
A Competitive Analysis for Retransmission Timeout�

Shlomi Dolevy Michael Katez Jennifer L. Welchz

January 24, 1999

Abstract

Protocols that provide reliable communication on top of a network that can lose packets

rely on periodically retransmitting packets. The choice of retransmission timeout critically

a�ects system performance. This paper presents a �rst step toward a theoretical study

of the choice of retransmission timeout, based on competitive analysis. In general, com-

petitive analysis compares the performance of an on-line algorithm to the performance of

an optimal o�-line algorithm, which has access to more information. In this context, the

job of an algorithm is to choose the retransmission timeout interval; an o�-line algorithm

knows the exact message delays, while an on-line algorithm only knows upper and lower

bounds on the delays. The performance measure of interest is the expected value of a

linear combination of the number of packets used and the amount of time elapsed. An

on-line algorithm for choosing the retransmission timeout is presented that is optimal with

respect to the di�erence between its performance and that of an optimal o�-line algorithm.

The algorithm is also analyzed with respect to the ratio of its performance and that of an

optimal o�-line algorithm.

Keywords: retransmission timeout, competitive analysis.

1 Introduction

In communication networks processors exchange information (messages) by sending and re-

ceiving packets over communication channels. Typically, a packet transmitted (by the sender)

over a communication network has a non-zero probability of being lost or corrupted and dis-

carded (by the receiver). If this happens, retransmission of the packet that conveys the message

1
This work was supported by NSF Presidential Young Investigator Award CCR-9396098 and Texas A&M

University Engineering Excellence funds. An extended abstract of this work was presented in the 15th Interna-

tional Conference on Distributed Computing Systems, 1995.

2
Department of Mathematics and Computer Science, Ben-Gurion University, Beer-Sheva, 84105, Israel.

Email: dolev@cs.bgu.ac.il.
3
Department of Computer Science, Texas A&M University, College Station, TX 77843, USA. Email:

fmkate,welchg@cs.tamu.edu.

1



is required. The packet is repeatedly retransmitted until it is successfully delivered. Conse-

quently, retransmission of packets is at the core of every protocol that guarantees reliable

communication.

The key concept used by reliable communication protocols is the retransmission of packets

by the sender until an appropriate acknowledgment arrives from the receiver (e.g., the alternat-

ing bit protocol [4], the sliding window protocol [11], etc.). The time between two successive

retransmissions, called the retransmission timeout, is an important parameter of reliable trans-

mission protocols [5]. The e�ciency of a reliable transmission protocol is measured in terms

of both the time it takes for message delivery through the network and the communication

bandwidth used per message delivery. If the retransmission timeout is long, then it takes a long

time for the message to be delivered; on the other hand, if the retransmission timeout is short,

then the result is high usage of the communication bandwidth. The problem of �nding an

optimal retransmission timeout is made more complicated when the mutual inuence between

several senders has to be considered: Choosing a too short retransmission timeout may cause

congestion in the network and increase the probability of a packet being lost.

Existing protocols for reliable message transmission use heuristics that depend on manually

controlled parameters to tune the choice of retransmission timeout [12, 5]. In this paper, we take

a step towards a formal model and analysis that captures the key aspects of the problem. We

present a theoretical model and analysis for understanding the inuence of the retransmission

timeout on system performance. Our theoretical model captures fundamental aspects of the

retransmission problem, and still retains the bene�ts of simplicity. A single message delivery

between a sender and a receiver at di�erent sites in the network is considered. A �xed round

trip delay and probability of losing a packet during the process of a single message delivery

is assumed. This is an approximation to the behavior of a multi-user network during a short

period of time. In such a network the overall tra�c pattern is typically changed gradually.

The e�ciency of a protocol is measured with respect to a cost function. We begin by

considering a linear combination of the elapsed time and the number of packets required for

transmission of a message. The relative costs of time and number of packets are controlled by

a parameter. The mutual inuence between multiple senders is captured by an appropriate

choice of the parameter: when the mutual inuence is high, more weight is given to the number

of packet used for delivering a message, otherwise more weight is given to the total time elapsed.

Finally, we consider the expected value of this linear combination, given the �xed probability

of packet loss.

Our analysis is based on the competitive on-line vs. o�-line approach. Originally Sleator

and Tarjan [10] suggested the on-line vs. o�-line approach to analyze the performance of algo-

rithms for dynamically maintaining a linear list and for paging. In each case, they devised an

optimal o�-line algorithm assuming (unrealistically) that the entire sequence of future requests

(either for operations on the list or for memory references) is known. Then they presented an

on-line algorithm for the same problem omitting the unrealistic assumption concerning the

availability of future knowledge. The complexity of the on-line algorithm was compared with

the complexity of the (optimal) o�-line algorithm. Recently, the same approach has been

2



applied to di�erent tasks, e.g., [3, 9, 2, 1].

