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Abstract

A fundamental aspect of any concurrent system is how processes communicate with each

other. Ultimately, all communication involves concurrent reads and writes of shared memory

cells, or registers. The stronger the guarantees provided by a register, the more useful it is

to the user, but the harder it may be to implement in practice. We consider the problem of

implementing a k-ary regular (resp., safe) register out of binary regular (resp., safe) registers,

assuming a single writer. While algorithms have been developed previously for these problems,

no non-trivial lower bounds were known. The cost measures we consider are the number of

physical registers and the number of reads and writes on the physical registers required to

implement the logical register. Tight bounds are obtained on the cost measures in many cases,

and interesting trade-o�s between the cost measures are identi�ed. The lower bounds are shown

using information-theoretic techniques. Two new algorithms are presented that improve on

the costs of previously known algorithms: the hypercube algorithm implements a k-ary safe

register out of binary safe registers, requiring only one physical write per logical write; and

the tree algorithm implements a k-ary regular register out of binary regular registers, requiring

only dlog ke physical operations per logical operation. Both algorithms use novel combinatorial

techniques.
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1 Introduction

A fundamental aspect of any concurrent system is how processes communicate with each other.

Ultimately, all communication involves concurrent accesses to shared memory cells, or registers.

The stronger the guarantees provided by the shared memory, the more useful it is to the user, but

the harder it may be to implement in practice. Thus it is of interest to determine which types of

registers can implement which other types. Many such implementations are known [Blo87, BP87,

Lam86, LTV90, NW87, Pet83, SAG87, Tro89, Vid88, Vid90, VA86], among many others.

The contribution of this paper is to study the costs of implementing one type of register (the

logical register) out of registers of another type (the physical registers). Cost measures considered

are the number of physical registers, and the number of operations on the physical registers used to

perform the operations of the implemented register. Bounds on the number of physical operations

can be used to obtain time bounds for the logical operations in terms of the time taken by the

physical operations.

A register is a shared variable or memory cell that supports concurrent reading and writing by

a collection of processing entities. The operations of reading and writing are not instantaneous;

instead, they have duration in time, from a starting point to an ending point. Although each entity

accessing a register is assumed to issue operations sequentially, operations on behalf of di�erent

entities can overlap in time.

A variety of types of registers can be de�ned, di�ering in several dimensions, including the

number of concurrent readers supported, the number of concurrent writers supported, the number

of values the register can take on, and the strength of the consistency guarantees provided in the

presence of concurrent operations. Throughout this paper we assume there is only one writer,

leaving three parameters of interest: the number of readers, the number of values, and the consis-

tency guarantees. We distinguish between 1-reader registers and n-reader registers, for n > 1, and

between binary registers and k-ary registers, for k > 2. (A k-ary register can take on k di�erent

values.)

Lamport [Lam86] de�nes three consistency guarantees of increasing strength, namely safe, reg-

ular, and atomic. Roughly speaking, a read of a safe register always returns the most recent value

written to the register, unless the read overlaps with a write, in which case any legal value of the

register can be returned. A read of a regular register always returns the most recent value written,

unless the read overlaps one or more writes, in which case it returns either the old value or one of
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the values written by an overlapping write. An atomic register provides the illusion, via the values

returned by read operations, that each operation happens at a single instant in time within its

range, i.e., that the operations are totally ordered. In this paper, we only consider safe and regular

registers. In particular, we consider the problem of implementing an n-reader k-ary regular (resp.,

safe) register out of n-reader binary regular (resp., safe) registers.

We study the costs incurred by these implementations. Let M , R, and W be the minima, over

all implementations between two particular types of registers, of the number of physical registers,

the maximum number of physical operations in a logical read, and the maximum number of physical

operations in a logical write, respectively. Our algorithms will involve no physical reads in a logical

write and no physical writes in a logical read. Our lower bound results give bounds on the number

of physical reads per logical read, and the number of physical writes per logical write. These are

stronger results than just giving bounds on the number of physical operations per logical action.

Our results are summarized in Tables 1 and 2. Table 1 gives the bounds when all algorithms

are considered. Table 2 gives the bounds when certain classes of algorithms are considered, as

speci�ed by the column labeled S|namely, 1-write algorithms, c-write algorithms, and dlog ke-

register algorithms. (All logarithms are base 2.).

For implementing a k-ary safe register out of binary safe registers, we show tight bounds of

R = dlog ke, W = 1, and M = dlog ke. The upper bound of 1 on W is obtained from a new

algorithm, which we call the hypercube algorithm. The best previous upper bound onW was dlog ke

[Lam86]. These three optimal bounds are not obtained simultaneously in a single algorithm, and

in fact, we show some non-trivial trade-o�s between the three cost measures.

For implementing a k-ary regular register out of binary regular registers, we show the tight

bound that R = dlog ke, and the bounds 1 �W � dlog ke, and maxfdlog ke+1; 2(log k)� log log k�

2g � M � minfk � 1; n(3 log k + 68)g, where n is the number of readers of the logical register.

The upper bounds on R and W are simultaneously achieved by a new algorithm, which we call the

tree algorithm. We also present some lower bounds on R and M that follow if we restrict attention

to implementations that use only a small constant number of physical writes per logical write.

The lower bounds in Table 1 for safe registers and those on R and W for regular registers are

obvious from information-theoretic considerations. All of the remaining lower bounds are new. Lit-

tle previous work has been done concerning lower bounds or trade-o�s for register implementations.

One such previous result is in [Lam86], where it is shown that in any implementation of an atomic

register using regular registers, a read of the logical register must involve a write to a physical
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Safe Regular

lower upper lower upper

R dlog ke dlog ke dlog ke dlog ke

W 1 1 1 dlog ke

M dlog ke dlog ke
maxfdlog ke+ 1,

d2 log k � log log ke � 2g

minfk � 1,

n(3 log k + 68)g

Table 1: Independent Bounds for Binary to k-ary Algorithms

S Safe Regular

lower upper lower upper

fA jWA = 1g RS k � 1 2dlog ke � 1 k � 1 1

MS k � 1 or k� 2dlog ke � 1 k 1

fA jWA = cg RS (c!k=2)1=c c� 2 + dk=2c�2e (c!k=2)1=c 1

MS (c!k=2)1=c c� 2 + dk=2c�2e (c!k=2)1=c 1

fA jMA = dlog keg WS dlog ke dlog ke 1 1

Table 2: Trade-O� Results for Binary to k-ary Algorithms

register. Tromp [Tro89] uses this result to show that three binary safe registers are necessary to

construct a binary atomic register.

In Section 2 we present our model and some results for all implementations. Section 3 considers

safe registers and Section 4 considers regular registers. We conclude in Section 5 with some open

questions.

2 Preliminaries

In this section, we give formal de�nitions for the types of registers that we will study (n-reader,

k-ary, safe and regular), describe the rules we impose on implementing one type of register with

another, and de�ne the cost measures we will use. Then we present some de�nitions and lemmas

that are true for implementations between any types of registers.

�
k � 1 if k is a power of 2, k otherwise
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2.1 Model

We use a simpli�ed form of the I/O automaton model [LT87] to describe our system.

To implement a logical register with value set V , where jV j = k, we compose a collection of

physical registers Xj , 1 � j � m, each with value set f0; 1g, a collection of read processes RPi,

1 � i � n, and a single write process WP. The read and write processes implement the protocols

used by the readers and writer of the logical register. Each such protocol consists of accessing

certain of the physical registers and doing some local computation.

