Randomized Shared Queues
Applied To Distributed Optimization Algorithms

Hyunyoung Lee! and Jennifer L. Welch!

Department of Computer Science, Texas A&M University
College Station, TX 77843-3112, U.S.A.
{hlee, welch}@cs.tamu.edu

Abstract. This paper presents a specification of a randomized shared
queue that can lose some elements or return them out of order, and
shows that the specification can be implemented with the probabilis-
tic quorum algorithm of [5,6]. Distributed algorithms that incorporate
the producer-consumer style of interprocess communication are candi-
date applications for using random shared queues in lieu of the message
queues. The modified algorithms will inherit positive attributes concern-
ing load and availability from the underlying queue implementation. The
behavior of a generic combinatorial optimization algorithm, when it is
implemented using random queues, is analyzed.

1 Introduction

Quorum systems have been receiving significant attention because they provide
consistency and availability of replicated data and reduce the communication
bottleneck of some distributed algorithms (cf. [6] for references). The probabilis-
tic quorum model [6] relaxes the intersection property of strict quorum systems,
such that pairs of quorums only need to intersect with high probability. In ear-
lier work [4], we showed that probabilistic quorums implement random registers,
memory cells from which out-of-date values are sometimes read. Such an imple-
mentation inherits the positive load and availability properties of probabilistic
quorums. Random registers were shown to be strong enough to implement an
interesting class of iterative algorithms that converge with high probability.

In this paper, we extend the results of [4], which considers only read-write
registers, to one of the fundamental abstract data structures: the queue. We
propose a specification of a randomized shared queue data structure (random
queue) that can exhibit certain errors — namely the loss of enqueued values —
with some small probability. The random queue preserves the order in which
individual processes enqueue, but makes no attempt to provide ordering across
enqueuers. We show that this kind of random queue can be implemented with
the probabilistic quorum algorithm of [5, 6].

Queues are a fundamental concept in many areas of computer science. A
common application in distributed computing are message queues in commu-
nication networks. Many distributed algorithms use high-level communication

operations, such as scattering or all-to-all broadcasts (cf. Chapter 1 of [2] for
an overview). These algorithms can typically tolerate inaccuracies in the order
in which the queue returns its elements, as the order of the elements in the
message queue is typically impacted by the unpredictability of the communica-
tions network. Furthermore, we consider randomized algorithms, in which the
queue elements contain data that can be incorrect or otherwise inappropriate
with some probability. Algorithms of this type can typically tolerate the random
disappearance of elements in the queue (with some small probability). We be-
lieve that this constitutes a large class of algorithms, which can take advantage
of random queues and their benefits of optimal load and high availability. As
an example of applications from this class, we analyze the behavior of a class of
optimization algorithms [1], when used with random queues.

Randomization is used in [10,11] to implement a task queue, an unordered
collection of tasks with priorities which are used for load balancing in irregular
applications; in these papers, the randomization affects only the priorities, while
the number of enqueued tasks is preserved. In [3], randomized distributed queues
are shown to have improved performance but no random behavior of the queue
operations is specified.

2 Definitions

In this section, we define the system model. (The presentation of this material
is similar to that in [4].)

The data type of a shared object is defined by a set of operations and set
of allowable sequences of those operations. An operation consists of an invo-
cation and a matching response. The invocation indicates the specific object
and contains any inputs, while the response also indicates the relevant object
and contains any outputs. Throughout this paper, we assume that each process
has at most one operation pending at a time.

A process is a (possibly infinite) state machine which has access to a random
number generator. The process has a distinguished state called the initial state.

We assume a system consisting of a collection of n client processes and r
server processes. A client process runs on a processor that also runs an applica-
tion process which is part of a distributed application that is written assuming
shared data objects. The client process communicates with the shared memory
application process above it and with the message passing system below it. A
server process stores replicated data and interacts with client processes through
the message passing system. We will restrict attention to algorithms (such as
ours) in which only client processes use randomization; trivial extensions to the
model would allow servers also to be randomized.

