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Distributed reconfiguration of hexagonal
metamorphic robots

Jennifer E. Walter, Jennifer L.

Abstract— The problem addressed is the distributed re-
configuration of a metamorphic robotic system composed of
any number of two dimensional hexagonal robots (modules)
from specific initial to specific goal configurations. The ini-
tial configuration considered is a straight chain of robotic
modules, while the goal configurations considered satisfy a
more general “admissibility” condition. A centralized al-
gorithm is described for determining whether an arbitrary
goal configuration is admissible. We prove this algorithm
correctly identifies admissible goal configurations and finds
a reconfiguration surface, or “substrate path” within any
admissible goal configuration. The main result of the paper
is a distributed algorithm for reconfiguring a straight chain
into an admissible goal configuration. Different heuristics
are proposed to improve the performance of the reconfigu-
ration algorithm and simulation results demonstrate the use
of these heuristics.

Keywords—Metamorphic robots, distributed reconfigura-
tion

I. INTRODUCTION

A topic of recent interest in the field of robotics is the
development of motion planning algorithms for robotic sys-
tems composed of a set of robots (modules) that change
their position relative to one another, thereby reshaping the
system. A robotic system that changes its shape due to in-
dividual robotic motion has been called self-reconfigurable
[5] or metamorphic [2].

A self-reconfigurable robotic system is a collection of in-
dependently controlled, mobile robots, each of which has
the ability to connect, disconnect, and move around ad-
jacent robots. Metamorphic robotic systems, a subset of
self-reconfigurable systems, are further limited by requir-
ing each module to be identical in structure, motion con-
straints, and computing capabilities. Typically, the mod-
ules have a regular symmetry so that they can be packed
densely, i.e., packed so that gaps between adjacent mod-
ules in a configuration that densely packs the plane are
as small as possible. In these systems, robots achieve lo-
comotion by moving over a substrate composed of one or
more other robots. The mechanics of locomotion depends
on the hardware and can include module deformation to
crawl over neighboring modules [3], [9] or to expand and
contract to slide over neighbors [10]. Alternatively, moving
robots may be constrained to rigidly maintain their origi-
nal shape, requiring them to roll over neighboring robots
6], [13], [14].

Shape changing in these composite systems is envisioned
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as a means to accomplish various tasks, such as bridge
building, satellite recovery, or tumor excision [9]. The com-
plete interchangeability of the robots provides a high degree
of system fault tolerance. Also, self-reconfiguring robotic
systems are potentially useful in environments that are not
amenable to direct human observation and control (e.g.,
interplanetary space, undersea depths).

The motion planning problem for a metamorphic robotic
system is to determine a sequence of robot motions required
to go from a given initial configuration (I) to a desired goal
configuration (G).

Many developers of self-reconfigurable robotic systems
[5], [6], [7], [9], [10], [12], and [13] have devised motion
planning strategies specific to the hardware constraints of
their prototype robots. Most of the existing motion plan-
ning strategies rely on centralized algorithms to plan and
supervise the motion of the system components [1], [3],
[5], [9], [10], [12]. Others use distributed approaches which
rely on heuristic approximations and require communica-
tion between robots in each step of the reconfiguration pro-
cess [6], [7], [13], [14].

We focus on a system composed of planar, hexagonal
robotic modules as described by Chirikjian [3]. We con-
sider a distributed motion planning strategy, given the as-
sumption of initial global knowledge of G. Our distributed
approach offers the benefits of localized decision making
and the potential for greater system fault tolerance. Ad-
ditionally, our strategy requires less communication be-
tween modules than other approaches. We have previously
applied this approach to the problem of reconfiguring a
straight chain to an intersecting straight chain [11].

In this paper we address the problem of distributed re-
configuration from a straight chain of robots to goal config-
urations that satisfy a more general “admissibility” condi-
tion. A centralized algorithm is described for determining
whether an arbitrary goal configuration is admissible, and if
s0, finding a path with certain properties. The main result
of the paper is a distributed algorithm for reconfiguring a
straight chain into an admissible goal configuration, which
uses the path found by the previous algorithm. Different
heuristics for choosing the path are proposed to improve
the performance of the reconfiguration algorithm and the
performance of these heuristics is explored through simu-
lation.

II. RELATED WORK

Chirikjian [3] and Pamecha [9] discuss centralized algo-
rithms for planar hexagonal modules that use the distance
between all modules in I and the coordinates of each goal
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position to accomplish the reconfiguration of the system.
Pamecha et al. [9] define the distance between configura-
tions as a metric and apply this metric to system self-
reconfiguration using a simulated annealing technique to
drive the process towards completion. Upper and lower
bounds on the number of moves for reconfiguration be-
tween general shapes are given by Chirikjian [3]. Lower
bounds for the general case are obtained by finding a per-
fect matching between modules in I and positions in G such
that the sum of the distances between pairs is minimized.

Centralized motion planning strategies for systems of two
dimensional robotic modules are examined by Nguyen et
al. [8] and analysis is presented for the number of moves
necessary for specific reconfigurations. The authors show
that the absence of a single excluded class of initial config-
urations is sufficient to guarantee the feasibility of motion
planning for a system composed of a single connected com-
ponent.

A centralized motion planning strategy for three dimen-
sional cubic robots is presented by Rus and Vona [10]. In
this paper, the proposed modules incorporate an actua-
tor mechanism that causes module expansion and contrac-
tion, resulting in the sliding movement of a module over
its neighbors. A centralized algorithm which takes O(n?)
time to reconfigure a system of n modules is presented.

Centralized algorithms for decomposing a system of
modules into a hierarchy of two dimensional substructures
are presented by Casal and Yim [1]. Reconfiguration of
the system involves connectivity changes within and be-
tween these substructures, along with substructure reloca-
tion. The paper concentrates on the decomposition algo-
rithms and does not present algorithms for motion planning
within substructures.

A distributed approach is taken by Murata et al. to re-
configure a system of two dimensional hexagonal modules
[6], and a system of three dimensional cubic modules [7].
In these approaches, each module senses its own connec-
tion type and classifies itself by the number of modules
that it physically contacts. Modules use a formula that re-
lates their connection type to the set of connection types
in the goal configuration to quantify their fitness to move.
Modules communicate with physical neighbors to ensure
that only the modules that have fitness greater than the
local fitness average move in the same time step, choosing
a direction at random. These distributed algorithms use
random local motions to converge toward the goal config-
uration, a slow process that appears impractical for large
configurations. These schemes also ignore the consequences
of module collision and do not distinguish the relative lo-
cation of modules in the plane, i.e., two configurations are
the same if the modules composing them have the same
connections.

Another distributed reconfiguration algorithm, for three
dimensional rhombic dodecahedral modules, is presented
by Yim et al. [13] In this strategy, each module uses local
information about its own state (the number and location
of its current neighbors) and information about the state
of its neighbors obtained through inter-module communi-

cation to heuristically choose moves that lower its distance
to the goal configuration.

Several heuristic approximation algorithms for dis-
tributed motion planning of three dimensional rhombic do-
decahedral robots are presented by Zhang et al. [14] In
this two phase approach, modules use neighbor-to-neighbor
communication in the first phase to achieve a semi-global
view of the initial configuration, using as many rounds as
necessary to avoid violation of module motion constraints
prior to each phase of movement.