Communication between these components takes place via actions. Each action is an output of

one component (the component that generates it) and an input to another component. Components

are modeled as state machines in which actions trigger transitions. Components have no control

over when inputs occur, and thus must have a transition for every input in every state. Components

do have control over when outputs occur; if an output labels a transition from a state, then the

output is enabled in that state.

An execution of the implementation consists of a sequence in which state tuples (one entry

for the state of each component) and actions alternate, beginning with a tuple of initial states.

For each action � in the execution, � must be enabled in the preceding state of the component for

which it is an output. In the following state tuple, the states of the two components for which �

is an input and an output must change according to the transition functions, while the remaining

components' states are unchanged.

A schedule is the sequence of actions in an execution.

The logical actions are READ(i), RETURN(i; v), WRITE(v), and ACK, 1 � i � n and

v 2 V . READ(i) is an input to RPi from the outside world and RETURN(i; v) is an output from

RPi to the outside world. WRITE(v) is an input to WP from the outside world and ACK is an

output from WP to the outside world. Although we do not explicitly model the outside world with

a component, we do assume that for each i, the outside world and RPi cooperate so that READs

and RETURNs strictly alternate, beginning with a READ, and analogously for WP.

The physical actions are readj(i), returnj(i; v), writej(v), and ackj . The subscript j is between

1 and m; it indicates that Xj is the physical register being read or written. The parameter v is

either 0 or 1 and indicates the value being read from or written to Xj . For a �xed j, the parameter

i for reads and returns ranges over some subset of f0; : : : ; ng of size at most n; this subset indicates

which of the read and write processes read Xj. (The value 0 indicates WP.) For a �xed j, there is

no parameter i for writes and acks, since there is a unique read or write process that writes Xj .
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A READ(i) and its following RETURN(i; v) form a logical operation, as do a WRITE(v)

and its following ACK. Physical operations are de�ned analogously. An operation is pending

if its �rst half is present but not its second half.

We assume that the read and write processes cooperate with the physical registers so that for

each i, 0 � i � n, and each j, 1 � j � m, readj(i) and returnj(i; �) alternate beginning with a read,

and analogously for writes. We also assume that no read or write process has a physical operation

pending unless it has a logical operation pending.

Each physical register Xj satis�es this liveness property: Immediately after an input action

occurs, the matching output is enabled.

A safe physical register satis�es the Safe Property: For every physical read operation that

does not overlap a physical write operation, the value returned is the value written by the most

recent physical write operation. If there is no preceding write operation, then it returns the initial

value.

A regular physical register satis�es the Regular Property: Every physical read operation

returns a value written by an overlapping write operation or by the most recent preceding write

(or the initial value if there is no preceding write).

The read and write processes must work together to implement a logical register. The liveness

property for a logical register di�ers from that for a physical register, as discussed below. A safe

(resp., regular) logical register satis�es the safe (resp., regular) property, as de�ned for physical

registers, replacing \physical" with \logical".

The liveness property for a logical register is that the implementation must be wait-free,

meaning that in every �nite execution, if a logical operation by RPi (resp., WP) is pending, then

there is a �nite sequence of actions involving only RPi (resp., WP) that �nishes the operation.

Our algorithms actually provide a bounded number of actions, while our lower bounds hold for

algorithms satisfying the weaker de�nition.

A natural question that may arise is why the liveness property is di�erent for physical and

logical registers. The wait-free de�nition for the logical register implies that every logical operation

must complete using only physical operations initiated by that logical operation. In the case of the

physical register, where we don't model the \internal" actions, this wait-free property reduces to

the physical liveness property given.

We now de�ne the cost measures.
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Consider two register types, physical and logical, and let A be an algorithm for a physical-to-

logical register implementation. Let MA be the number of physical registers used in A, let RA be

the maximum number of physical operations performed during any logical READ in any execution

of A, and let WA be the maximum number of physical operations performed during any logical

WRITE in any execution of A. Given a set S of physical-to-logical register implementations, letMS

be the minimum of MA over all A 2 S, RS be the minimum of RA over all A 2 S, and WS be the

minimum ofWA over all A 2 S. (If S = ;, thenMS , RS , andWS are in�nity.) Finally, letM =MS ,

R = RS , and W = WS , where S is the set of all physical-to-logical register implementations (for

these two types). (The physical and logical register types are implicit parameters to M , R, and

W .)

In the rest of this paper, we derive upper and lower bounds on M , R, and W , and trade-o�s

between them, for di�erent physical and logical register types.

These bounds on R and W can be converted into time bounds for performing logical operations

as follows. Suppose we know bounds Rl, Ru, Wl, and Wu such that Rl � R � Ru and Wl �

W � Wu. Let r be an upper bound on the time to read a physical register and let w be an upper

bound on the time to write a physical register. Let s be an upper bound on the time for a read

or write process to perform an action once it becomes enabled. Our upper bounds on R and W

come from algorithms, all of which have the property that no logical READ involves a physical

write and no logical WRITE involves a physical read. Since we assume that all physical operations

are enclosed within logical operations and that only one physical operation can be pending at a

time, we deduce that an upper bound on the worst case time to perform a READ of a logical

register that is implemented with physical registers is Ru(r+ s) + s. Similarly, an upper bound on

the worst case time to perform a WRITE of a logical register that is implemented with physical

registers is Wu(w + s) + s. Our lower bounds on R and W do not assume that logical READs do

not involve physical writes, or that logical WRITEs do not involve physical reads, and thus they

imply analogous lower bounds on the worst case times.

2.2 General Results

Given a �nite schedule � of an algorithm A, let the con�guration of � be the tuple of sets of

\possible values" of the physical registers at the end of the schedule, i.e., if Xi is the i-th physical

register, then the i-th element of the con�guration is the set of all values that could be returned by a

physical read of that register at that point, according to the safe/regular property. A con�guration
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is stable if each element of the tuple is a singleton set. Thus it can be represented as x1 : : : xm,

where xi is the value of register Xi for all i. The initial con�guration is the (stable) con�guration

of the empty schedule, consisting of the initial value of each physical register.

Let WO (for \write-only") be the set of all schedules of A in which only WP takes steps and

no physical write is pending. Let S = fC : C is the con�guration of some � 2 WOg. It is easy to

see that all con�gurations in S are stable.

For each i, de�ne Li : S ! V as follows. Li(C) is the logical value returned by RPi when RPi

starts in its local initial state, the physical registers have the values speci�ed in C, and no other

read or write process takes a step.

What we would like is a function that returns the value of the logical register when the physical

registers are in a given con�guration. However, an arbitrary algorithm may have di�erent protocols

for di�erent read processes (necessitating our use of a subscript on L), and it may use the history of

the read process to determine what value is returned. Thus it might be the case that RPi returns

di�erent values at di�erent times in an execution, even given the same con�guration. In order to

accommodate such algorithms, we de�ne each Li speci�cally when RPi has taken no steps yet.

The next lemma states that Li is well-de�ned, i.e., that the current con�guration (values of

the physical registers) and nothing else determines the value of the logical register (as perceived by

RPi). This can be shown by a simple induction on the length of the execution.

Lemma 1 For any algorithm A, the function Li is well-de�ned for all i.

Let WOC (for \write-only, completed") be the set of all schedules of A in which only WP takes

steps and no logical WRITE is pending. Let T = fC : C is the con�guration of some � 2 WOCg.

It is easy to see that T � S. Every con�guration in T is de�ned to be a terminal con�guration.