There is some set of triggers that can take place in the system. Triggers
consist of operation invocations and message receptions. The occurrence of a
trigger at a process causes the process to take a step. During the step, the
process applies its transition function to its current state, the particular trigger,
and a random number to generate a new state and some outputs. The outputs

can include (at most) one operation response and a set of messages to be sent.
A step is completely described by the current state, the trigger, the random
number, the new state, and the set of outputs.

There are three potential sources of nondeterminism in the system from the
viewpoint of the shared object implementation: the sequences of random num-
bers available to the client processes (due to the random number generators), the
sequences in which operation invocations are made on the client processes (due
to the application program that is using the shared object layer), and variability
in the message delays. We abstract the last two sources of nondeterminism into
a construct called an “adversary.” Formally, an adversary is a partial func-
tion from the set of all sequences of steps to the set of triggers. That is, given
a sequence of steps that have occurred so far, the adversary determines what
trigger will happen next. Note that the adversary cannot influence what random
number is received in the next step, only the trigger. Let RAND be the set of all
n-tuples of the form (R',..., R") where each R’ is an infinite sequence of inte-
gers in {0,...,D}. D indicates the range of the random numbers. R’ describes
the sequence of random numbers available to client process ¢ in an execution
— R; is the random number available at step j. Call each element in RAND a
random tuple.

Given an adversary A and a random tuple R = (R!,...,R"), define an
execution ezec(A, R) to be the sequence of steps o109 ... such that:

— the current state in the first step of each process (client and server) i is i’s
initial state;

— the current state in the j-th step of process ¢ is the same as the new state
in the (j — 1)-st step of 4, for all processes ¢ and all j > 1;

— the trigger in o; equals A(oy ...0;-1), for all j > 1 (the trigger is chosen by
the adversary); '

— the random number in o; equals R}, where i is the process in o;’s trigger
(the random number comes from R, not the adversary).

We put the following restrictions on the adversary:

— (Application related) The sequence of operation invocations at each pro-
cess is consistent with the application layer above. That is, the operation
invocations reflect the shared memory accesses of the applicaton.

— (Message passing related) Every message received was previously sent and
every message sent is eventually delivered exactly once. That is, the message
passing system is asynchronous and reliable, with the exact delays under the
control of the adversary.

An execution e is complete if either it is infinite or A(e) is undefined. In a
finite complete execution, the application is through making calls on the shared
objects and no messages are in transit.

3 A Random Queue

In this section, we specify a randomized shared queue and propose an imple-
mentation for it. We then analyze the behavior of the implementation.

3.1 Specification of Random Queue

A queue @ shared by several processes supports two operations, Enq(Q,v)
and Deq(Q,v). Enq;(Q,v) is the invocation by process i to enqueue the value v,
Ack;(Q) is the response to i’s enqueue invocation, Deq; (@, v) is the invocation by
i of a dequeue operation, and Ret;(Q,v) is the response to i’s dequeue invocation
which returns the value v. A possible return value is also L, indicating an empty
queue. The set of values from which v is drawn is unconstrained. We will focus
on multi-enqueuer, single-dequeuer queues; thus, the enqueue can be invoked
by all the processes while the dequeue can be invoked only by one process. We
assume for notational simplicity that, in every execution, every enqueued value
is uniquely identified.

Given a real number p that is between 0 and 1, a system is said to implement
a p-random queue if the following conditions hold for every adversary A. In
every complete execution (of the adversary),

(Liveness) every operation invocation has a following matching response;

— (Integrity) every operation response has a preceding matching invocation;
(No Duplicates) for each value z, Deq(Q, z) occurs at most once;

— (Per Process Ordering) for all i, if Enq;(Q,z;) ends before Eng;(Q, z2) be-
gins, then x5 is not dequeued before z; is dequeued.

(Probabilistic No Loss) For every enqueued value z, Pr[z is dequeued] > p.
That is, each enqueued element is either never dequeued (with probability
at most 1 — p) or is dequeued once (with probability at least p). For a given
adversary, the probability space is all extensions (of that adversary) of any finite
execution of the adversary that ends with the invocation to enqueue .