III. OUR APPROACH

This paper will examine distributed motion planning
strategies for a planar metamorphic robotic system under-
going a reconfiguration from a straight chain to a goal con-
figuration satisfying certain properties. In our algorithms,
robots are identical, but act as independent agents, mak-
ing decisions based on their current position and the sen-
sory data obtained from physical contacts with adjacent
robots. Our purpose is to seek an understanding of the
necessary building blocks for reconfiguration, starting with
algorithms in which no messages need to be passed between
participating robots during reconfiguration. Reconfigura-
tion in certain scenarios, like the ones presented in this
and our earlier paper [11], can be accomplished using algo-
rithms that do not require any message passing. Therefore,
our algorithms are more communication efficient than the
distributed approaches of [6], [13] and [14]. Another con-
tribution of our work is how our system model abstracts
from specific hardware details about the robots.

In this paper, we consider two dimensional, hexagonal
robots like those described by Chirikjian [2], using the
same definition of lattice distance between robots in the
plane. Our proposed scheme uses a new classification of
robot types based on connected edges similar to the classi-
fication used by Murata et al. [6] for connected vertices. In
the algorithms presented in this paper, each robot indepen-
dently determines whether it is in a movable state based
on the cell it occupies in the plane, the locations of cells
in the goal configuration, and on which sides it contacts
neighbors. Robots move from cell to cell and modify their
states as they change position. Since the robots know the
coordinates of the goal cells, we show that each of them
can independently choose a motion plan that avoids mod-
ule collision.

In this paper we also present precise conditions for
admissible goal configurations based on the motion con-
straints of our robots. We present an algorithm that en-
sures these admissibility conditions and prove that this al-
gorithm correctly identifies admissible goal configurations.
The admissibility conditions presented in this paper differ
from those presented by Rus and Vona [10] and Nguyen et
al. [8]. In the first case, this difference is due to module
shape and motion constraints, and, in the second case, the
difference is due to assumptions on module motion, as will
be explained in Section V.

In Sect. IV we describe the system assumptions and the
problem definition. Section V contains a centralized al-
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gorithm that determines whether or not a given configu-
ration is admissible. Section VI presents and analyzes a
distributed algorithm for reconfiguring a straight chain to
an admissible goal configuration. In Sect. VII we present
simulation results comparing the performance of our algo-
rithm using different heuristics. Section VIII provides a
discussion of our results and future work.

IV. SYSTEM MODEL
A. Coordinate System

The plane is partitioned into equal-sized hexagonal cells
and labeled using the coordinate system shown in Fig. 1,
as in Chirikjian [2].

Y
X

Fig. 1.

Coordinates in a system of hexagonal cells.

Given the coordinates of two cells, ¢; = (z1,y1) and ¢o =
(z2,y2), we define the lattice distance, LD, between them
as follows: Let Ax =z, — x5 and Ay = y; — y». Then

max(|Az|,|Ayl)
|Az| + |Ay]

_ if Az-Ay <0,
LD(ey;c2) = { otherwise.
The lattice distance describes the minimum number of
cells a module would need to move through to go from cell
c; to cell cs.

B. Assumptions About the Modules

Our model provides an abstraction of the hardware fea-
tures and the interface between the hardware and the ap-
plication layer.

- Each module is identical in computing capability and
runs the same program.
- Each module is a hexagon of the same size as the cells of
the plane and always occupies exactly one of the cells.
- Each module knows at all times:
e its location (the coordinates of the cell that it currently
occupies),
e its orientation (which edge is facing in which direction),
and
e which of its neighboring cells is occupied by another
module.

Modules move according to the following rules.

1. Modules move in lockstep rounds.

2. In a round, a module M is capable of moving to an
adjacent cell, C1, iff (see Fig. 2 for an example)

(a) cell C is currently empty,

(b) module M has a neighbor S that does not move in the
round (called the substrate) and S is also adjacent to
cell C1, and

(c) the neighboring cell to M on the other side of C; from
S, Cy, is empty.

3. Only one module tries to move into a particular cell in

each round.

Fig. 2. Before (a) and after (b) module movement: M is moving, S
is substrate, C1, C2, and C3 are empty cells.

If the algorithm does not ensure that each moving mod-
ule has an immobile substrate, as specified in rule 2(b),
then the results of the round are unpredictable. Likewise,
the results of the round are unpredictable if the algorithm
does not ensure rule 3.

C. Problem Definition

We want a distributed algorithm that will cause the mod-
ules to move from an initial configuration, I, in the plane
to a known goal configuration, G.

V. ADMISSIBLE CONFIGURATIONS

In this section we define admissible configurations and
describe a centralized algorithm that tests whether a given
configuration is admissible.

A. Definition of Admissible Configuration

Without loss of generality, assume I is a straight chain
oriented north-south, no goal cell is to the west of I, and
I and G intersect in the southernmost module of I and
nowhere else. The number of modules in I and the number
of cells in G is n. Figure 3 gives examples of orientations of
I and G that satisfy these assumptions in which n = 6. In
this figure, cells in I are numbered with solid borders and
goal cells are shaded. The assumptions concerning the ori-
entation of I and G can be made without loss of generality
because, if I is a straight chain that is not oriented in this
way, the algorithms presented in [11] for straight chain to
straight chain reconfiguration can be used to reorient I in
relation to G.

[CooosT
SEERED
JEEEERE
Eo0390

Fig. 3. Example orientations of I and G.
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Let G1,Gs,...,G,, be the columns of G from west to
east such that each column is oriented north-south and
each is composed of a contiguous chain of goal cells. Figure
4(a) shows how the columns of G are labeled and gives an
example of a configuration of G in which each column is a
contiguous chain of goal cells. Figure 4(b) gives an example
of a configuration of G in which columns G3 and G5 are
composed of a non-contiguous chain of goal cells. Note that
it is easy to check that each column of G is composed of a
contiguous chain of goal cells by scanning each column of
G in a preprocessing step.

G G G G G_ G G
1 2 3 4 5 6 Gles

GA
@ (b)

G
GE GG 7

Fig. 4. Two configurations of G: (a) each column is composed of
a contiguous chain of goal cells, and (b) columns G3 and G5 are
composed of non-contiguous chains of goal cells.

Let p be a contiguous sequence of distinct cells,
C1,C2y...,Ck- Then
Definition 1: p is a substrate path if
e p begins with the cells in I, from north to south,
o subsequent cells are all in G, and
o the last cell is in the easternmost column of G (G,).

\ ,
,,,,,,

Fig. 5. Labels for north segment ending in ¢; (a) and south segment
ending in ¢; (b) (cells that must not be goal cells are shaded).

Definition 2: A segment of p is a contiguous subsequence
of p of length > 2. In a south segment, each cell is south of
the previous and analogously for a north segment.

Definition 3: p is an admissible path if
1. each cell in p is adjacent to the previous, but not to the
west (i.e., consecutive higher numbered cells may not
be on the northwest or southwest side of a given cell),
2. for each north segment of p ending with ¢;,

(a) cells X;, Y;, and Z; are not goal cells (see Figure
5(a)) and

(b) €it1, Cite2, and c;y3 do not form any south seg-
ments,
and

3. for each south segment of p ending with ¢;,
(a) cells X;, Y;, and Z; are not goal cells (see Figure
5(b)) and
(b) ¢i+1, ¢ive, and c¢;r3 do not form any north seg-
ments.

In the remainder of this paper, north and south seg-
ments of p may be referred to as vertical segments when
specific direction of the segment is not important. Seg-
ments directed to the east may be referred to as horizontal
or easterly segments when specific direction is not impor-
tant. Conditions 2(a) and 3(a) of Definition 3 specify where
a vertical edge may be added to p relative to goal cells in
the three columns to the east. Conditions 2(b) and 3(b)
say that any vertical segment of p must be separated from
any vertical segment in the opposite direction and to the
east by at least 3 columns.

Definition 4: G is an admissible goal configuration if
there exists an admissible substrate path in G.