The next lemma states that if no read process has taken any steps and no logical WRITE is in

progress, then each Li is equal to the value of the most recent WRITE to the logical register.

Lemma 2 For any algorithm A, if � is in WOC with con�guration C, then, for all i, Li(C) equals

the value of the most recent WRITE (the initial value if � is empty).

The previous lemma implies that all the Li's must agree whenever the argument is in the set

T . Thus we de�ne L : T ! V to be L(C) = Li(C) for any i. It is easy to see that for each v 2 V ,

there is a C 2 T such that L(C) = v.
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In most of our proofs, we only need to consider situations in which no logical WRITE is pending,

and thus we can use the notation L. However, in a few places (notably Lemmas 20 and 21), we

must consider what happens in the middle of a logical WRITE, and thus we must use a speci�c Li

(we choose L1 for concreteness).

3 k-ary Safe Register From Binary Safe Registers

We consider the problem of implementing an n-reader, k-ary, safe register out of n-reader, binary,

safe registers, for any n � 1, where k > 2. Subsection 3.1 is devoted to proving tight, independent

bounds on R, W and M . In Subsection 3.2, we present an algorithm A such that WA = 1. We also

show some nice combinatorial properties related to one-write algorithms. Subsection 3.3 discusses

algorithms which allow c physical accesses per logical WRITE. We also give some additional trade-

o�s between the cost measures.

Let the value set of the logical register be V = f0; : : : ; k � 1g with initial value v0 2 V .

3.1 Independent Bounds

Theorem 3 The implementation of an n-reader, k-ary, safe register by n-reader, binary, safe

registers gives the following independent bounds: R = dlog ke, W = 1, and M = dlog ke.

Proof The upper bounds on R and M follow from the binary representation algorithm in [Lam86]

described below. The upper bound on W follows from our hypercube algorithm presented in

Section 3.2. The lower bounds on W and M are obvious.

We now show the lower bound on R. For each v 2 V , there is a schedule �v of A of the form

WRITE(v) �v ACK READ(1) �v RETURN(1; v),

where �v consists solely of actions of WP and contains no ACK, and �v consists solely of actions

of RP1 and contains no RETURN.

By the de�nition of read processes, for all distinct v and w, �v 6= �w and the maximal common

pre�x of �v and �w is immediately followed by a return(0) action from some physical register X in

�v and by a return(1) action from X in �w (or vice versa). I.e., RP1 does the same thing in �v and

�w until it reads a di�erent value. Let 
v be the sequence of physical values read in �v, for all v.
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Thus, if v 6= w, then the sequence 
v of physical values read in �v is not equal to the sequence


w of physical values read in �w. There are k distinct sequences of physical values corresponding

to the 
v's, i.e., k binary strings. Thus at least one string, say that corresponding to 
v, must have

length at least dlog ke, implying that �v contains at least dlog ke physical reads.

The binary representation algorithm in [Lam86] implements an n-reader, k-ary, safe register

out of dlog ke n-reader, binary, safe registers. The write process writes the binary representation of

the logical value into the physical registers. Each read process reads all the physical registers and

returns the logical value whose binary representation was read, as long as the value is less than k.

Otherwise, it returns any value less than k. This algorithm implies that R � dlog ke, W � dlog ke,

and M � dlog ke. By Theorem 3, the number of registers and number of physical reads in the

binary representation algorithm are both optimal.

The unary representation algorithm presented next shows that W � 2. There are k � 1

physical registers, X1; : : : ;Xk�1. Logical value 0 is represented when all registers are 0. Logical

value v 6= 0 is represented when Xv is 1 and the other registers are 0. Each read process reads

registers X1, X2, etc., in order, until reading a 1, and RETURNs logical value v, where Xv is the

register that returned 1. If no register returns 1, then 0 is RETURNed. To WRITE logical value

v, assuming w is the old value of the logical register, the write process writes 0 to Xw if w 6= 0,

and writes 1 to Xv if v 6= 0.

In the next subsection, we will present an algorithm which brings down the number of physical

writes per logical WRITE to 1.

3.2 One-Write Algorithms

In this subsection, we discuss the class of one-write algorithms. We show that their existence

depends on satisfying a combinatorial coloring property of hypercubes.

Figure 1 presents our new hypercube algorithm, which shows that W � 1; it relies on a

function f that will be de�ned shortly. For now, assume that k is a power of 2. Later we will show

how to remove this restriction.

We notice an interesting relationship between the correctness of the hypercube algorithm and

coloring the nodes of a (k � 1)-dimensional hypercube with k colors such that each node has a

neighbor with each of the k � 1 colors other than its own. The following de�nition and lemmas
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Physical Registers: X1; : : : ;Xk�1, initially f(X1 : : : Xk�1) = v0 and Xj = 1 for at most one j

Read Process RPi, 1 � i � n: variables x1; : : : ; xk�1

READ(i):

for j := 1 to k � 1 do xj := read Xj endfor

RETURN(i; f(x1 : : : xk�1))

Write process WP: variables x1; : : : ; xk�1, initially xj equals the initial value of Xj for all j

WRITE(v):

if v 6= f(x1 : : : xk�1) then

write xj to Xj , where j is such that f(x1 : : : xj�1xjxj+1 : : : xk�1) = v

xj := xj

endif

ACK

Figure 1: Hypercube Algorithm

formalize this idea. (Nodes are labeled with (k � 1)-bit strings, the colors are elements of V , and

the function is the coloring.)

A function g is said to have the rainbow-coloring property if g : f0; 1gk�1
! V such that for

all x 2 f0; 1gk�1, and for all v 2 V , if v 6= g(x), then there exists y 2 f0; 1gk�1 such that v = g(y)

and x and y di�er in exactly one bit. That is, every node x has a neighboring node with every

color other than x's color.

Lemma 4 states that if the function f used in the algorithm has the rainbow-coloring property,

the hypercube algorithm correctly implements a k-ary safe register using binary safe registers such

that each logical WRITE requires one physical write. The rainbow-coloring property ensures that

each READ RETURNs the correct value if it does not overlap a WRITE.

Lemma 4 If function f has the rainbow-coloring property, then the hypercube algorithm is correct.

We de�ne a function f : f0; 1gk�1 ! V for use in the algorithm. Lemma 5 below shows that f

has the rainbow-coloring property. For positive integer i < k, let bin(i) be the binary representation

of i in log k bits (remember that k is a power of 2). For x 2 f0; 1gk�1, let xi be the ith bit of x,

i.e., x = x1x2 : : : xk�1. For all x 2 f0; 1gk�1, we de�ne f(x) to be the element of V whose binary

representation is
L

xi=1 bin(i) , where � represents exclusive-or. This expression consists of log k

bits and thus represents a value in the range 0 to k � 1, i.e., a value in V .
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The intuition behind the coloring function f is that we want to go from a (k� 1)-bit string, the

label of a node in the hypercube, to a (log k)-bit string, indicating one of k colors. Given a node

with label x, the color assigned is the one whose binary representation is equal to the exclusive-or

of the set of bin(i), for all i such that xi = 1. Note that, if two nodes x and y di�er in the single

bit i, then f(x) � f(y) = bin(i). So, given the color of a node x, we can derive the color of any

adjacent node y in a consistent manner.

Given this de�nition of f , the initial values of the physical registers are all 0, except that if v0 6= 0

then Xv0 = 1. The computation of j in the writer's code is bin(j) = bin(v)� bin(f(x1 : : : xk�1)).

Lemma 5 The function f de�ned for the hypercube algorithm (when k is a power of 2) has the

rainbow-coloring property.