3.2 Implementation of Random Queue

We now describe an implementation of a p-random queue. The next subsection
computes the value of p, assuming that the application program using the shared
queue satisfies certain properties.

The random queue algorithm (Algorithm 1) is based on the probabilistic
quorum algorithm of Malkhi et al. [6]. There are r replicated memory servers.
First, we describe the algorithm for the special case of a single enqueuer. The
case of multiple enqueuers is explained later.

The enqueue operation (Enq) mirrors the probabilistic quorum write oper-
ation: The local timestamp is incremented by one and attached to the element
that is to be enqueued. The resulting pair is sent to the replicas in the chosen
quorum, a randomly chosen group of k servers.

The key notion in the dequeue operation (SingleDeq) is a timestamp limit
(T). At any given time, all timestamps that are smaller than the current value
T are considered to be outdated. 7" is included in the dequeue messages to the
replica servers and allows them to discard all outdated values. Beyond this,
SingleDeq mirrors the probabilistic quorum read operation: The client selects a

Algorithm for client process — for single enqueuer and single dequeuer:
Initially local variable t = 0 // enqueue timestamp
T =1 // expected dequeue timestamp
when Enq(Q,v) occurs:
t:=t+1
send {enq,v,t) to a randomly chosen quorum of size k and wait for acks
Ack(Q) // response to application
when SingleDeq(Q) occurs:
send (deq,T') to a randomly chosen quorum of size k and wait for replies
choose value v with smallest timestamp ¢4
(L is considered to have largest timestamp)
if visnot L then T:=t;+ 1
Ret(Q,v) // response to application

Algorithm for server process i, 1 < i < r:
Initially local variable Qcopy, a queue, is empty
when (enq, v, T') is received from client j:
enqueue (v, T) to Qcopy
send (ack) to client j
when (deq, T') is received from client j:
remove (dequeue) every element of Qcopy whose timestamp smaller than T
if Qcopy is empty let w = L
otherwise let w be the result of dequeue on Qcopy
send (w) to client j

Algorithm for a dequeuer extension for n > 1 enqueuers:
Initially local variable 7 = 0, shared queue Q = (Q1,...,Qx»)
// an array of n single enqueuer queues
when Deq(Q) occurs
i:=(mod n)+1
SingleDeq(Q;,v) // v is value returned by SingleDeq
Ret (Q,v) // response to application

Algorithm 1: Implementation of p-random queue

random quorum, sends dequeue messages to all replica servers in the quorum and
selects the response with the smallest timestamp ¢4. It updates the timestamp
limit to 7" := t4 + 1 and returns the element that corresponds to tg4.

Each replica server implements a conventional queue with access operations
enqueue and dequeue. In addition, the dequeue operation receives the current
timestamp limit as input and discards all outdated values. The purpose of this
is to ensure that there are exactly k replica servers that will return the element
vy with timestamp 7" in response to a dequeue request. Thus, the probability of

finding this element (in the current dequeue operation) is exactly the probability
that two quorums intersect. This property is of critical importance in the analysis
in the following section. It does not hold if outdated values are allowed to remain
in the replica queues, as those values could be returned instead of vy by some
of the replica servers containing vy.

For the case of n > 1 enqueuers, we extend the single-enqueuer, single-
dequeuer queue by having n single-enqueuer queues (Q1,...,Q,), one per en-
queuer. The i-th enqueuer (1 < i < n) enqueues to ;. The single dequeuer
dequeues from all n queues by making calls to the function Deq(), which selects
one of the queues and tries to dequeue from it. Deq() checks the next queue in
sequence. The round-robin sequence used in Algorithm 1 can be replaced by any
other queue selection criterion that queries all queues with approximately the
same frequency. The selection criterion will impact the order in which elements
from the different queues are returned. However, it does not impact the prob-
ability of any given element being dequeued (eventually), as the queues do not
affect each other, and the attempt to dequeue from an empty queue does not
change its state.