Our o�-line algorithm is devised for the ideal case in which the processors know the exact

round-trip delay, and it is optimal. In contrast, the on-line algorithm knows only upper and

lower bounds on the current round trip delay. The on-line algorithm uses the bounds on the

current round trip delay to determine a time-out period that minimizes the worst case di�erence

in cost relative to the optimal o�-line algorithm. An important bene�t of competitive analysis

is its capability to analyze an algorithm whose performance depends on events which occur

with some unknown distribution. For example, in our case, although upper and lower bounds

on the round trip delay are known to the on-line algorithm, the distribution of the round trip

delay within those bounds is not. Instead, the on-line vs. o�-line analysis gives the value of

the round trip delay that illustrates the worst performance of the on-line algorithm relative to

the o�-line algorithm.

The retransmission time-out calculated by our on-line algorithm is optimal in the following

sense: The maximal di�erence between the cost measures of the on-line algorithm and the

o�-line algorithm is minimized. Note that the traditional competitive analysis approach mini-

mizes the (maximal) ratio between the on-line and o�-line algorithms. However, we choose to

minimize the (maximal) di�erence, which in many cases provides a stronger guarantee (cf. [7],

p. 138). For the sake of completeness, we also present an upper bound on the ratio between

the cost measures of the on-line and o�-line algorithms. The upper bound on the ratio is a

function of the upper and lower bounds on the round trip delay; for instance, if the round trip

bounds di�er by at most a factor of 4, then the cost measures ratio is at most 2.5.

Several parameters are used by the on-line algorithm to choose the optimal retransmission

time-out, including: Lower and upper bounds on the round trip delay, the probability of a

packet being lost, and the weighting parameter for the cost function. Throughout the analysis

those parameters are assumed to be �xed. This models a short period of time in which

only small changes may occur. However, when a sequence of messages is considered, these

parameters may change and the solution should adapt in response to those changes. Our

algorithm could be combined with procedures (outside the scope of this paper) for adaptively

learning good approximations to the values of these parameters, say by using the stream of

acknowledgment packets.

The remainder of the paper is organized as follows. Section 2 contains our de�nitions and

assumptions. The optimal o�-line algorithm is presented and analyzed in Section 3. The

on-line algorithm is studied in Section 4. We conclude in Section 5.

2 De�nitions and assumptions

2.1 The system and cost measure

We assume that the system consists of two processors, the sender and the receiver, that com-

municate by sending packets over a network in both directions. The processors have access

3



to clocks that accurately measure the passage of time; the clocks need not be synchronized to

each other. Each processor's clock ticks discretely and at each tick the processor takes a step.

The sender is assumed to have a single piece of information, called a message, that it wants

to transfer to the receiver. The sender operates by repeatedly sending copies of the infor-

mation in data packets to the receiver until it receives an acknowledgment from the receiver.

The packets are assumed to be sent with a �xed period, called the retransmission timeout.

The receiver operates simply by sending an acknowledgment packet to the sender whenever it

receives a data packet from the sender.

The network can lose packets. However, it only delivers packets that were previously sent

and it does not duplicate packets. (Thus, the sender alone controls any retransmissions.) We

assume that within this single message transmission the network delivers those packets that it

does not lose with a �xed delay, and thus delivers packets in FIFO order.

The problem we study is to determine how frequently the sender should retransmit data

packets in order to achieve good performance. Thus we must also de�ne an appropriate cost

measure for evaluating performance.

The obvious cost measures of interest are P , the number of packets sent by the sender,

and T , the amount of time measured in clock ticks at the sender until the sender receives an

acknowledgment. There are two issues that must be resolved.

The �rst issue is that considering either P or T in isolation optimizes the performance of

the algorithm only in one aspect. If we are only concerned with minimizing P , the number of

packets, then the sender should wait a long time before deciding to retransmit, thus costing a

lot of time. If we are only concerned with minimizing T , then the sender should send a packet

at every step, thus costing a lot of packets. A large number of packets can cause a higher

probability of congestion, which in turn may inuence the probability of packet loss. Thus, we

propose that the cost measure should charge for the number of packets, not only to reect the

bandwidth used but also to discourage congestion. We consider a cost measure that combines

P and T and has a parameter f , 0 < f < 1, that can be tuned to achieve di�erent tradeo�s

between P and T . This measure is similar to the phone company's method for billing|a �xed

amount is paid monthly regardless of usage (analogous to T ) plus charges for actual usage of

the network (analogous to P ). The de�nition is:

CM = fT + (1� f)P = P + (T � P )f

The units for CM are clock ticks. The intuition is that we count the number of ticks at which

packets are sent and then add some fraction of the ticks during which the sender is waiting

without sending any packets. As f approaches 0, CM approaches P , and as f approaches 1,

CM approaches T .