Proof First we must show that for all x; y 2 f0; 1gk�1 which di�er in exactly one bit, f(x) 6= f(y).

Suppose x and y di�er in bit i. Then f(x) � f(y) = bin(i). Since bin(i) 6= 0log k, we are done.

Second we must show that for all x; y; z 2 f0; 1gk�1 such that y 6= z and y and z both di�er from x

in exactly one bit, f(y) 6= f(z). This can be shown similarly. These two facts together show that

f has the rainbow-coloring property.

Figure 2 illustrates how our algorithm works in the simple case where k = 4. Our hypercube

is then a 3-dimensional cube, whose vertices can be colored with 4 colors, r, b, g and y. Note that

the coloring satis�es the rainbow-coloring property.

Combining Lemmas 4 and 5 shows that the hypercube algorithm is a one-write algorithm (using

k � 1 registers) if k is a power of 2. To obtain a one-write algorithm for values of k that are not

powers of 2, we modify the power-of-2 hypercube algorithm for m � 1 physical registers, where

m = 2dlog ke, i.e., m is the smallest power of 2 larger than k. The modi�cation is to change the

RETURN statement to be RETURN(minfk� 1; f(x1 : : : xm�1)g). This implementation of a k-ary

register by binary registers will not cause the binary registers to take on all possible 2m�1 values,

i.e., no stable con�guration of the algorithm will be mapped to a value that is out of the range

of the logical register. However, a slow read process, which overlaps a number of writes, might

(spuriously) observe a con�guration corresponding to a value larger than k � 1, thus necessitating

the modi�cation. Thus we have shown the following theorem.

Theorem 6 The hypercube algorithm correctly implements a k-ary safe register using binary safe

registers.

11



��
��
��
��

��
��

��
��

��
��

��
��

��
��

��
��

e
e
e

...
........
..

e
e
e

@
@@

@
@@

y

y

g

g

b

b

r

r

100

110
111

101

011010

001000

Figure 2: An Example Illustrating the Hypercube Algorithm

The following theorem summarizes our results for the class of 1-write algorithms.

Theorem 7 Let S be the set of algorithms A such that WA � 1. Then

� k � 1 � RS � 2dlog ke � 1,

� MS = k � 1, if k is a power of 2, and

� k �MS � 2dlog ke � 1, if k is not a power of 2.

Proof All the upper bounds follow from the hypercube algorithm. The rest of the proof concerns

the lower bounds.

Choose an algorithm A 2 S. Let Cv0 be the initial con�guration. For all v 6= v0, let Cv be the

con�guration of a schedule in WOC of the form WRITE(v) �v ACK, where �v contains no ACK.

Since �v only contains one physical write, Cv0 and Cv di�er in a single bit, say that for physical

register Xv.

Since there are k� 1 choices for v 6= v0, there are at least k � 1 physical registers. Since A was

chosen arbitrarily, MS � k� 1. The improved lower bound of k for MS when k is not a power of 2

follows from Lemmas 8 and 9 below.

To show RS � k � 1, we assume, for contradiction, that RA < k � 1. Consider the schedule

READ(1) � RETURN(1; v0), where � consists solely of actions of RP1 and contains no RETURN.
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� contains a sequence of less than k � 1 physical reads. Let Xv (as de�ned above) be one of the

physical registers not read in �; note that v 6= v0. Since Cv0 di�ers from Cv in the value of register

Xv and nowhere else, an easy induction on the length of � shows that WRITE(v) �v ACK READ(1)

� RETURN(1; v0) is a schedule of A, violating the safe property since v 6= v0. We therefore have

a contradiction, implying RA � k � 1.

We now consider the number of registers when k is not a power of 2. Lemma 8, which is the

converse of Lemma 4, shows that the existence of a function with the rainbow-coloring property is

necessary for the existence of a one-write algorithm using k � 1 registers. Lemma 9, which is the

converse of Lemma 5, shows that when k is not a power of 2, no function with the rainbow-coloring

property can exist. Together, these two lemmas imply that if k is not a power of 2, then any

one-write algorithm must use more than k � 1 registers.

Lemma 8 If there is an algorithm A with WA = 1 and MA = k � 1, then there exists a function

with the rainbow-coloring property.

Proof We show that L has the rainbow-coloring property. Recall that L maps T , the set of

terminal con�gurations, to V . We know T is not empty. Choose any con�guration C 2 T . Let v

be the color of C under L. Every neighbor of C is also in T and has a unique color di�erent from

C's color, since there are only k � 1 registers and k� 1 possibilities for the next value not to be v.

To �nish the proof, we note that T = f0; 1gk�1, since every neighbor of a terminal con�guration is

also a terminal con�guration.

Lemma 9 If k is not a power of 2, then there is no function with the rainbow-coloring property.

Proof Assume in contradiction that there is a function f with the rainbow-coloring property.

Choose any color, say blue, and let b be the number of nodes colored blue by f . Let B be the set

of edges in the hypercube that have one endpoint colored blue and one endpoint not colored blue.

Since each non-blue node is adjacent to exactly one blue node and there are 2k�1 � b non-blue

nodes, jBj must be 2k�1� b. However, since each blue node is adjacent to k�1 non-blue nodes and

there are b blue nodes, jBj must be b(k� 1). The implication is that 2k�1� b = b(k� 1), implying

2k�1 = kb. This implies that k divides 2k�1, contradicting the fact that k is not a power of 2.

In this subsection, we showed that the existence of a one-write implementation of a k-ary

safe register was based on solving an underlying combinatorial problem. Speci�cally, a one-write
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algorithm using k � 1 physical registers exists if and only if we can color a (k � 1)-dimensional

hypercube with k colors such that each node has a neighbor with every color other than its own.

We can generalize this to any number of physical registers as follows. A one-write algorithm using

m registers exists if and only if we can partially color an m-dimensional hypercube with k colors,

such that each colored node has a neighbor with every color other than its own. By a partial

coloring, we mean a coloring where not all nodes of the graph need to be colored.

Lemmas 5 and 9 imply that there is rainbow-coloring of the (k � 1)-dimensional hypercube

if and only if k is a power of 2. Kant and van Leeuwen [KvL90] have independently shown the

same result. Their proof uses notions from coding theory and is based on showing a correspondence

between 1-error-correcting codes and these colorings. They applied this result to the �le distribution

problem.

3.3 c-write Algorithms and Trade-o� Results

As we showed for 1-write algorithms, the problem of implementing c-write algorithms can also be

shown to have a corresponding parallel in a combinatorial problem. Here, we are interested in a

partial coloring of the m-dimensional hypercube such that for each colored node, there exists a

node of every other color within a distance of c from this node.

This combinatorial characterization also helps us obtain lower bounds for M and R. For exam-

ple, we know that for a one-write algorithm to exist which uses m physical registers, there must

be a con�guration C0 which di�ers from k� 1 di�erent con�gurations Cv in exactly one bit. Since

each con�guration is represented in m bits, this says that there is a binary string of length m

which di�ers from k � 1 di�erent strings of the same length in exactly one bit. To satisfy this

combinatorial property, we require that m � k � 1. This sequence of reasoning was implicit in the

proof of Theorem 7.

Along similar lines, for a c-write algorithm to exist which uses m registers, there must exist a

binary string of length m which di�ers from k � 1 di�erent strings of the same length in at most c

bits.

We formalize this property in Lemma 10 and Theorems 12 and 13 below. These theorems give

lower bounds on M and R for c-write algorithms, i.e., algorithms that use a small bounded number

of physical writes per logical WRITE.