3.3 Analysis of Random Queue Implementation

For this analysis, we assume that the application program invoking the opera-
tions on the shared random queue satisfies a certain property. Every complete
execution of every adversary consists of a sequence of segments. Each segment
is a sequence of enqueues followed by a sequence of dequeues, which has at least
as many dequeues as enqueues. Fix a segment. Let m,, resp., mg, be the total
number of enqueue, resp., dequeue, operations in this segment. Let m = m.+mgq.
Let Y; be the indicator random variable for the event that the ¢-th element is
returned by a dequeue operation (1 < i < m,). In the following lemma, the prob-
ability space is given by the enqueue and dequeue quorums which are selected
by the queue access operations. More precisely, let P (r) denote the collection of
all subsets of size k of the set {1,...,7}. Since there are m enqueue and dequeue
operations, we let 2 = Pi(r)™ be the universe. The probability space for the
following lemma is given by (2 and the uniform distribution on (2.

Lemma 1. The random variables Y; (1 < i < me) are mutually independent

r—k
and identically distributed with Pr(Y; =1)=p = (1 - ((ﬁ))>
k

Proof. Since the queues @1, ..., @, do not interfere with each other, they can be
considered in isolation. That is, it is sufficient to prove the lemma for any given
single enqueuer queue ;. Consider any single enqueuer queue @), and let m,
denote the number of enqueued elements. In order to prove mutual independence,
we have to show

Pr(/\Yi=a) = [] Pr(vi =a) (1)

for all possible assignments of {0,1}-values to the constants a;, for which the
probability on the left-hand side is greater than zero. Thus, the following con-
ditional probabilities are well-defined. For h = 1: trivially, Pr(/\iz1 Yi=a;) =
ngl Pr(Y; =aq;). Forall 1 < h < m,:

h h—1 h—1
Pr(A\Yi=a)=Pr(Vi=as \ Yi=a) Pr(\Yi=a). (2
=1 i=1 =1

Let j = max{i < h : a; = 1}*. Clearly, the event Y}, = 1 does not depend on any
event Y; = a; for i < j. Thus

h—1 h—1
Pr(V, =1 \Yi=a)= Pr(V, =1y, =1A A Yi=0) .
i=1 i=j+1

The condition corresponds to the following case: The last dequeue operation has
returned the j-th element. The dequeue operation immediately following the
dequeue operation that dequeued j-th element misses elements j + 1 to h — 1.
That is, the dequeue quorum R of the dequeue operation does not intersect the
enqueue quorum S; of any element ¢ € {j +1,...,h — 1}. Thus

h—1 h—1
Pr(V, =1Y;=1A A Yi=0)= Pr(RNS, #0] /\ RnSi=0)

i=j+1 i=j+1

= Pr(RNS, #£0)= (1— (T(ﬁ)k)> =p

The second equality is because quorums are chosen independently. In summary,
for all 1 < h < m, and assignments of {0,1} to a;,

h—1
Pr(Y, =1 /\Yi:ai):p .
i=1
By the formula of total probabilities, Pr(Y;, = 1) = p. Thus, returning to (2):
h h—1
Pr(/\ Yi=a;) = Pr(Y, =ayp) Pr(/\ Yi=a;) .

i=1 =1
Mutual independence (1) follows from this by induction.
Theorem 1. Algorithm 1 implements a random queue.

Proof. The Integrity and Liveness conditions are satisfied since the adversary
cannot create or destroy messages. The No Duplicates and Per Process Ordering
conditions are satisfied by the definition of the algorithm. The Probabilistic No
Loss condition follows from Lemma 1, which states that each enqueued value is
r—k
dequeued with probability p = <1 — ((’j))>

k

! To handle the case when a; = 0 for all i < h, define Yy = ap = 1.

4 Application of Random Queue: Go With the Winners

In this section we show how to incorporate random queues to implement a class
of randomized optimization algorithms called Go with the Winners (GWTW),
proposed by Aldous and Vazirani [1]. We analyze how the weaker consistency
provided by random queues affects the success probability of GWTW. Our goal
is to show that the success probability is not significantly reduced.