The second issue is that P and T , and thus CM, clearly depend on how many packets are

lost.1 Since the number of lost packets can vary in di�erent executions, we choose to focus on

1
Unless stated otherwise, throughout this paper the term \packet loss" refers to the loss of either a data

packet or its matching acknowledgment packet.

4



the expected value of CM, assuming that each packet has a �xed and independent probability

of being lost. Thus the cost measure of interest we study is:

ECM = EX [P + (T � P )f ]

We de�ne the following system parameters:

� ts, the retransmission timeout, i.e., the sender sends a data packet every ts ticks,

� f , the parameter for CM, 0 < f < 1,2

� p, the probability that either a data packet or its matching acknowledgment is lost,

0 < p < 1,3

� v, the round trip delay for packets that are not lost, v > 0.

We �rst give a formula for ECM in terms of f , p, v, and ts. We will primarily consider

f and p as �xed, and vary v and ts. ECM is a linear function of v. When considered as a

function of ts, ECM has the form c1 � ts + c2
ts
+ c3, for constants c1, c2, and c3.

Theorem 1

ECM =
fpts

1� p
+
v(1� f)

ts
+
p(1� f)

1� p
+ fv:

Proof: Consider an execution in which i packets are lost in a row. Then T = i � ts + v, since

the sender will wait ts time after sending each of the lost packets and will wait v time after

sending the i+ 1st packet until receiving the acknowledgment. Furthermore, P = T
ts
= i+ v

ts
,

since the sender sends a packet every ts time units during a total interval of length T . Let

CM(i) be the value of CM when i packets are lost in a row.

ECM =
1X
i=0

Pr[i packets in a row are lost] � CM(i)

Substituting gives ECM =

1X
i=0

pi(1� p)

�
i+

v

ts
+

�
i � ts + v � i� v

ts

�
f

�

Rearranging, we get

2
If f = 0, then CM = P , and the best strategy is for the sender to wait until it sure that the last packet is

lost; if f = 1, then CM = T , and the best strategy is for the sender to resend the packet at every tick.

3
If p = 0, then packets are never lost, and the best strategy is for the sender to send the packet once and

wait for the acknowledgment; if p = 1, then every packet is lost and the message can never be transferred.

5



ECM = (1� p)(1 + f � ts � f)
1X
i=0

pi � i

+(1� p)

�
v

ts
+ fv � v

ts
� f
� 1X

i=0

pi

From calculus, we get

ECM = (1� p)(1 + f � ts � f)
p

(1� p)2

+(1� p)

�
v

ts
+ fv � v

ts
� f
�

1

1� p

This simpli�es to the required quantity.

2.2 On-line and o�-line algorithms

The algorithms we study are those for choosing the value of ts.

We assume that an o�-line algorithm knows the value of v, the round trip delay for non-lost

packets, while an on-line algorithm only knows a range [vl; vu] within which v lies. Both types

of algorithms know f and p.

An o�-line algorithm is optimal if, given any �xed values for v, p, and f , it calculates a

value for ts that minimizes the value of ECM.

We next de�ne the \competitive di�erence" for an on-line algorithm. Given any �xed values

for vl, vu, p, and f , the on-line algorithm is to calculate a value tons for ts. The competitive

di�erence of the algorithm is

max
v2[v

l
;vu]

fECM(ts = tons )� ECM(ts = toffs )g:

ECM(ts = tons ) represents ECM evaluated when ts equals tons ; the value of tons is the same

no matter what the value of v is. ECM(ts = toffs ) represents ECM evaluated when ts equals

toffs , the value that minimizes ECM; the value of toffs varies with v. Thus we are interested

in the di�erence between the performance of the on-line algorithm and the performance of the

optimal o�-line algorithm.

An on-line algorithm is optimal if, for every vl, vu, p and f , it computes a value for ts that

minimizes the competitive di�erence.