The next result is Theorem 14, which gives trade-o�s on W versus R and M . An application

of this result is to give upper bounds on M and R for c-write algorithms.
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The �nal result in this subsection, Theorem 15, states that if no more than dlog ke registers are

used, then some WRITE must write at least dlog ke physical registers.

Lemma 10 Given any binary string x of length m, if there are at least k distinct strings of length

m which di�er from x in at most c bits, where c � (log k)=3, then m � (c!k=2)1=c.

Proof Let x be a string of length m. The number of distinct strings of length m which di�er from

x in at most c bits is
�
m
0

�
+
�
m
1

�
+
�
m
2

�
+ � � � +

�
m
c

�
. Since we know that there are at least k

such distinct strings, we have
Pc

i=0

�
m
i

�
� k. We obtain the following upper bound on

�
m
i

�
, for

all i:
�
m
i

�
=

m(m�1)(m�2)���(m�i+1)

i!
� mi

i!
. To get an upper bound on the entire summation, we

need the following claim, which is taken from [Tya88]. First, we introduce some notation. Let sm;j

denote
Pj

i=0

�
m
i

�
. Let bm;i denote

�
m
i

�
.

Claim 11 If 1 � j � m=3, then sm;j � 2bm;j.

Proof: We compute a lower bound for bm;j=bm;j�1 = m�j+1

j . Note that m�j+1

j is

larger than 2 for j � m=3. Therefore, for j � m=3, bm;j=bm;j�1 > 2. The remaining

proof is by induction.

Inductive Hypothesis: sm;j � 2bm;j for j � m=3.

Basis: For j = 1 (assume m � 3), sm;0 = bm;0 = 1 and bm;1 = m. Therefore,

sm;1 = m+ 1 and sm;1 � 2bm;1.

Inductive step: Let the inductive hypothesis hold for all l such that l < j � m=3. We

show that it holds for j. By the inductive hypothesis, sm;j�1 � 2bm;j�1. Note that

sm;j = sm;j�1+bm;j. This implies that sm;j � 2bm;j�1+bm;j. Also, we showed earlier

that 2bm;j�1 � bm;j . Therefore, sm;j � bm;j + bm;j = 2bm;j . End of Claim

The above claim holds for j = c since we know that m � log k (it takes log k bits to represent

k distinct values), and this implies that c � m=3. Now, using the above claim and our previous

upper bound for
�
m
i

�
, we have

Pc
i=0

�
m
i

�
� 2

�
m
c

�
� 2mc

c! . So, k � 2mc=c! and by manipulating

this inequality, we get the result m � (c!k=2)1=c.

Theorem 12 For all algorithms A, if WA = c, where c � (log k)=3, then MA � (c!k=2)1=c.
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Proof Given an algorithm A such that WA = c, where c � (log k)=3, let Cv0 be the initial

con�guration. Then L(Cv0) = v0. For all v 6= v0, the schedule �v of the form WRITE(v) �v ACK

yields the terminal con�guration Cv. Since each WRITE can initiate at most c physical writes,

each Cv di�ers in at most c bits from Cv0 .

Since there are k values v, there must be at least k terminal con�gurations Cv di�ering in

at most c bits from Cv0 . The number of registers used in the algorithm is MA. Each terminal

con�guration is therefore a binary string of length MA. Therefore, there are at least k strings of

length MA which di�er in at most c bits from Cv0 . Since, c � (log k)=3, Lemma 10 applies, and we

have the result MA � (c!k=2)1=c.

Theorem 13 For all algorithms A, if WA = c, where c � (log k)=3, then RA � (c!k=2)1=c.

Proof For any algorithm A, where WA � c, consider the following schedules, for all v,

WRITE(v) �v ACK READ(1) �v RETURN(1; v),

where �v and �v contain only physical actions. We claim that for some v, �v initiates at least

(c!k=2)1=c physical reads. We prove this by contradiction.

Suppose, for every v, �v initiates at most p physical reads where p < (c!k=2)1=c. Let �v be the

sequence of values read, in order, on accessing any given register for the �rst time in �v. Note that

we don't include values obtained from registers which have been read before or been written before

in �v. Clearly, j�vj � p.

First we assume that the initial con�guration is the zero-vector. Therefore, the initial values of

all the physical registers are 0. Since �v contains at most c physical writes, there can be at most c

1's in �v. Clearly, each �v is distinct. Otherwise, if for some v; v0 such that v 6= v0, �v = �v0 , then a

READ in both cases would RETURN the same value, which would be a contradiction. Therefore,

f�vjv 2 V g is a set of k distinct strings of length at most p which di�er from the zero-vector in at

most c bits. Since p < (c!k=2)1=c, this contradicts Lemma 10.

In the general case where the initial con�guration is not the zero-vector, we can no longer claim

that �v contains at most c 1's. We therefore de�ne the string Æv, for every v, as follows. For every

bit in �v, if the value is the same as the initial value of the register read, place the bit 0 in Æv. If the

value is di�erent from the initial value of the register read, place the bit 1 in Æv . Since �v contains

at most c writes, Æv can contain at most c 1's. Also, each Æv is distinct. Now, the same argument

as in the previous paragraph holds, with Æv substituted for �v.
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Therefore, for some v, �v initiates at least (c!k=2)
1=c physical reads. This gives our lower bound

for RA.

Theorem 14 presents bounds on the costs of algorithms that are a hybrid of the binary and

unary representation algorithms. Using this theorem, we can derive upper bounds on M and R

for c-write algorithms. Theorem 15 concerns bounds on W for algorithms that use dlog ke physical

registers.

The binary representation algorithm yields an upper bound of dlog ke for R, W and M . The

unary representation algorithm brings down the upper bound for W to 2, while pushing up the

bounds for R and M to 
(k). This suggests a trade-o� between these measures. We can construct

a class of algorithms, by borrowing from both algorithms mentioned above, which have bounds on

RA and MA varying from �(log k) to �(k) and bounds on WA varying from �(log k) to �(1).

Theorem 14 For any m, 1 � m � k, there is an algorithm A such that RA = �(logm + k=m),

MA = �(logm+ k=m), and WA = dlogme+ 2.

Proof We implement our k-ary register by combining an a-ary register and a b-ary register as

follows. Let a be the smallest power of 2 which is at least as large as m, i.e., a = 2dlogme. Let

b = dk=ae. We implement an a-ary register by the binary representation method, and a b-ary

register by the unary representation method. Both these methods have been described earlier. Let

the values represented by the a-ary register be in A = f1; : : : ; ag and the values represented by the

b-ary register be in B = f1; : : : ; bg. We obtain an ab-ary register by combining these two registers,

where the ab values represented are in A�B. Note that ab � k, so we have our k-ary register.

We consider the bounds of our combination register. The a-ary register uses dlogme registers

and dlogme physical operations per logical operation. The b-ary register uses dk=ae registers, dk=ae

physical reads per logical READ, and 2 physical writes per logical WRITE. Therefore, the total

number of registers used is dlogme + dk=2dlogmee. This is also the number of physical reads per

logical READ. There are dlogme+ 2 physical writes per logical WRITE. This gives the combined

bounds claimed by our theorem.

The preceding theorem helps us to derive upper bounds for MS and RS , where S is the class

of c-write algorithms. Choose m = 2c�2. Since c � log k, it follows that m � k and Theorem 14

applies. Therefore, there exists an algorithm A such that
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� WA = c,

� RA = c� 2 + dk=2c�2e, and

� MA = c� 2 + dk=2c�2e.