4.1 The Framework of GWTW

GWTW is a generic randomized optimization algorithm. A combinatorial opti-
mization problem is given by a state space S (typically exponentially large) and
an objective function f, which assigns a ‘quality’ value to each state. The task is
to find a state s € S, which maximizes (or minimizes) f(s). It is often sufficient
to find approximate solutions. For example, in the case of the clique problem, S
can be the set of all cliques in a given graph and f(s) can be the size of clique s.
In order to apply GWTW to an optimization problem, the state space has to
be organized in the form of a tree or a DAG, such that the following conditions
are met: (a) The single root is known. (b) Given a node s, it is easy to determine
if s is a leaf node. (c) Given a node s, it is easy to find all child nodes of s. The
parent-child relationship is entirely problem-dependent, given that f(child) is
better than f(parent). For example, when applied to the clique problem on a
graph G, there will be one node for each clique. The empty clique is the root.
The child nodes of a clique s of size k are all the cliques of size k+ 1 that contain
s. Thus, the nodes at depth ¢ are exactly the i-cliques. The resulting structure
is a DAG. We can define a tree by considering ordered sequences of vertices.
Greedy algorithms, when formulated in the tree model, typically start at the
root node and walk down the tree until they reach a leaf. The GWTW algorithm
follows the same strategy, but tries to avoid leaf nodes with poor values of f,
by doing several runs of the algorithm simultaneously, in order to bound the
running time and boost the success probability (success means a node is found
with a sufficiently good value of f). We call each of these runs a particle — which
carries with it its current location in the tree and moves down the tree until
it reaches a leaf node. The algorithm works in synchronous stages. During the
k-th stage, the particles move from depth k£ to depth k£ 4+ 1. Each particle in a
non-leaf node is moved to a randomly chosen child node. Particles in leaf nodes
are removed. To compensate for the removed particles, an appropriate number
of copies of each of the remaining particles is added.
The main theme to achieve a certain constant probability of success is to try
to keep the total number of particles at each stage close to the constant B.
The framework of the GWTW algorithms is as follows: At stage 0, start with
B particles at the root. Repeat the following procedure until all the particles are
at leaves: At stage i, remove the particles at leaf nodes, and for each particle at
a non-leaf node v, add at v a random number of particles, this random number
having some specified distribution. Then, move each particle from its current
position to a child chosen at random.

Shared variables are random queues @;, 1 < i < n, each dequeued by process i and
initially empty
Code for process i, 1 < i < n:
Local variable: integer s, initially 0.
Initially £ particles are at the root.
while true do
s++
for each particle at a non-leaf node v // clone the particles
add at v a random number of particles, with some specified distribution
endfor
remove the particles at leaf nodes
for each particle 5 // move j to some process z’s queue
pick a random number z € {1,...,n}
Enq(Q-, j)
endfor
while not all particles are dequeued // read from own queue
Deq(Qi7 .7)
endwhile
move each particle from its current position to a child chosen at random
endwhile

Algorithm 2: Distributed version of GWTW framework

We consider a distributed version of the GWTW framework (Algorithm 2),
which is a modification from the parallel algorithm of [8]. Consider an execution
of Algorithm 2 on n processes. At the beginning of the algorithm (stage 0), B
particles are evenly distributed among the n processes. Since, at the end of each
stage, some particles may be removed and some particles may be added, the
processes need to communicate with each other to perform load balancing of
the particles (global exchange). We use shared-memory communication among
the processes. In particular, we use shared queues to distribute the particles
among processes. Between enqueues and dequeues in Algorithm 2, we need some
mechanism to recognize the total number of enqueued particles in a queue. It
can be implemented by sending one-to-one messages among the processes or
by having the maximum possible number of dequeues per stage. (Finding more
efficient, yet probabilistically safe, ways to end a stage is work in progress.)

When using random queues, the errors will affect GWTW, since some parti-
cles disappear with some probability. However, we show that this does not affect
the performance of the algorithms significantly. In particular, we estimate how
the disappearance of particles caused by the random queue affects the success
probability of GWTW.