Intuitively, an admissible substrate path is a chain of
goal cells whose surface allows the movement of modules
without collision or deadlock, provided the choices of mod-
ule rotation and delay are appropriate. That is, provided
the motion planning algorithm allows for adequate space
between moving modules, there are no pockets or corners
on the surface of the substrate path in which modules will
become trapped.

The admissibility conditions for a substrate path are di-
rectly related to the degree of parallelism desired, i.e., how
closely moving modules can be spaced. If moving modules
are separated by only a single empty cell, they will become
deadlocked in acute angle corners when running our algo-
rithms [11]. However, acute angle intersections are very
commonplace in configurations of hexagonal robots. Thus,
we chose to make our algorithms applicable to a wide range
of goal configurations by separating moving modules by two
empty cells. Our definition of admissibility is therefore
based on configuration surfaces over which moving mod-
ules with two empty cells between them can move without
becoming deadlocked.

Fig. 6. Example admissible (a) and inadmissible (b) G (cells in T
have solid borders and cells in G are shaded).

Figure 6(a) depicts an example of an admissible configu-
ration of G, where the line through I and G is an admissible
substrate path. Figure 6(b) depicts a configuration of G
that violates admissibility condition 2. The substrate path
shown is inadmissible, as is every other possible substrate
path for this configuration.

Our definition of admissible classes of goal configurations
differs from that presented by Rus and Vona[10] because
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the modules used by these authors were cubic, with a dif-
ferent set of motion constraints and mode of locomotion.
Even though our modules are two dimensional and hexago-
nal, like those of Nguyen et al. [8], our definition of admis-
sible classes of goal configurations is different than theirs
because our assumptions about module motion are differ-
ent. Nguyen et al. assume that a module moves by rigid
rotation around a vertex it shares with another module.
Our motion constraints are similar to those presented by
Chirikjian[2], where locomotion is accomplished by a com-
bined rigid body rotation and shape transformation pro-
duced by changing joint angles.

B. Algorithms to Detect Admissible Configurations and
Find Substrate Paths

Condition 1 for determining the admissibility of G can be
easily accomplished by scanning G in columns from north
to south, northwest to southeast, and northeast to south-
west, to determine if there exists an orientation in which
each G; is contiguous. If there is no orientation in which
each (G; is contiguous, then GG is not admissible.

Our procedure for finding an admissible substrate path
in G (condition 2 for the admissibility of G) proceeds by
first constructing a directed graph H as follows:

e Label the columns of G as described in Sect. V-A, with
the cells in each G; labeled G; 1, G 2,. .., from north to
south. Then cell G is also in I, but no other goal cells
arein I.

e Represent each goal cell as a node in the graph H. Add
an extra node to the graph in the cell directly north of
cell G1; and call this node G . Initially there is an
undirected edge between each pair of adjacent goal cells.

e The cells to the north, south, northeast, and southeast of
G;,; are labeled N; j, S; ;, NE; ;, and SE; j, respectively
(note that some of these cells might not be goal cells and
thus are not represented in the graph).

G

1

Fig. 7. Directed graph H formed by algorithm.

The first phase directs edges in the undirected graph and
marks the nodes that are determined to have an admissible
path to a goal cell in the easternmost column. The columns
are processed from east to west. First, every node in col-
umn G, is marked. As shown in Fig. 7, each column west
of column G, consists of three segments: (A) the north
segment of nodes with no goal cells to the east (shaded light

gray), (B) the central segment of nodes that have goal cells
to the east (unshaded), and (C) the south segment of nodes
that have no goal cells to the east (shaded dark gray). Seg-
ment (A) is initially skipped. Each node in segment (B)
is given an outgoing edge to each of its marked east neigh-
bors, with the exception of the situation where a NE edge
would be directed toward a neighbor with an outgoing S
edge or where a SE edge would be directed toward a neigh-
bor with an outgoing N edge. Nodes in segment (C) are
processed north to south. Each node is marked and given a
directed edge to its north neighbor if the north neighbor is
marked and if the goal cells in a local neighborhood satisfy
a certain “admissibility” condition (discussed below). Fi-
nally, nodes in segment (A) are processed south to north.
Similarly to segment (C), each node is marked and given a
directed edge to its south neighbor if the south neighbor is
marked and if the goal cells in a local neighborhood satisfy
a certain “admissibility” condition (discussed below). The
arrows in Fig. 7 show the edges that are directed and the
direction given to the edges. The cross-hatched cells are
those that remain unmarked after the algorithm has been
run. The cell on the north and the two cells on the south
of column G; do not satisfy the “admissibility” condition,
so no edges are directed from these cells in the algorithm.

The Direct_Edges algorithm (see Figures 8 and 9) directs
some of the edges in the graph, as described above. The
variables used in the pseudocode are as follows:

e onPath; j: Boolean variable. Initially, onPath; ; is false
for all goal cells in columns 1 < ¢ < m — 1 and true
for all nodes in column G,,. At a particular node i, the
status of the onPath;; variable at the nodes N; ;, S; ;,
NE; ;, and SE; ; is onPathy, ;, onPaths, ;, onPathyg
and onPathsg, ;.

e 1: Variable used to save the position of the southernmost
cell that has not been checked by the algorithm.

d: Direction to be checked, either N or S.

remove: Set containing at most 1 goal cell coordinate.

Initially, remove = {0} at all nodes.

e path: List of coordinates of goal cells that are added to
the substrate path.

The labels used in the IsAdmissible procedure are de-
picted in Figures 10(a) and (b).

From the isAdmissible procedure, we can see that if any
edges at a node are directed to the east, then no edges at
that node will be directed to the north or south. Also, since
the cells in each column are contiguous, if an edge at a node
is directed to the north, then no edge at that node will be
directed to the south and vice versa. In Section V-C we
will show that, after constructing H, if onPath; o = true,
then there exists an admissible substrate path from G o to
some cell in G, because of the way H is constructed. In
the next section, we show that if the algorithm fails to find
an admissible substrate path with respect to G, then G
does not contain such a path.

To find an admissible substrate path, we begin at node
G1,0 and move in any allowable direction (i.e., over any
directed edge to a goal cell for which onPath is true) until
reaching some goal cell in column G,,. If a node has a

i,5
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For each column ¢ := m — 1 downto 1 do:

1. z:=1

2. j:=1

3. while (5 < |G;])

4. while (G;,; in north section)

5. J++

6. end while

7. r:=75—1

8. while ((j < |G;]) and

(G;,; has > one adjacent node to the east))

9. if ((G;,; has node to NE) and
(onPathNEi,j )

10. if (no edge is directed S from NE; ;)

11. onPath; ;j := true

12. direct edge to NE

13. end if

14. end if

15. if ((Gi,; has node to SE) and
(onPathsg, ;))

16. if (no edge is directed N from SE; ;)

17. onPath; j := true

18. direct edge to SE

19. end if

20. end if

21 J++

22. end while

23. while (j < |Gi)

24. if ((onPathy, ;) and
(isAdmissible(S,i,7)))

25. onPath; ; := true

26. direct edge to N

27. end if

28. J++

29. end while

30. while (z > 0)

31. if ((onPaths; ) and
(isAdmissible(N,i,x)))

32. onPath; , := true

33. direct edge to S

34. end if

35. -

36. end while

37. end while
Fig. 8. Pseudocode for algorithm Direct_Edges.

Procedure isAdmissible(d, i, ) returns boolean

if (X,Y,or Zisagoal cell) //Casel
return false
end if
if ((A and C are goal cells) and
3 an edge directed d out of Q))
if (B is not a goal cell)
return false ~ //Case 2
else
remove; ; = {P} //Case 3
end if
end if
return true

s

CoomNo o

Fig. 9. Pseudocode for Procedure isAdmissible.