We thus have the corresponding upper bounds for RS and MS , where S is the class of c-write

algorithms. Clearly, the upper bounds obtained earlier for the class of 1-write algorithms also hold

for c-write algorithms. These new bounds surpass the earlier bounds when c � 3.

The next theorem states that if an algorithm uses only dlog ke physical registers, then some

logical WRITE must use at least dlog ke physical writes.

Theorem 15 For any algorithm A, if MA � dlog ke, then WA � dlog ke.

Proof Let A be an algorithm withMA = dlog ke. (We have already shownMA cannot be smaller.)

Since the physical registers are binary, jT j � 2dlog ke. Recall that for all v 2 V , there is an x 2 T

with L(x) = v.

Let U be the subset of T such that x is in U if and only if there is no y 6= x in T such that

L(y) = L(x). Thus for each con�guration x in U , x is the only terminal con�guration which has

the logical value L(x).

Claim 16 There is an x 2 U such that x 2 T . (x is the binary string that di�ers from x in every

bit.)

Proof: Suppose there is no such x. Let jU j = l. Each element of U corresponds to a

distinct element of V , accounting for l elements of V . The remaining k � l elements

of V are represented among the con�gurations of T that are not in U and are not

the inverse of an element of U . There are at most 2dlog ke � 2l of these con�gurations.

There are at least two of these con�gurations for each remaining element of V . Thus

2dlog ke�2l � 2(k� l), which implies dlog ke � log k+1, a contradiction. End of Claim

Choose x 2 U such that x 2 T . Let � be a schedule in WOC with con�guration x. Suppose

L(x) = v. Then there is a schedule � in WOC of the form � WRITE(v) � ACK, where � contains

no ACK. The con�guration of � must be x since x 2 U . Thus � contains at least dlog ke writes,

and WA � dlog ke.
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4 k-ary Regular Register From Binary Regular Registers

We now shift our attention to regular registers. We would like to implement an n-reader, k-ary,

regular register using n-reader, binary, regular registers. Binary regular registers and binary safe

registers have the same power. In other words, one can be implemented from the other using

one physical register per logical register, at most one physical write per logical WRITE, and one

physical read per logical READ [Lam86].

As with safe registers, the problem of implementing k-ary regular registers can also be shown

to have a parallel in a combinatorial problem. If there exists an algorithm to implement a k-ary

regular register which usesm binary registers, then there is a partial k-coloring of an m-dimensional

hypercube with the following restriction. For each colored vertex v, let c be its color. Then, for

each color ci such that ci 6= c (there are k � 1 such colors), there exists a path in the hypercube

from v to some vertex vi with color ci all of whose intermediate vertices are colored c.

This characterization takes care of a slow WRITE which overlaps a number of READs. The

path corresponds to the intermediate con�gurations reached during a WRITE. It makes sure that

whatever value is RETURNed by a READ which sees an intermediate con�guration preserves the

regular property of registers. Note, however, that while this restriction is necessary for an algorithm,

it is not suÆcient. This is because the restriction doesn't take care of the problem of a slow READ

overlapping a number of WRITEs, as we will show later. In particular, our hypercube algorithm

for safe registers satis�es this characterization, but cannot be used to implement a regular register.

Therefore, this characterization may help us get a lower bound for this problem, but not an upper

bound.

Subsection 4.1 shows our independent bounds on R, W , and M . Subsection 4.2 contains our

trade-o� results. As before, we let V = f0; : : : ; k � 1g.

4.1 Independent Bounds

The following theorem establishes the independent bounds achieved for this problem.

Theorem 17 The implementation of an n-reader, k-ary, regular register by n-reader, binary, reg-

ular registers gives the following independent bounds:

� R = dlog ke,
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� 1 �W � dlog ke, and

� maxfdlog ke+ 1; d2 log k � log log ke � 2g �M � minfk � 1; n(3 log k + 68)g.

Proof The lower bound for R follows directly from a similar proof as the one for safe registers.

The lower bound for W is obvious. The lower bound for M is shown in Lemmas 20 and 21 below.

The upper bounds on R and W appear simultaneously in the tree algorithm, presented below.

However, this algorithm uses k � 1 physical registers. Lamport [Lam86] describes a complex com-

position of implementations to achieve an algorithm using n(3 log k+68) 1-reader physical registers

(recall that n is the number of readers for the logical register). It is unknown whether a better

result, for example without the factor of n, is possible by taking advantage of the additional power

when the physical registers are n-reader.

The modi�ed unary algorithm is a simple algorithm in [Lam86] that gives upper bounds

of W � k, R � k and M � k. Given registers X0; : : : ;Xk�1, the index of the lowest indexed

register which has the value 1 determines the k-ary value represented. A READ operation reads

X0;X1; : : : ; in order, until a 1 is returned. It subsequently RETURNs v, where the 1 was read from

Xv. A WRITE(v) operation writes 1 in register Xv, and then writes 0 in Xv�1; : : : ;X0; in order.

(It is possible to optimize the algorithm so as to remove register Xk�1.)

Our hypercube algorithm, which we used to implement a k-ary safe register from binary safe

registers, cannot be used to implement a k-ary regular register. The reason for this is as follows.

In case of a slow READ which overlaps a number of WRITEs, the physical reads initiated by the

READ may return a set of register values which do not represent a con�guration that occurred

during the course of the READ. Thus a logical value may be RETURNed which does not correspond

to a value written by an overlapping or last preceding WRITE. A stronger result, stating that no

1-write algorithm using k � 1 registers can implement a k-ary regular register from binary regular

registers, is proven in Theorem 22.

We now present our new tree algorithm, which gives the improved bounds of R � dlog ke,

W � dlog ke, and M � k � 1. The registers are the nodes in a binary tree. The tree represents

a sort of binary search conducted by the READ operation to �nd the value written. The READ

takes a path from the root to a leaf, while the WRITE follows a path starting from a leaf to the

root. The path in the tree taken by the READ, along with the values it reads, uniquely de�nes the

value read.
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The tree representation of the registers is described as follows. Given any binary tree of k leaves,

the internal nodes of the tree correspond to the registers, while the leaves correspond to the k-ary

values. Let the leaves of the tree be labeled in some arbitrary manner by the k values in V .

Let v0 be the initial value of the logical register. The initial values of the physical registers are

those that would result from starting with all 0's in the physical registers and then executing a

single WRITE(v0) operation as described below.

A WRITE(v) operation writes into the set of registers that form the path from the leaf labeled

v to the root, beginning with the parent of the leaf, following the path, and ending with the root.

The value written to the i-th node on the path is 0 (resp., 1) if the (i � 1)-st node on the path is

the left (resp., right) child.

A READ operation reads a set of registers that form a path from the root to a leaf labeled v,

for some v, beginning with the root. Suppose the i-th node read has value 0 (resp., 1). If its left

(resp., right) child is a leaf, then v is RETURNed, where v is the label of the leaf. Otherwise, the

left (resp., right) child of the i-th node is the (i+ 1)-st node read.

We just showed that any binary tree with k leaves completely speci�es our algorithm. Simple

results in graph theory imply that for any k, there exists a binary tree with k leaves, k� 1 internal

nodes, and height dlog ke (the number of edges in the longest path from the root to a leaf). To

obtain the desired complexity bounds, we base our algorithm on one of these trees. Since only

internal nodes correspond to registers, MA = k � 1, RA � dlog ke, and WA � dlog ke.