4.2 Analysis of GWTW with Random Queues

We now show that Algorithm 2 when implemented with random queues will
work as well as the original algorithms in [1].

We use the notation of [1] for the original GWTW algorithm (in which no
particles are lost by random queues): Let X, be a random variable denoting the
number of particles at a given vertex v. Let S; be the number of particles at
the start of stage i. At stage 0, we start with B particles. Then Sy = B and
S; = Evew X,, for i > 0, where V; is the set of all vertices at depth £. Let
p(v) be the chance the particle visits vertex v. Then a(j) = 3=, ¢y, p(v) is the
chance the particle reaches depth j at least. p(w|v) is defined to be the chance
the particle visits vertex w conditioning on it visits vertex v. The values s;,1 <
i < { are constants which govern the particle reproduction rate of GWTWs.
The parameter « is defined to express the “imbalance” of the tree as follows: For
i < j, kij = <l s~ p(v)a?(j|v), and k = maxo<icj<d Kij-

a2(j) £=veV; ELAWAS J

Aldous and Vazirani [1] prove

Lemma 2.

SOSN ‘
CON S5 gcica

Y

ESi:B@, 0<i<d, and wvarS;<kB—
Si SR — a(j)

We will use this lemma to prove similar bounds for the distributed version of
the algorithm, in which errors in the queues can affect particles. For this purpose,
we formulate the effect of the random queues in the GWTW framework.

More precisely, given any original GWTW tree T', we define a modified tree
T', which accounts for the effect of the random queues. Given a GWTW tree T',
let T' be defined as follows: For every vertex in T, there is a vertex in T”. For
every edge in T', there is a corresponding edge in T". In addition to the basic tree
structure of T', each non-leaf node v of T has an additional child w in T'. This
child w is a leaf node. The purpose of the additional leaf nodes is to account
for the probability with which particles can disappear in the random queues in
Algorithm 2.

Given any node w in T' (which is not the root) and its parent v, let p'(w|v)
denote the probability of moving to w conditional on being in v. For the ad-
ditional leaf nodes w in T', we set p'(w|v) = 1 — p, where 1 — p is the prob-
ability that a given particle is lost in the queue. For all other pairs (w,v), let
p'(w|v) = p-p(w|v). Then o' (i), a'(i|v), SI, s;, X!, and &' can be defined similarly
for T'.

Given a vertex v of T', let p(v) denote the probability that Algorithm 2, when
run with a single particle and without reproduction, reaches vertex v. The term
“without reproduction” means that the distribution mentioned in the first “for”
loop of the algorithm is such that the number of added particles is always zero.
The main property of the construction of T is:

Fact 1 For any vertex v of the original tree T, p'(v) = p(v). Furthermore,
Pr(Algorithm 2 reaches depth) = p- Pe(GWTW on T' reaches depth £)

for any £ > 0.

Proof. We prove the first statement by induction on the depth of v. At depth
d = 0 (base case), v is the root and p'(v) = p(v) = 1. For the inductive step, let
v € Vpyq for £ € IN. Let u € V; be the immediate ancestor of v. Now,

p'(v) =p' (wlu)p'(v) = p - p(vu)p’(w) = p-p(olu)p(u) = plvlu)p(u) = p(v).

For the second statement, it is sufficient to note that

Pr(Algorithm 2 reaches depth £) = Z p(v) = Z p'(v)=p- Z p'(v)

veEV, vEV, veV,

We can now analyze the success probability of Algorithm 2 (a combination
of GWTW and random queues) by means of analyzing the success probability
of baseline GWTW on a slightly modified tree. This allows us to use the results
of [1] in our analysis. In particular,

Lemma 3.
i—1(: i—1,27:\ & g
ES;:B’pi,a(l) and varSZ{SlnB'p 02(1)2 ——,0<i<d
s} D s} = p~ta(j)