@ (b)

Fig. 10. Labels used in IsAdmissible procedure for d = S (a) and d =
N (b).

directed edge to only one neighbor for which onPath is true
(either N, S, NE, or SE), then we go in that direction. The
only other possibility is that a node has two neighbors for
which onPath is true, NE and SE. In this case, a heuristic
is used to decide whether to go NE or SE. If the decision to
go N or S is taken in column G; (i < m), then a particular
cell in the graph two columns to the east may have onPath
set to false (the “remove” cell calculated in IsAdmissible,
Case 3). The choice of this edge may mean that certain
later choices are no longer available.

Algorithm Find_Path, shown in Figure 11, is used to find
and construct an admissible substrate path.

Initially, ¢ := 1 and j := 0 and path := (G1,0)

1. while ((onPath; ;) and (i < m))
2. if G; ; has an edge directed to > 1
east neighbor with onPath = true
3. update ¢ and j to index one such neighbor
(heuristic choice)
append Gy ; to path
else if G; ; has an edge directed to a
north or south neighbor with onPath = true
6 update ¢ and j to index that neighbor
7. append Gy ; to path
8 for the goal cell in remove; ;

o

© .

. onPath := false
10. end if
11. end while

Fig. 11. Pseudocode for Algorithm Find_Path.

C. Analysis of Algorithms Direct_Edges and Find_Path

The running time of the algorithm to find the graph H
and to find an admissible substrate path is O(n), since each
node has a constant number of (undirected) neighbors.

Algorithm Direct_Edges is correct if it

— marks every cell in G that is on any admissible sub-
strate path from cell G to column G,, and

— directs the edges properly.

We require that algorithm Find_Path returns a path that

ends in column G, if and only if G is admissible.

To prove correctness, we start with some observations
and claims regarding the performance of the Direct_Edges
algorithm:

Observation 1: If a goal cell ¢ is marked at time ¢ by al-
gorithm Direct_Edges, then ¢ has either one or two neigh-
boring goal cells that were marked before ¢t and an edge
is directed from c¢ toward at least one neighbor that was
marked before t.

Observation 2: If line 10 of Direct_Edges returns false for
some goal cell in the central section, then line 16 will return
true (and vice versa).

To see why Observation 2 is true, consider a cell ¢; with
a marked neighbor ¢; to the NE (see Figure 12(a)). If ¢; has
an edge directed S, then c¢; must have a marked neighbor
cr to the SE. It cannot be the case that ¢; has an edge
directed to the N, since ¢ was marked before ¢;, by the
action of Direct_FEdges. Therefore, line 16 of Direct_Edges
will return true and an edge will be directed from ¢; to cy.
An analogous argument can be made for a node ¢; that
has a marked neighbor ¢; to the SE when ¢; has a marked
neighbor to the N.
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@ (b)

Fig. 12. Scenarios for Observation 2 and Claim 1.

Observation 3: After executing Direct_Edges, the follow-
ing is true of the goal cells in each section of columns of
H:

(a) Central section: Each goal cell will either be marked
with at least one edge directed to the east or it will
not be marked. In this section, only goal cells with no
marked neighbors remain unmarked.
North section: Each goal cell will either be marked with
one edge directed to the south or it will not be marked.
(c) South section: FEach goal cell will either be marked with
one edge directed to the north or it will not be marked.

(b)

Claim 1: After executing Direct_Edges, no acute angle
turns can be formed by any directed path from cell G o to
a cell in column G,,.

Proof: The only possible acute angle turns on a di-
rected path from cell Gi to a cell in column G, occur
when
1. a N (S) edge is followed immediately by a SE (NE) edge,
or
2. a NE (SE) edge is followed immediately by a S (N) edge.

Suppose, in contradiction, case 1 is allowed by algorithm
Direct_Edges and after the execution of Direct_Edges there
exists a cell ¢; that has an outgoing edge to the N, toward
cell ¢;, and ¢; has an outgoing edge to the SE, toward cell
¢k (see Figure 12(b)). Then cell ¢; must be a marked goal
cell and it must be the NE neighbor of cell ¢;. But then
¢; would be in the central section of its column and would
not have an edge directed to the N, a contradiction. An
analogous argument can be made for a S edge immediately
followed by a NE edge.

Case 2 is not possible because of the action of Di-
rect_Fdges, as stated in Observation 2.

|

Claim 2 refers to a S edge on a directed path followed
to the east by a N edge. An analogous argument can be
made for a N edge followed by a S edge.

Claim 2: If S and N edges occur on the same directed
path in H after Direct_Edges finishes execution, then each
S edge must be separated from the next N edge on the path
by at least 2 easterly edges, a SE and then a NE edge.

Proof: From the action of Direct_Edges, we can see
that a S edge cannot immediately follow a N edge on any
directed path in G (or vice versa), because a single goal cell
cannot be in both the north and south sections of a column.
By Claim 1, any S edge can be immediately followed only
by a S or SE edge and any N edge can be immediately

preceded only by a N or NE edge.
|
We proceed with the proof of correctness starting with
the following theorem.

Theorem 1: If GG is admissible, then Find_Path returns a
path that ends in G,,.
Proof: We begin by showing, in Lemma 1, that Di-
rect_Fdges will mark cells on all admissible paths leading
to any cell in column G,.

Lemma 1: For every goal cell c, if there is an admissible
path from c to a cell in G,,, then algorithm Direct_Edges
marks c.

Proof: The proofis by induction on the order in which
cells are scanned by algorithm Direct_FEdges.

Label all goal cells in G from ¢y, c¢s, ..., ck, where k =n
as follows:

1. Start with the cells in column G,,, labeling them from
€1,Ca,...,Cq, Wwhere ¢ = |Gy, | and ¢ < k, in increasing order
from north to south.

2. For the cells in column Gj, where 1 < j < m (if
m > 1), continue labeling the cells in increasing order from
Cq+15Cq+2,- -+ Ck, i the order they are scanned by algo-
rithm Direct_Edges.

For the basis of the induction, node ¢; is in column G,,.
The lemma holds vacuously for all goal cells in column G,
since all goal cells in G, are initially marked.

For the inductive hypothesis, assume the lemma holds
for all cells ¢a,...,¢ci—1 (1 < i < k). We will show the
lemma also holds for cell ¢;. We assume c¢; is a prefix of an
admissible path ending in column G,,. We will show that
¢; must be marked. For the remainder of this proof, refer
to Figure 10(a), where ¢; = G, j and ¢; = N, ;.

If ¢; is in column G, then the lemma holds vacuously,
since all cells in G, are marked.

Suppose ¢; is not in column G,,,. We have the following
cases:

Case 1: ¢; is in the south section of its column. Since
we assume that there exists an admissible path from ¢;
to column G,,, any such path must go through ¢;’s north
neighbor ¢;, which was already scanned by algorithm Di-
rect_Edges (I < i). So ¢; must be on some admissible path
to G, and must be marked by the inductive hypothesis. If
¢; is not marked in lines 24-27 of Direct_Edges, it must be
that IsAdmissible returned false in line 24, meaning that
either case 1 or 2 of IsAdmissible was violated.

It is easy to see that case 1 of IsAdmissible ensures that
no north edge that violates condition 2(a) of Definition 3
is directed. We need to show that if Case 2 of IsAdmissible
returns false, then there are no paths from ¢; to G, that
satisfy condition 2(b).

Referring to Figure 13, consider the pattern of segments
that must exist at the start of a path from ¢ to G,, if
line 6 of IsAdmissible (Figure 9) returns false. If case 2 of
IsAdmissible is executed, then A, Q, and C are goal cells,
cells B, X, Y, and Z are not goal cells, and Q must have an
edge directed south. Since Q has an edge directed south,
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Fig. 13. Segment patterns following ¢; (non-goal cells are shaded).