Figure 3 illustrates a 7-ary register with value 3. The path marked on the tree corresponds to

the physical registers read by a logical READ operation.

If k is a power of 2, the registers and values form a complete binary tree of height log k. We

describe the algorithm, for this special case, formally in Figure 4. Let vmvm�1 : : : v1 be the binary

representation of the k-ary value v, where m = log k. The root register is labeled with the empty

string �. For each register labeled with the binary string l, the strings l0 and l1 are the labels

of its left and right children, respectively. Let the initial value of the logical register be v0 with

its binary representation being v0;mv0;m�1 : : : v0;1. Then the initial value of the physical register

labeled v0;m : : : v0;p+1 is v0;p, for all p 2 f1; : : : ;mg. All other physical registers have initial value 0.

Here, the log k physical values read by the READ operation form the binary representation of

the k-ary number. Clearly, the algorithm has the bounds stated.

In order to prove the correctness of the tree algorithm, we need some de�nitions and a lemma.

We de�ne a physical read r to re
ect a physical write w, in a given schedule, if r and w access
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Figure 3: An Example Illustrating the Tree Algorithm

To WRITE(v), To READ,

for p := 1 to m do for p := m to 1 do

write vp to register vm : : : vp+1 vp := read register vm : : : vp+1

ACK RETURN(vm : : : v1)

Figure 4: Tree Algorithm for k a power of 2
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the same physical register, and either (1) w completely precedes r, or (2) w and r overlap and r

returns the value that w writes. We say that a logical READ R notices a logical WRITE W if R

contains a physical read that re
ects a physical write contained in W .

Lemma 18 Given any schedule of the tree algorithm, and any READ R in the schedule, R RE-

TURNs the value written by the last WRITE W that R notices (note that there is a total order

among the WRITE operations). If no such WRITE exists, R RETURNs the initial value.

Proof Let R be a READ in some schedule. Suppose R notices no WRITEs. Then every physical

read r initiated by R returns the initial value of the physical register read. Therefore, R RETURNs

the initial value of the logical register.

Otherwise, R notices some WRITEs. Let W be the last WRITE that R notices. Let s be the

last register read by R such that R's read from s re
ects W 's write to s. Clearly, R reads the value

b written by W into s. Otherwise, there is a later WRITE W1 such that W1 writes s and R notices

W1, which contradicts the fact that W is the last WRITE that R notices.

Without loss of generality, let b = 0. (The argument for b = 1 is identical by replacing \left" in

the following discussion with \right".)

We claim that s is the last register read by R. Suppose not. Then, R next reads the register

t corresponding to the left son of s. Since W wrote b in register s, it must have earlier written to

register t. This contradicts the de�nition of s.

Now, the left son of s must be a leaf node. Let v be the label of this leaf node. Clearly, v is

RETURNed by R. Since W writes b into s, the logical value written by W is v.

Theorem 19 The tree algorithm implements a k-ary regular register using binary regular registers.

Proof We need to argue that our logical k-ary register behaves correctly; i.e., given that our

algorithm is implemented using regular binary physical registers, it actually implements a regular

k-ary register. Clearly the algorithm has the wait-free property.

Given any schedule, and any READ R in that schedule, we need to prove that R RETURNs

the value of one of the WRITE operations it overlaps with or the last preceding WRITE W1 (or

the initial value, in the case that no WRITE completely precedes R). We consider two cases.

Case 1: R notices no WRITEs.

Since R reads the root node, and any WRITE must write into the root node, it follows that no

23



WRITE completely precedes R. By Lemma 18, R RETURNs the initial value, and this satis�es

regularity.

Case 2: R notices some WRITEs.

Let W1 be the last WRITE that R notices. By Lemma 18, R RETURNs the value written by W1.

We show that W1 either overlaps with R or is the last WRITE preceding R. This would satisfy

regularity.

Clearly,W1 cannot completely follow R, since, by the de�nition of notice,W1 contains a physical

write that either precedes or overlaps a physical read contained inR. The only other case to consider

is thatW1 precedes another WRITEW2, which completely precedes R. SinceW1 is the last WRITE

that R notices, R does not notice W2. Since W2 completely precedes R, R must read the root node

after W2 writes into it, which implies that R does notice W2. This gives a contradiction. Therefore,

W1 either overlaps with R or is the last WRITE preceding R.

The tree algorithm simultaneously gives us the best bounds we have for this problem. If the

frequencies of READs and WRITEs of all the k values were known in advance, then the number of

accesses per READ or WRITE could be optimized by organizing the binary registers as a Hu�man

tree. For a discussion of Hu�man codes, see Hamming ([Ham86]).

We present our lower bounds for M below. Both of the bounds we obtain are signi�cant for

di�erent values of k. The bound of Lemma 21 supersedes the bound of Lemma 20 for k � 55.

Lemma 20 M � dlog ke+ 1.

Proof Choose any algorithm A. We assume, for contradiction, that MA = dlog ke. Note that the

lower bound for M of dlog ke, proved for safe registers, holds here as well. For all v 2 V , there is a

schedule �v of A in WOC of the form WRITE(v) �v ACK, where �v contains no ACK. Let Cv be

the con�guration of �v; it is easy to see that Cv is stable.

Choose v 2 V . For each w 2 V , w 6= v, there is a schedule �vw in WOC of the form WRITE(v)

�v ACK WRITE(w) �vw ACK, where �vw contains no ACK. Let Cvw be the con�guration of �vw;

it is easy to see that Cvw is stable.

Since only WP takes steps in �vw and physical writes are done serially, �vw goes through a

sequence of stable con�gurations (corresponding to schedules in WO). By Lemma 2, L1(Cvw) = w

and L1(Cv) = v. Since w 6= v and L1 is a function by Lemma 1, Cvw 6= Cv. Thus a stable
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con�guration is reached in �vw that is di�erent than Cv. Let Dvw be the �rst such con�guration.

Dvw and Cv di�er in a single bit, i.e., in the value of a single register.

Since there are only dlog ke bits in each con�guration, there are only dlog ke con�gurations which

di�er in a single bit from Cv. Since there are k� 1 values in V di�erent than v, there exist distinct

w and u in V such that Dvw = Dvu. Call this con�guration Dv. By regularity, L1(Dvw) 2 fv; wg

and L1(Dvu) 2 fv; ug. Thus L1(Dv) = v.

Since L1(Cv) = v, all the Cv's are distinct. Since L1(Dv) = v, all the Dv's are distinct. It is

easy to see that Cv 6= Dw for all v and w. Thus there are at least 2k distinct stable con�gurations,

requiring at least dlog ke+ 1 registers. Therefore, we have a contradiction.

Lemma 21 M � d2 log k � log log ke � 2.

Proof Choose any algorithm A. Let d be the number of registers used in the algorithm.

For all v 2 V , there is a schedule �v of A in WOC of the form WRITE(v) �v ACK, where �v

contains no ACK. Let Cv be the con�guration of �v; it is easy to see that Cv is stable. Clearly,

L1(Cv) = v.

We claim that for any two k-ary values v and w, there exists a pair of stable con�gurations Dv

and Dw which di�er in exactly one bit such that L(Dv) = v and L(Dw) = w. Suppose not. Then,

consider the schedule �vw in WOC of the form �v WRITE(w) �vw ACK, where �vw contains no

ACK. Let the con�guration of �vw be Dvw. The con�guration of �v is Cv. Note that Dvw is a

stable con�guration and L1(Dvw) = w. Consider the sequence of stable con�gurations reached by

the schedule �vw starting from Cv and ending at Dvw. By the assumption, there exists a stable

con�guration Dx in the sequence such that L1(Dx) = x but x 6= v and x 6= w. A READ starting

at Dx would therefore RETURN x, which violates regularity. This gives a contradiction.