For completeness, we also de�ne the competitive ratio of an algorithm to be

max
v2[v

l
;vu]

(
ECM(ts = tons )

ECM(ts = t
off
s )

)
:

6



3 Optimal o�-line algorithm

Let A be the o�-line algorithm that uses the following quantity for ts:

toffs =

s
v(1� f)(1� p)

fp
:

In order to match our model assumptions, toffs must be an integer; for simplicity, we

approximate the discrete case with the continuous. We also assume that f and p are such that

toffs lies in the range [1; v]; if instead the above square root evaluates to less than 1, then 1 is

used for toffs , and if it evaluates to more than v, then v is used for toffs . The reason is that the

nature of the problem makes it clear that the extreme choices for toffs are 1 (send every tick)

and v (wait until it is de�nite that the packet has been lost).

We now prove that A is optimal.

Theorem 2 ECM is minimized when ts = toffs .

Proof: First we di�erentiate ECM with respect to ts.

d

dts
ECM =

fp

1� p
� v(1� f)

1

t2s
:

Setting this equal to 0 and solving for ts produces t
off
s .

To check that this is indeed a minimum, we take the second derivative of ECM with respect

to ts:
d2

dt2s
ECM =

2v(1� f)

t3s
:

Clearly substituting toffs into this expression produces a positive quantity.

Evaluating ECM at toffs produces the minimum value of ECM, given by the following

corollary.

Corollary 3 The minimum value of ECM is

ECM(ts = toffs ) = 2

s
fpv(1� f)

1� p
+
p(1� f)

1� p
+ fv:

We can make the following observations about toffs .

� The optimal retransmission timeout for a �xed p and f is O(
p
v).

7



(1-f)p
1-p

v(1-f)f p
1-p2 + v f+

t st sv (1-p)(1-f)
p f

ECM

Figure 1: Optimal o�-line retransmission timeout

� When the probability p of losing a packet is high, then the value of toffs is small. This

implies that when most packets are lost, it is best to retransmit the packet very frequently.

� When the probability p of losing a packet is low, then the value of toffs is high. This

implies that since packets are rarely lost, it is best to wait a \long time" because most

likely the acknowledgment will arrive.

� When the fraction f is close to 1, implying that the cost measure should be time optimal

(and no congestion problem exists), the value of toffs is small. Since the goal is to be

time optimal, it is best to retransmit the packet very frequently.

� When the fraction f is close to 0, implying that the cost measure should be packet

optimal (and/or a congestion problem exists), the value of toffs is high. Since the goal

is to be packet optimal, it is best to wait \a long time" to avoid sending unnecessary

packets.

4 On-line algorithm

Recall that an on-line algorithm can only use knowledge of vl and vu, between which v lies,

instead of knowing v exactly. We are interested in �nding a choice for ts that will minimize

the competitive di�erence, no matter where in the interval [vl; vu] v actually lies.

Let B be the on-line algorithm that uses the following value for ts:

tons =
1

2
(
p
vl +

p
vu)

s
(1� f)(1� p)

fp
:

This is similar to toffs , but with
p
v replaced by 1

2
(
p
vl +

p
vu).

8



Analogously to the o�-line algorithm, we only consider values of tons that lie between 1 and

vu.

We next show that this algorithm is optimal, i.e., that it minimizes the competitive dif-

ference. We proceed as follows. First we de�ne a function DIFF of ts which is the di�erence

between the value of ECM for ts and the optimal value of ECM. Then we show that DIFF is

maximized when v is at one of the endpoints of its range (either vl or vu). Then we observe

that in order to minimize this maximum di�erence, we should choose ts so that the di�erences

at the two endpoints are equal. Finally we check that tons achieves this.

Let DIFF be de�ned as follows (vl, vu, f , and p are �xed, while ts and v can vary):

DIFF = ECM � ECM(ts = toffs )

Theorem 4 For a �xed ts, within the range [vl; vu] DIFF is maximized when v = vl or v = vu.

Proof: Using calculus shows that the only critical point of DIFF is v = fpt2
s

(1�f)(1�p)
, but that

this is a minimum, not a maximum. Thus, over a �nite range, DIFF is maximized at one of

the two endpoints. The details follow.

Theorem 1 and Corollary 3 imply

DIFF =

�
fpts

1� p
+
v(1� f)

ts
+
p(1� f)

1� p
+ fv

�

�
 
2

s
fpv(1� f)

1� p
+
p(1� f)

1� p
+ fv

!
:

Canceling gives

DIFF =
fpts

1� p
+
v(1� f)

ts
� 2

s
fpv(1� f)

1� p
:

Di�erentiating with respect to v gives

d

dv
DIFF =

1� f

ts
�
s
fp(1� f)

v(1� p)
:

Setting this equal to 0 and solving for v gives

v0 =
fpt2s

(1� f)(1� p)
:

To determine whether v0 is a minimum or maximum, we take the second derivative:

9



d2

dv2
DIFF =

1

2
� 1

v
p
v

s
fp(1� f)

1� p
:

Clearly the second derivative is greater than zero when evaluated at v0, and hence v0 is a

minimum.