C was marked before Q by Observation 1. Goal cells A
and C cannot have edges directed to the south or case 1 of
IsAdmissible would not have been passed. Since A is a goal
cell, ¢; must have an edge directed east to A, and A must be
marked or ¢; would not have been marked, by Observation
3(a). Goal cell A cannot have an edge directed north, or
case 1 of IsAdmissible would not have been passed for that
edge because Q and C are goal cells. So A must have an
edge directed east to P. Therefore, P must be a marked
goal cell and P must have an edge directed east to marked
goal cell Q, by Observation 3(a). Then every path from c¢;
to G, must violate condition 2(b), since the edge from Q
to C is a south edge and every path must include this edge
within the third segment on any path from ¢; to G,,.

Thus, if ¢; is not marked, it must be that the north seg-
ment formed by ¢; and ¢ violates Definition 3, condition
2(a) or 2(b) for every possible admissible path from ¢; to
G,,. But then ¢; does not form a prefix of an admissible
path ending in G,,, a contradiction. Therefore, IsAdmis-
sible must return true when ¢; is scanned, and ¢; will be
marked with an edge directed toward ¢;, by Observation 1.

Case 2: ¢; is in the north section of its column. The
argument is analogous to case 1.

Case 3: ¢; is in the central section of its column. Let
¢ (I < i) be an east neighbor of ¢; through which the
admissible path from ¢; to G, goes. By the inductive
hypothesis, ¢; is marked. Therefore, by Observation 3(a),
S0 is ¢;.

Therefore, if ¢; is the prefix of an admissible path that
ends in column G,,, ¢; will be marked by algorithm Di-
rect_Edges and, by Observation 1, edges from ¢; will be
directed toward the beginning of any admissible path for
which it is a prefix.

|

We now continue with the proof of Theorem 1 to show
that if G is admissible, then Find_Path returns a path that
ends in G,,.

In contradiction, suppose the theorem is false and that
G is admissible but Find_Path does not return a path that
ends in G;,,. Then at some point in its execution, Find_Path
must get “stuck”, i.e., it must add a cell that has no marked
neighbors to path.

Since G is admissible, there is at least one admissible
path starting with cell G; and ending in column Gy,.
Thus, cell Gy, is marked, by Lemma 1. Let ci,cs,...,c;
be the cells that are added to path during the execution
of Find_Path on G, where cell ¢; is in some column G,

1 <¢ < m, and cell ¢; has no marked neighbors.

Since ¢; was added to path, it must have been marked. So
cj must have had at least one marked neighbor to the north-
east, southeast, north, or south, in column G; or G;41, at
the time Find_Path started execution. Thus, at least one
neighbor to the northeast, southeast, north or south of cell
c; that was marked by algorithm Direct_Edges must have
been unmarked during the execution of Find_Path, prior to
the addition of ¢; to path.

We can see from the cell coordinates that are added to re-
move in procedure IsAdmissible that since c¢; lost a marked
neighbor to the north, south, or east, c;’s position must be
within the two columns to the east of the column of G for
which line 9 of Find_Path was executed. In other words, c;
must have lost all its marked neighboring goal cells when a
north or south segment was added to path in column G;_;
or Gi_g .

Lemmas 2 and 3 provide useful information about the re-
sult of removing cells from an admissible path in Find_Path.
These lemmas refer to a north segment but an analogous
argument can be made for a south segment.

Lemma 2: For any north segment formed by goal cells
Gij+1, Gij, if remove; j41 # 0 when G, ; is appended to
path in line 7 of Find_Path, then there are no edges directed
north out of cell G;; or out of any cell in columns G4,
Gi+2, or Gi+3.

Proof: The proof is by examination of the configura-
tion of goal cells that must exist in the three columns to
the east of G; ; when the north segment formed by G j11,
G;; is added to path, causing the cell in remowve; j+1 to
be unmarked. If remowve; j11 is not empty, then Case 3 of
IsAdmissible was executed when the edge was directed from
G j+1 to Gy in algorithm Direct_Edges. Refer to Figure
14 for an explanation of the labels used in this proof.

Fig. 14. Scenarios for Lemmas 2 and 3 (non-goal cells are shaded).

Since Case 3 of IsAdmissible was executed at the time
the edge was directed from G; ;41 to G ; in algorithm Di-
rect_Fdges,

— cells A, B, C, and Q are goal cells,

— X, Y and Z are not goal cells,

— P is the cell unmarked in line 9 of Find_Path, and

— Q has an edge directed south toward goal cell C.

Cell G; ; is in the central section of column G;, with an edge
directed toward A, by Observation 1. Likewise, cells A and
B are in the central section of their respective columns.
Since Q is in the north section, C has no marked goal cell
to the northeast, in cell K. C must be in the central sec-
tion of its column with an edge directed to SE neighbor D
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because there are no goal cells south of C. Any cell with an
edge directed north must be in the south section of its col-
umn, which is, by definition, south of the central section.
Therefore, columns G;11, Gi42, and G;43 contain no cells
with edges directed north.

Thus, if remove; j+1 # 0 when G, ; is appended to path,
then goal cell G; ; cannot have an edge directed north, and
neither can any goal cells in columns G;41, Gi42, or Giy3.

|

Lemma 3: For any north segment formed by goal cells
Gij+1, Gij, if remove; j11 # 0 when G, ; is appended to
path, then G; ;1 will be a prefix of an admissible path
from G j4+1 to column Giy4 after line 9 of Find_Path is
executed.

Proof: Since Find_Path adds cells to path from west
to east, then no column east of G;;2 will have had a cell
unmarked at the time G ; is appended to path in line 7 of
Find_Path. Therefore, Observations 1, 2, and 3 must hold
for all columns east of G;4» when G ; is appended to path
in line 7 of Find_Path.

If G; ; is appended to path, it must be marked. Referring
to labels used in Figure 14, after G; ; is appended to path,
remove; j+1 = {P}. Then A, B, C, and Q are goal cells and
Q has an edge directed south. If Q has an edge directed
south, then C must be marked. Therefore, A and B must
be marked, by Observation 3(a). Since neither K nor Z are
marked goal cells, C must have an edge directed east to
marked cell D in column G;44. So there must be a path of
marked goal cells from cell G; j+1 to cell D in column G4
after line 9 of Find_Path is executed. Thus, the lemma
holds.

|

Consider the last execution of line 9 of Find_Path that
removes a marked neighbor of ¢;, either to the north (N),
northeast (NE), southeast (SE), or south (S) of ¢; (see Fig-
ure 15 (a)), say at time ¢. Recall that a cell is added to a
remove set in procedure IsAdmissible only in Case 2, when
vertical edges are directed. Without loss of generality, as-
sume the removal was caused by the addition of a north
segment (an analogous argument can be made for a south
segment). Figure 15(b) shows a labeling on cells when a
north segment O, H is added to path at time ¢, causing cell
c; to lose its last marked neighbor.

From IsAdmissible (Figure 9), we can see that only cell P
can possibly be unmarked when segment O, H is added to
path. In the following case analysis, all possible positions
for cell ¢; in relation to cell P are considered when proce-
dure IsAdmissible is called with d = S. It is shown that, in
each of these cases, either ¢; will have a marked neighbor
after P is unmarked at time ¢, or ¢; cannot possibly have
been included on path after time ¢, a contradiction.

Case 1: The last neighbor of goal cell ¢; to be unmarked
is N. Then ¢; = B, which would still have marked neighbor
C.

Case 2: The last neighbor of goal cell ¢; to be unmarked is
NE. Then ¢; = A, which would still have marked neighbor
B.