Recall that S is the set of all con�gurations resulting from schedules in WO (only WP takes

steps and no physical write is pending). Let cv be the number of stable con�gurations C in S such

that L1(C) = v, for each k-ary value v. Let c = minfcxjx 2 V g, and let v 2 V be such that c = cv.

For each value w such that w 6= v, there are stable con�gurations Dv and Dw in S which di�er in

exactly one bit such that L1(Dv) = v and L1(Dw) = w. Since each stable con�guration C, such

that L1(C) = v, has d neighbors, and there are (k � 1) values w, it follows that cd � k� 1. Since

there are k di�erent values and at most 2d possible stable con�gurations, ck � 2d. Solving the

two inequalities, we obtain that k2 � k � d 2d, which implies that 2(log k) � d + log d + 1, for

k � 2. The last inequality implies that d � 2(log k)� log log k � 2.
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4.2 Trade-O�s

We have the following lower bounds for R and M relating to one-write algorithms. In particular,

we show that any one-write algorithm for this problem would require at least k registers. In other

words, our hypercube algorithm for safe registers does not work for regular registers.

Theorem 22 For all algorithms A, if WA = 1 then RA � k � 1 and MA � k.

Proof The lower bound for RA follows from a similar proof as the one for safe registers. By using

a similar argument, we can actually make the additional claim that every READ reads at least

k � 1 distinct physical registers. We use this claim in the following proof of the bound for MA.

To show MA � k, suppose in contradiction that a one-write algorithm A exists which uses k�1

registers. Then Lemma 8 carries over from the safe case, implying that the function L has the

rainbow-coloring property. Let C0 be the initial con�guration; clearly, L(C0) = v0. Consider the

following schedule �: READ(1) Æ RETURN(1; v0) where Æ consists only of physical actions taken

by RP1. We claim that Æ does not contain any physical write.

Claim 23 The sequence of actions Æ does not contain a physical write.

Proof: Suppose Æ does contain a physical write, i.e., Æ = Æ1 writei(b) Æ2, where Æ1

contains no physical write. Then, there is a schedule of the form

READ(1) Æ1 writei(b) Æ2 RETURN(1; v0) READ(1) Æ
0 RETURN(1; v0),

where Æ0 contains only physical actions. Let C1 be the con�guration that di�ers from

C0 only in position i. Then L(C1) = v, for some v 6= v0.

Consider the schedule WRITE(v) 
 ACK, where 
 contains only physical actions of

WP. Then 
 consists of a single physical write, to register i (as well as possibly some

physical reads). An easy induction shows that

READ(1) Æ1 WRITE(v) 
 ACK writei(b) Æ2 RETURN(1; v0) READ(1) Æ
0 RETURN(1; v0)

is a schedule, since there is no physical write in Æ1 and the physical write within the

logical WRITE is \obliterated" by writei(b). This violates regularity because the second

READ should RETURN v, not v0. End of Claim
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Figure 5: Relationship Between the Four Con�gurations

Now, we continue with the proof of the theorem. Pick two distinct registers (call them registers

i and j) which are read in schedule �.

We de�ne C1 to be the stable con�guration which di�ers from C0 in position j, C3 to be the

stable con�guration which di�ers from C0 in position i, and C2 to be the stable con�guration

which di�ers from C0 in positions i and j. For all l 2 f1; 2; 3g, Cl is a terminal con�guration. Let

L(Cl) = vl. It is easy to verify that v0, v1, v2 and v3 are distinct values in V . Suppose, without loss

of generality, that the initial value of both registers i and j is 0. Figure 5 illustrates the relation

between the four con�gurations de�ned. Adjacent con�gurations di�er in a single bit. The label

on the edge between two con�gurations corresponds to the particular bit in which they di�er.

Now, consider the sequences of actions, speci�ed in Table 3, which can be applied at a con�g-

uration Cstart and results in the con�guration Cfinish.

We claim that if we have a schedule � with the con�guration Cstart and no pending WRITE,

we can concatenate an appropriate sequence of actions � (from Table 3) to � to obtain the schedule

�0 with the con�guration Cfinish. The sequence � is a single logical WRITE which consists of a

single physical write (and possibly some physical reads)|thus none of the 
ab's contain any physical

writes. It is easy to see that each � exists.

We create a new sequence �0 by taking � and inserting certain sequences at certain points,
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Cstart sequence � Cfinish

C0 �01 = WRITE(v1) 
01 writej(1)

0

01 ACK C1

C1 �12 = WRITE(v2) 
12 writei(1)

0

12 ACK C2

C2 �23 = WRITE(v3) 
23 writej(0)

0

23 ACK C3

C3 �32 = WRITE(v2) 
32 writej(1)

0

32 ACK C2

C2 �21 = WRITE(v1) 
21 writei(0)

0

21 ACK C1

Table 3: Sequences for Proof of Theorem 23

according to the following rules. First, we insert �01 immediately before READ(1), resulting in

con�guration C1. Then, immediately before each readj of RP1, if the con�guration is C1, we insert

�12�23, resulting in con�guration C3. Immediately before each readi of RP1, if the con�guration is

C3, we insert �32�21, resulting in con�guration C1.

To see that �0 is a schedule, it is suÆcient to observe that the only time the con�guration

changes within the schedule is when a sequence �ab is inserted. This follows from the fact, proven

in Claim 23, that � contains no physical writes. In particular, inserting �01 changes the con�gu-

ration to C1, inserting �12�23 changes the con�guration to C3, and inserting �32�21 changes the

con�guration to C1. We can prove, by a simple induction, that the con�guration reached by any

pre�x of schedule �0 up to a readi by RP1 is always C1. Similarly, the con�guration reached by any

pre�x of schedule �0 up to a readj by RP1 is always C3. Therefore, readi and readj always return

the value 0. It follows that v0 is the value RETURNed by the READ(1) in the schedule �0. Since,

to satisfy regularity, the READ should RETURN v1, v2 or v3, we have a contradiction.

We conclude this section with a trade-o� result relating to a constant number of writes. This

follows from the identical result derived in the safe case.

Theorem 24 For all algorithms A, if WA = c, where c � (log k)=3, then MA � (c!k=2)1=c and

RA � (c!k=2)1=c.

5 Conclusion

We have demonstrated upper and lower bounds on the number of physical registers, the number of

physical reads in a logical read, and the number of physical writes in a logical write, for a variety
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of multivalued register implementations. In many cases, our bounds are tight. Some of our upper

bounds follow from two new algorithms that we present, one for implementing a k-ary safe register

out of binary safe registers, and another for implementing a k-ary regular register out of binary

regular registers. We also presented several interesting trade-o�s between these cost measures,

for implementing k-ary registers out of binary registers. The bounds on the number of physical

operations can be converted into bounds on the time to perform the logical operations, in terms of

the time for the physical operations.

Future work includes �nding such bounds for more algorithms, in particular, those involving

atomic registers and multi-writer registers. The bounds in this paper on W and M for implement-

ing a k-ary regular register out of binary regular registers are not tight. (Current work shows that

the tight bound for W is 1, i.e., that there exists a 1-write algorithm for a k-ary regular regis-

ter [CKW91].) A �nal question is what di�erence does it make, if any, if clocks are available to the

read and write processes?
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