Proof. We apply Lemma 2 to the GWTW process on T” and show that ' = k/p
and a'(i) = p'~ta(i) for all i. Note that for any i < ¢ and v € V;, p'(v) = p(v)p'.
Thus, for any 1 < i </

a'(i) = Z Z Z '(w]v)p'

weV/ weV/ veVi_y
= > Y)Y pwp)=p Y p) > plwly) = pali)
veEVi_1 weV; veEVi_1 weV;

For any 0 <i < j </,

aa > p'(v)a?(jlv)

vEV’
= M v ia2 iy 2(j—i—1)
p2j*2a2(j) 1%‘:/1;0()p (.7|)P
_ 1 a(z) Ua2) = i

In order to allow a direct comparison between the bounds of Lemmas 2 and 3,
it is necessary to relate the constants (s;)1<i<¢ and (s})i<i<¢. These constants
govern the particle reproduction rate of GWTW and can either be set externally
or determined by a sampling procedure described in [1]. If we set s; = pi~'s;
then the expectations of Lemmas 2 and 3 are equal and the variance bounds are
within a factor of p of each other. The variance bound is used in [1] in connection
with Chebyshev’s inequality to provide a lower bound on the success probability
of GWTW. It follows that the negative effect of random queues on the GWTW
variance bounds can be compensated for by increasing the number B of particles

at the root by a factor of 1/p.

5 Future Work

Another possible class of applications for a random queue is randomized Byzan-
tine agreement algorithms in which the set of faulty processes can change from
round to round (e.g. Rabin’s algorithm [9, 7]). Random errors in the queue can
be attributed to faulty processes. Issues to be resolved include how to adapt the
message passing algorithms to the situation when too few messages are received;
also whether probabilistic quorum algorithms in [6] that tolerate Byzantine fail-
ures can be exploited here.

Actually, the applications we identified do not even require the per-process
ordering — a shared multiset would work just as well. An open question is
whether there is a randomized implementation of a multiset, with no ordering
guarantees, that is more efficient in some measure than the algorithm presented
in this paper. A complementary question is to identify distributed applications
that would need ordering properties on a shared queue. Clearly one can imag-
ine a variety of weakened queue definitions and a variety of implementations.
Specifying and analyzing these are challenges for future work.

Acknowledgments: We thank Marcus Peinado for helpful conversations on GWTW.

References

1. Aldous, D., Vazirani, U.: “Go With the Winners” Algorithms. Proc. 85th IEEE
Symp. on Foundations of Computer Science, pp. 492-501, 1994.

2. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation, Prentice-Hall
Inc., Englewood Cliffs, N.J, 1989.

3. Chakrabarti, S., Ranade, A., Yelick, K.: Randomized Load Balancing for Tree-
structured Computation. Proc. IEEE Scalable High Performance Comp. Conf.,
pp. 666673, 1994.

4. Lee, H., Welch, J.L.: Applications of Probabilistic Quorums to Iterative Algo-
rithms. Proc. 21st IEEFE Int. Conf. on Distributed Computing Systems, pp. 21-28,
2001.

5. Malkhi, D., Reiter, M.: Byzantine Quorum Systems. Proc. 29th ACM Symp. on
Theory of Computing, pp. 569-578, 1997.

6. Malkhi, D., Reiter, M., Wright, R.: Probabilistic Quorum Systems. Proc. 16th ACM
Symp. on Principles of Dist. Comp., pp. 267-273, 1997.

7. Motwani, R., Raghavan, P.: Randomized Algorithms, Cambridge Univ. Press, 1995.

8. Peinado, M., Lengauer, T.: Parallel ‘Go with the Winners’ Algorithms in the LogP
Model. Proc. IPPS 97, 1997.

9. Rabin, M.O.: Randomized Byzantine Generals. Proc. 2/th Symp. on Foundations
of Computer Science, pp. 403—409, 1983.

10. Yelick, K. et al.: Parallel Data Structures for Symbolic Computation. Workshop
on Parallel Symbolic Languages and Systems, Oct. 1995.

11. Yelick, K. et al.: Data Structures for Irregular Applications. DIMACS Workshop
on Parallel Algorithms for Unstructured and Dynamic Problems, June 1993.