Cases 3 and 4: The last neighbor of goal cell ¢; to be

Fig. 15. Labels used in proof of Theorem 1 (in part (b), possible
goal cells are unshaded).

unmarked is SE or S. Then ¢; = T or V. But neither A nor
H can have edges directed to the north, by Lemma 2, and
therefore there is no path from H to either T or V. Thus,
cj#Tandcj #V.

Thus, in all cases, Find_Path will not get “stuck”.

Therefore, if G contains an admissible substrate path p,
thereby satisfying Definition 3, then Find_Path will return
a path that ends in column G,,.

|

Theorem 2: If algorithm Find_Path returns a path end-
ing in column G,,, then G is admissible.

Proof:  Let the returned path be p = ¢1,¢2,..., ¢,
where ¢; is in G,,,. Note that it is easy to show that p is
a substrate path. The key thing remaining to be shown is
that p is admissible, meaning that p satisfies the conditions
in Definition 3. It is easy to show that p never goes west, by
the way H is constructed. We will show, by induction, that
for 1 <i <, prefix p; = ¢1,...,c; of p satisfies conditions
2 and 3 for being an admissible path.

The basis, ¢ = 1, is true because py = ¢1 = G1,9, which
can cause no violation of conditions 2 or 3 in Definition 3,
since p; consists of a single cell.

For the inductive hypothesis, assume that p; = ¢, ..., ¢;
is admissible. Now, we will show that p;41 = c1,...,¢it1
is also admissible. References to cells A, B, C, P, Q, X, Y,
and Z in this proof refer to the labels used in the IsAdmis-
sible procedure (Figures 9 and 10). In the remainder of the
figures used in this proof, goal cells have solid borders and
unoccupied cells have dashed borders. The labels on un-
occupied cells provide orientation in relation to the labels
used in the IsAdmissible procedure.

We use a case analysis of the direction of two consec-
utive edges in p. Note that if each possible direction of
a segment (N, S, NE, or SE) can be followed by each of
four others, that there are 16 possible cases. However, the
combinations of a N segment followed by a S segment and
vice versa are not possible due to the assumption that p is
composed of unique cells. A N segment cannot be followed
immediately by a SE segment (and likewise a S segment
cannot be followed immediately by a NE segment), nor
can a NE segment be following immediately by a S segment
(and likewise for a SE segment followed by a N segment),
by Claim 1. This leaves 10 possible cases. We consider
only 5 of these because the rest are vertical inversions of
the cases shown.
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Case 1: ¢;_1, ¢;, ¢i41 form part of a N segment (see
Figure 16(a)). There is no violation of condition 2(a) be-
cause if there are goal cells in X, Y, or Z, then the edge
from ¢; to ¢;41 would not have been directed, by Case 1 of
IsAdmissible, so this segment would not be added to path,
a contradiction. Since the N segment ¢; 1, ¢; did not vio-
late condition 2(b) of Definition 3 for any S segment ending
to the west, no violation will be caused by the N segment
formed by ¢;—1, ¢;, and c;q1.

Fig. 16. Cases 1 through 4 in proof of Theorem 2.

Case 2: ¢; is the end of a N segment and ¢;41 forms part
of a NE segment (see Figure 16(b)). Then the N segment
ci_1, ¢; would not have violated case 1 of IsAdmissible be-
cause X, Y, and Z are not goal cells. Since the segment
ending in ¢;4+1 is not a S segment, p;11 will satisfy all con-
ditions of Definition 3.

Cases 3 and 4: ¢; is the end of a SE segment and c; 1
forms part of a NE segment (see Figure 16(c)) or ¢; is the
end of a NE segment and ¢; ;1 forms part of a NE segment
(see Figure 16(d)). Since neither segment in either case is
vertical, p;+1 would satisfy Definition 3.

Case 5: ¢; is the end of a NE segment and c¢;41 forms
part of a N segment. Any violations of condition 2(a) of
Definition 3 by N segment c¢;, ¢;+1 occurring to the east of
ci+1 are averted by the action of algorithm Direct_Edges.
By Case 1 of IsAdmissible, if there are goal cells in positions
X, Y, or Z (see Figure 17(a)), then the edge from ¢; to
¢i+1 would not be directed, and therefore ¢;11 could not be
added to p, a contradiction. Condition 2(b) of Definition
3 could be violated at a later time, when a S segment is
added to p to the east of ¢;11, but any violation will occur
at the time this S segment is added to p, not when segment
Ci, Cit1 is added.

In order for p;;1 to cause a violation of Definition 3 in
relation to cells to the west, there must be a S segment in
the segments formed by cells

(a) Ci—4 and Ci—3 Or

(b) ¢i—3 and c;_o.
Below, each of these segments is considered as a prefix to
the segments formed by ¢;—1, ¢;, and ¢;, ¢;+1. Note that
there are 3 cases because we need consider only S segments
followed by a SE segment in the segments (a) and (b), by
Claim 2. If either segment (a) or (b) were a N segment,

then it would satisfy the conditions for an admissible path
by the inductive hypothesis and would not cause the N
segment formed by ¢; and ¢;41 to violate these conditions
either.

Fig. 17. Case 5 in proof of Theorem 2.

1. There is a SE segment ending in ¢;—; and a S segment
ending in ¢;_5 (see Figure 17(b)). By case 1 of IsAdmis-
sible , segment c;_3, c;_o could not have been added to p;
because ¢;41 is in cell Y.

2. There is a SE segment ending in ¢;—1, a SE segment
ending in ¢;—», and a S segment ending in ¢;—3 (see Figure
17(c)). Notice that there are goal cells in cells A and C.
If there is no goal cell in B, then segment ¢;_4, ¢; 3 could
not have been added to p; because it violates case 2 of
IsAdmissible. If there is a goal cell in B, then cell ¢; 1
(P) would have been unmarked when segment ¢;_4, ¢;—3
was added to p;, by case 2 of IsAdmissible. Since cell P is
marked by assumption, it must be that there is no goal cell
in B, so segment ¢;_4, ¢;—3 could not have been added to
Pi-

3. There is a NE segment ending in ¢;—1, a SE segment
ending in ¢;_», and a S segment ending in ¢;_3 (see Figure
17(d)). By case 1 of IsAdmissible, segment c¢;_4, ¢;—3 could
not have been added to p; because c¢;11 is in cell Z.

These cases show that it is not possible for p;;; to violate
condition 2(b) of Definition 3 when ¢;11 is added to p;, since
there can be no conflicting S segment to the west in p;.

So p;+1 must satisfy all conditions of Definition 3. Since
we assume Find_Path returns a path ending in G,,, the
lemma implies that p is an admissible substrate path.

|

Theorems 1 and 2 imply that algorithm Find_Path will
return only an admissible substrate path and will find an
admissible substrate path if one exists in G. In other words,
the algorithms presented in this section will correctly iden-
tify admissible configurations of G.

VI. DISTRIBUTED RECONFIGURATION
ALGORITHM

In this section, we present the distributed reconfiguration
algorithm that performs the reconfiguration of I to G after
an admissible substrate path is found using the algorithms
in the previous section.
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A. Algorithm Assumptions

1. Each module knows the total number of modules in the
system, n, and the goal configuration, G.

Initially, one module is in each cell of I.

I is a straight chain.

G is an admissible configuration.

I and G overlap in goal cell Gy 1, as described in Sect. V-
A.

