesses it.

For 0 � t � r, let Pc(t) be the set of processes that are contaminated in pseudo-round t of

�0, and let Vc(t) be the set of variables that are not contaminated in pseudo-round t � 1 but are

contaminated in pseudo-round t of �0. Note the asymmetry in the de�nitions: Vc(t) is the number

of variables that have just become contaminated in pseudo-round t, while Pc(t) is the total number

of processes contaminated up to and including pseudo-round t. The sizes of Pc(t) and Vc(t) depend

on the algorithmA, which has been chosen arbitrarily. We now de�ne two other quantities, Pt and

Vt. We will show that Pt is an upper bound on jPc(t)j and Vt is an upper bound on jVc(t)j. De�ne

Pt and Vt to satisfy the recurrence equations:

P0 = 0; V0 = 0 (1)

Vt = 2 � Pt�1 + 1; t � 1 (2)

Pt = Pt�1 + (b� 1) � Vt; t � 1 (3)

We now show that the number of processes contaminated in pseudo-round r is less than n� 1.

jPc(r)j � Pr by Lemma 3 below

=
(2b�1)r�1

2
by Lemma 4 below

<
(2b�1)

blog2b�1(2n�1)c
�1

2
by de�nition of r and assumption on Z

� 2n�2
2

= n � 1:

Since fewer than n� 1 processes are contaminated in pseudo-round r, at least one port process

pj besides p1 is not contaminated. Thus, pj is in the same state at the end of pseudo-round r in �0 as
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it is at the end of round r in �, namely an idle state. But p1 has not taken a step yet. Thus, (�0; T 0)

is an in�nite admissible timed computation that contains fewer than s sessions. Contradiction.

Lemma 3 jPc(t)j � Pt and jVc(t)j � Vt for 0 � t � r, where r = bZ=cmaxc.

Proof: The idea behind this lemma is that even if contamination spreads as fast as possible, it

cannot reach every process in only r rounds.

We prove the lemma by induction on t.

For the basis (t = 0), no process or variable is contaminated in pseudo-round 0 by de�nition.

Assume that the lemma is true for t � 1 � 0. We now show it is true for t. Contamination

spreads as fast as possible if the following two conditions hold.

1. Each process contaminates the maximum number of variables in each pseudo-round. This

maximum number is two for every process pj other than p1, since pj can fail to access a

variable it was supposed to and can access a variable it was not supposed to. This maximum

number is one for process p1, since p1 fails to access a variable it was supposed to. (Recall

that p1 takes no step until after time Z.)

2. Processes become contaminated as soon as possible, as follows. Suppose a variable v becomes

contaminated in a certain pseudo-round due to the action (or lack of action) of some process

pj . Recall that at most b distinct processes can ever access any given shared variable. Since

v is already contaminated, due to some previously contaminated process, there are only b� 1

remaining processes that can be contaminated. Let the remaining b � 1 processes that can

access v actually do so in that pseudo-round.

Condition (1) indicates that jVc(t)j � 2 �Pc(t� 1)+ 1: By the inductive hypothesis, Pc(t� 1) �

Pt�1. Thus, jVc(t)j � 2 � Pt�1 + 1 = Vt.

Condition (2) implies that at most an additional (b�1)�jVc(t)j processes become contaminated in

pseudo-round t. Thus, jPc(t)j � jPc(t�1)j+(b�1) � jVc(t)j. We just showed that jVc(t)j � Vt. Since

the inductive hypothesis implies that Pc(t� 1) � Pt�1, it follows that jPc(t)j � Pt�1 + (b� 1) � Vt.

Lemma 4 For all t � 0, Pt =
(2b�1)t�1

2
.

Proof: Substituting Eq. 2 into Eq. 3 yields Pt = (2b� 1) �Pt�1+ b� 1. A simple induction shows

that the solution to this equation with initial condition given by Eq. 1 is the desired expression.

9



Our lower bound proof is similar to some lower bound proofs on the time complexity of com-

puting various functions in the PRAM model of parallel computing (e.g., addition [5] and logical

OR [6]). Like ours, these proofs calculate the rate at which a change in one input value or the state

of one process a�ects the states of other processes.

6 Conclusion

We have proposed a new timing model, the periodic model, and proved almost tight upper and

lower bounds on the time needed to solve the session problem in the model. The bounds intu-

itively indicate that to solve the session problem in periodic shared memory systems, a total of

one interprocess communication is necessary and su�cient. Since synchronous systems require no

communication and asynchronous systems require one communication per session, it follows that

periodic systems are more e�cient than asynchronous systems while less e�cient than synchronous

systems.

Analogous results have been obtained for the periodic message passing model [10]; the lower

bound proof is much simpler than for the shared memory case.
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