To simplify the presentation of our reconfiguration algo-
rithm, we assume the coordinates of G are ordered at each
module as follows:

e The coordinates of cells on the substrate path are stored
in a list, in the order in which the cells occur on the di-
rected path from G4 to G, beginning with the cell on the
substrate path which has a directed edge incoming from
cell Gl,l .

e The coordinates of cells in G that are north of the sub-
strate path are stored in a list starting with the cell adja-
cent to and north of the cell on the substrate path in G,,, to
Gm,1, followed by the cell adjacent to and north of the cell
on the substrate path in G5,,—1 to Gy,—1,1, and so on, end-
ing with the northwesternmost cell north of the substrate
path in G.

e The coordinates of cells in G that are south of the sub-
strate path are stored starting with the cell adjacent to
and south of the cell on the substrate path in G, to G, j,
where j = |G|, followed by the cell adjacent to and south
of the cell on the substrate path in Gy,—1 to G, —1,k, where
k = |Gm—1]|, and so on, ending in the southwesternmost cell
south of the substrate path in G.

Gk L

B. Qwverview of Algorithm

The algorithm works in synchronous rounds. In
each round, each module calculates whether it is free
(cf. Fig. 18). In this figure, the modules labeled trapped
are unable to move due to hardware constraints and those
labeled free represent modules that are allowed to move in
our algorithm, possibly after some initial delay. The mod-
ules in the other category are restricted from moving by
our algorithm, not by hardware constraints.

e VR DRE
DECE

(DO

Indicates non—contact edge
><; Indicates contact edge

FREE

-

Fig. 18. Contact patterns possible in algorithm.

Modules in [ initially calculate their position in I, di-
rection of rotation, possible delay and final coordinates in
G by determining their lattice distance from cell G1 ;. A
module calculates the goal cell it will occupy by comparing

its position in I to the length of the arrays of coordinates
on, north, and south of the substrate path.

Fig. 19.
positions.

Correspondence of initial module positions to final goal

Let p be the substrate path, starting with the cell that
has an edge incoming from cell G1 ;. Modules in posi-
tions < |p| fill in the substrate path first. After p is filled,
modules alternate rotation directions, filling the columns
projecting north and south of p from east, G,,, to west,
G, . Figure 19 has numbered goal cells showing how initial
module positions correspond to final goal positions.

As in our previous paper[11], modules use specific pat-
terns of rotation and delay in our algorithm, as listed below.
Note that only patterns 2 and 4 are used in the algorithm
presented in this section.

1. (0,0)-bidirectional: modules alternate direction with no
delay after free.

2. (1,0)-bidirectional: modules alternate direction with de-
lay of 1 time unit after free for modules in positions > 1
rotating CW and no delay after free for modules rotating
CCW.

3. I-unidirectional: modules rotate same direction with de-
lay of 1 after free for modules in positions > 1.

4. 2-unidirectional: modules rotate same direction with de-
lay of 2 after free for modules in positions > 1.

The reconfiguration proceeds as follows:

 For modules in positions 1 through |p|:

- Modules use 2-unidirectional pattern in CW direction.

- When a module is in the goal cell that it should occupy
in p, it stops in that cell.

 For modules in positions > |p|:

- Modules use (1,0)-bidirectional pattern until all cells
on one side of p are filled. After this, modules use
2-unidirectional pattern, with either CW or CCW di-
rection, depending on whether there are cells remaining
to be filled on the north or south side of p.

- When a module is in the goal cell it should occupy, it
stops.

o Once a module stops in the goal cell it should occupy for

a round it never moves out of that goal cell.
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C. Algorithm Pseudocode

The pseudocode for the distributed reconfiguration is
shown in Figure 20. Figure 21 shows the pseudocode used
by each module to initially determine d, delay, and my-
GoalCoord. Modules cannot initially determine the exact
time when they will begin moving. They rely on local con-
tact information to calculate when they are free to move.
Once a module begins moving, it has only the local infor-
mation about its contacts with adjacent modules and its
current coordinates to guide its part of the entire system
reconfiguration.

The algorithm uses the following local variables at each
module:

e n: Number of cells in G and modules in 1.
myCoord: The coordinates of the module in the plane.
contacts: Boolean array indicating which edges have
neighboring modules. Assumed to be automatically up-
dated at each round by some lower layer.

e position: Order of modules in I, starting at the north-
ernmost end of I. Initially calculated as n— LD(myCoord,
coordinates of Gy 7).

e d: Variable containing the direction of movement, CW
or CCW.

e difft Variable to hold difference between position and
length of substrate path.

e flips: Counter used to determine whether the module is
free.

e delay: Number of time units module waits after it is free
and before it makes its first move. Initially set to O.

e myGoalCoord: Coordinates of goal cell in which module
will stop moving. Initially module in I overlapping G has
myGoalCoord = coordinates of G1; and all other mod-
ules in I calculate myGoalCoord after calculating their
position.

e substrateCoords, coordsN, and coordsS: Arrays of coordi-
nates of goal cells on, north, and south of the substrate
path, in the order described in Sect. VI-A.

In round 7 :=1,2,...:
1. if (IsFree())

2. if (delay = 0)

3. move d
4. end if

5. else

6. delay—

7. end if

Procedure IsFree():

1. flips := 0
2. for (i :== 0 to 5) do
3. if (contacts[i] # contacts[(i + 1) % 6])
4. flips++
5. end if
6. end for
7. return ((position - 1 is unoccupied) and
(flips = 2) and (number of contact edges < 5))
Fig. 20. Pseudocode for reconfiguring modules from straight chain

to admissible G.

Code for each module where myCoord # myGoalCoord:

Initially:
1. position := n — LD(myCoord, coordinates of G1,1)
2. diff := position —|substrateCoords|
3. if (diff < 0) // Module goes on substrate path
4. myGoalCoord := substrateCoords[position - 1]
5. d:=CW // Go east
6. delay := 2
7. else if (diff is odd)
8. if ((diff+1)/2 < |coordsS|) // Go west
9 d := CCW
10 if ((diff—1)/2 > |coordsN|)

// Module to north goes west

11. myGoalCoord := coordsS|diff —|coordsN| — 1]
12. delay := 2
13. else myGoalCoord := coordsS[(diff —1)/2]
// Module to north goes east
14. end if
15. else // Go east
16. myGoalCoord := coordsN[diff —|coordsS| — 1]
17. d:=CW
18. delay := 2
19. end if

20. else if (diff is even)
21. if ((diff/2 < |coordsN]|) // Go east
22. d:=CW

23. if (diff/2 > |coordsS|)
// Module to north goes east
24. myGoalCoord := coordsN|diff —|coordsS| — 1]
25. delay := 2
26. else
// Module to north goes west
27. myGoalCoord := coordsN[(diff/2) — 1]
28. delay := 1
29. end if
30. else // Go west
31. myGoalCoord := coordsS[diff —|coordsN| — 1]
32. d:= CCW
33. delay := 2
34. end if
35. end if

Fig. 21. Pseudocode for determining myGoalCoord, delay, and d.

D. Analysis of Reconfiguration Algorithm

The distributed reconfiguration algorithm presented in
Section VI-C starts with a straight chain to (not necessarily
straight) chain reconfiguration, with the first |p| modules
filling in the substrate path, p. From the proof in Section
V-C, it can be seen that the moving modules (separated
by 2 spaces) will not become deadlocked (i.e., by moving
into a position where they have a contact pattern that is
not “free” (cf. Figure 18)) prior to reaching their calculated
goal positions. Since the modules filling in p all move south
on the east side of I, it is not possible for them to change
order and collide. Once the modules in p are in place, other
moving modules are separated by p, ruling out possible
collisions.

VII. SIMULATION RESULTS

Our simulation experiments were inspired by the work
of Pamecha et al. [9], where configurations of similar shape
but varying number of modules were used to evaluate their
algorithm. Direct comparison of the complexity of the al-
gorithms presented in this paper with the results obtained
by the centralized reconfiguration algorithm of Pamecha et
al. is not possible due to the fact that their simulations
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involved the reconfiguration of arbitrary shapes of I to ar-
bitrary shapes of G.

We developed an object-oriented discrete event simulator
to test the reconfiguration algorithms. Initially, the goal
coordinates are specified and each module in I performs
the calculations presented in Figure 21, depending on its
initial position. During each round, the simulator checks
the local status of every module, and then moves all eligible
modules in the same step, thereby accurately simulating a
real distributed system.

A. Effect of Heuristics in Find_Path

We first experimented with running our algorithm on
various shapes using different numbers of modules, testing
the effect on performance of varying the heuristic choice
in line 3 of the Find_Path (see Figure 11) algorithm. Per-
formance is measured in terms of number of rounds and
number of moves needed for the reconfiguration.

The shapes experimented on included: 1) wedges of sim-
ilar orientation and variable size, 2) rectangles that length-
ened on the E-W axis while remaining fixed on the N-S
axis, and 3) diamonds of similar orientation and variable
size. These shapes were chosen because they are simple and
yet illustrative of how heuristics can affect the performance
of the reconfiguration algorithm.

The first heuristic (SN for “select north”) chose the NE
edge whenever there was a choice of NE or SE edges, bias-
ing the substrate path to “hug” the north side of G. The
second heuristic (SS) used a “seesaw” pattern, selecting
the edge in the opposite direction as the edge last selected
when there was a choice. The third heuristic (GR) used
a greedy strategy in which the edge to the NE or SE was
selected based on whichever choice most evenly divided the
next column to the east.

Figure 22 illustrates the paths found by the SN heuristic,
the SS heuristic, and the GR heuristic for a wedge of 29
cells, a rectangle of 21 cells, and a diamond of 26 cells.
Heuristic GR was able to more evenly split G into halves
for each shape when n was sufficiently large.

SN SS GR

4
%
{

Fig. 22. Example paths found for SN, SS, and GR heuristics.

In Figs. 23 and 24(a), we depict the results obtained from
experiments with wedges of similar orientation and increas-
ing size. Figures 23 and 24(b) show the results obtained
when experiments were performed on lengthening rectan-
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Fig. 23. Rounds used for wedge (a), lengthening rectangle (b), and di-
amond shaped (c) configurations. Heuristics used are “Select North”
(SN), “See-Saw” (SS), and “Greedy” (GR).
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gles and Figs. 23 and 24(c) show the results on diamond
shapes. For each shape, the number of moves increased
more than linearly for increasing values of n. Also, the
number of moves was nearly the same for each heuristic
for all values of n. For each shape, when n > 9, heuristic
GR used fewer rounds than did the SN or SS heuristics.
Performance, in terms of number of rounds used, improves
when the substrate path evenly divides G because modules
can alternate direction, allowing more modules to move in
parallel.

Therefore, while any admissible directed path of marked
nodes may be chosen as the substrate path, heuristics can
improve the number of rounds, and, to a lesser extent, the
number of moves, required for reconfiguration.

B. Simulation on Realistic Shapes

Metamorphic robotic systems need to assume different
useful shapes. Possible useful shapes include bridges to
span rivers or rough terrain and buttresses to support col-
lapsing buildings or temporary constructions such as emer-
gency flood levees (see Figure 25). In this section, we
present the results of simulation experiments involving the
reconfiguration of systems composed of varying numbers of
modules into useful structures. Since the greedy heuristic
had the best performance in terms of number of rounds
when tested on simple shapes, we used the greedy heuris-
tic when finding a substrate path in all experiments in this
section.

Figure 26(a) shows three examples of the bridge shape
used in our experiments, depicting the basic bridge pattern
for 11, 18 and 25 modules. The shaded modules repre-
sent the substrate path chosen by our algorithm using the
greedy heuristic. As shown in Table I, we continued the ex-
periment by increasing the number of modules simulated
to over 50. The extension of the bridges for higher number
of modules follows the pattern depicted in Figure 26(a).

Figure 26(b) shows two examples of the tall buttress
shape used in our experiments, depicting the basic pattern
for 19 and 24 modules. The shaded modules represent the
substrate path chosen by our algorithm using the greedy
heuristic. As shown in Table I, we continued the exper-
iment by increasing the number of modules simulated to
about 50. The extension of the buttresses for higher num-
ber of modules follows the pattern depicted in Figure 26(b).

Table I shows that the number of rounds used in the
reconfigurations from chains to more “realistic” shapes in-
creases in a linear fashion as did the number of rounds
for “simple” shapes in the last section. The increase in the
number of moves as the number of modules increases is also
similar to that shown for the “simple” shapes. Clearly, fill-
ing in each of these “realistic” shapes from the bottom up
would be preferable if gravity were a concern in the recon-
figuration. The substrate paths chosen do not attempt to
follow this bottom-up pattern. The shapes considered in
this section also do not lend themselves to effective use of
the heuristics in Find_path, resulting in low overall paral-
lelism in these simulations. However, these shapes do repre-
sent “real world” applications for metamorphic robots and
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Fig. 24. Moves used for wedge (a), lengthening rectangle (b), and di-
amond shaped (c) configurations. Heuristics used are “Select North”
(SN), “See-Saw” (SS), and “Greedy” (GR).
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(b)

Fig. 25. Metamorphic system as (a) bridge and (b) support for

i

building.

(b)

Fig. 26. Example bridge shapes (a) and tall buttress shapes (b).

TABLE I
NUMBER OF ROUNDS AND MOVES USED FOR BRIDGE AND BUTTRESS.

| Shape || Modules | Rounds | Moves |

Bridge 11 36 89
18 61 239

25 86 466

32 111 770

39 136 1151

46 161 1609

53 186 2145

Tall Buttress 19 74 269
24 95 418

29 116 597

34 137 806

44 178 1311

we have demonstrated that our algorithm can effectively
perform the reconfigurations.

In [11], we showed that our distributed algorithm for
straight chain to chain reconfiguration in a system of hexag-
onal robots, given our system assumptions, takes O(n)
rounds and O(n?) moves. The experimental results we
present in this section suggest that our straight chain to ad-
missible goal reconfiguration algorithms have similar com-
plexity.

VIII. CoNcLUSIONS AND FUTURE WORK

The algorithms presented in this paper rely on total
knowledge of the goal configuration. Each module precom-
putes all aspects of its movement once it has sufficient local
information to reconstruct the entire initial configuration.
We proved the correctness of our centralized algorithms for
finding a substrate path and tested the performance of our
distributed reconfiguration algorithm through simulation.

Since we restrict the initial configuration to a straight
chain, it is rather simple for the modules to reconstruct
the entire initial configuration. We believe that a more
flexible approach will be helpful in designing reconfigu-
ration algorithms for more irregular configurations, more
asynchronous systems, and those with unknown obstacles.
Part of such a flexible approach will include the ability
for modules to detect and resolve collisions and deadlock
situations when they occur, rather than precomputing tra-
jectories that avoid these situations. We have some initial
ideas for ways to deal with module collision and deadlock
on the fly, which we leave for future work.

The orientation of the initial chain to the admissible goal
shape limits the possible choices for the point of contact be-
tween the initial and goal configurations. In the future, we
plan to develop algothms that do not place such a strict
orientation criteria on the initial positions of the chain and
the admissible goal configuration. Future work will also
include simulation using different heuristics to improve the
time used for reconfiguration. For example, if the sub-
strate path is a straight chain to the SE or NE, it can be
filled using a pattern in which modules alternate direction,
as was done in our straight chain to straight chain algo-
rithms[11]. Another heuristic improvement is to choose a
substrate path for which all modules on the north or south
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of the path meet the path at an obtuse angle, since then
the distance between moving modules can be reduced to
one space, increasing the overall parallelism achieved by
the reconfiguration.
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