In order to minimize the maximum value of DIFF, ts should be chosen so that the values of

DIFF at the two endpoints, vl and vu, are equal. (ECM is a linear function of v in the on-line

case, ECM is O(v +
p
v) in the o�-line case, and the two are tangent at the value of v that

minimizes DIFF.)

ECM

Offline

Online

vv vvv ul
*

Figure 2: Optimal on-line retransmission timeout

The next theorem shows that tons does this.

Theorem 5 DIFF (ts = tons ; v = vl) = DIFF (ts = tons ; v = vu).

Proof: DIFF (v = vl) = DIFF (v = vu) implies�
fpts

1� p
+
vl(1� f)

ts
+
p(1� f)

1� p
+ fvl

�

�
 
2

s
fpvl(1� f)

1� p
+
p(1� f)

1� p
+ fvl

!

=

�
fpts

1� p
+
vu(1� f)

ts
+
p(1� f)

1� p
+ fvu

�

10



�
 
2

s
fpvu(1� f)

1� p
+
p(1� f)

1� p
+ fvu

!
:

Canceling and rearranging gives

vl(1� f)� vu(1� f)

ts
= 2 (

p
vl �

p
vu)

s
fp(1� f)

1� p
:

Solving for ts gives t
on
s .

The next theorem states the competitive di�erence of the on-line algorithm, namely, the

maximum di�erence between the on-line algorithm and the optimal o�-line algorithm. By the

previous argument, the maximum di�erence is found by evaluating DIFF with ts equal to t
on
s

and v equal to vl or vu.

Theorem 6 The competitive di�erence for the on-line algorithm is 
1

2

�p
vu � p

vl
�2

p
vu +

p
vl

!s
fp(1� f)

1� p
:

Proof: DIFF (ts = tons ; v = vl) equals

ECM(ts = tons ; v = vl)� ECM(ts = toffs ; v = vl)

=

�
fptons
1� p

+
vl(1� f)

tons
+
p(1� f)

1� p
+ fvl

�

�
 
2

s
fpvl(1� f)

1� p
+
p(1� f)

1� p
+ fvl

!
:

This simpli�es to the required quantity.

This quantity is the maximum di�erence between the on-line algorithm B and the optimal

o�-line algorithm. We can make the following observations about this di�erence.

� When the probability of losing a packet is high, the value of DIFF is large, so the on-line

algorithm's performance is much less than optimal.

� When the probability of losing a packet is low, the value of DIFF is small, so the on-line

algorithm's performance is close to optimal.

� When the fraction f is close to one (i.e., the emphasis is on time and/or no congestion

problem exists) the value of DIFF is small, so the on-line algorithm's performance is

close to optimal.

� When the fraction f is close to zero (i.e., the emphasis is on number of packets and/or

to avoid congestion) the value of DIFF is small, so the on-line algorithm's performance

is close to optimal.

11



4.1 Competitive ratio analysis

We have previously shown that algorithm B is optimal (with respect to the competitive di�er-

ence). We now analyze the competitive ratio of B. This is done by studying the ratio between

the performance of the on-line algorithm and the performance of the o�-line algorithm when

v = vl. We have previously shown that the di�erence is maximized and equal at the endpoints

vl and vu. Since the functions are increasing, the ratio is maximized at the smaller endpoint.

Theorem 7 The competitive ratio for algorithm B is at most 1
2

q
vu
v
l

+ 1:5:

Proof:
ECM(ts = tons ; v = vl)

ECM(ts = t
off
s ; v = vl)

simpli�es to an expression of the form
a � b+ c

d � b+ c

where

a =
1

2
(
p
vl +

p
vu) +

2vlp
vl +

p
vu
; b =

s
fp(1� f)

1� p
; c =

p(1� f)

1� p
+ fvl; d = 2

p
vl:

We can upper bound this expression:

a � b+ c

d � b+ c
=

a

d+ c=b
+

c=b

d+ c=b
� a

d+ c=b
+ 1 � a

d
+ 1:

The expression a
d
simplies to

p
vl +

p
vu

4
p
vl

+

p
vlp

vl +
p
vu
:

The �rst term is at most 1
2 �
q

vu
v
l

. The second term is at most 1
2 . Thus the total is at most

1
2
�
q

vu
v
l

+ 1:5.

5 Conclusion

We have presented a �rst step toward a theoretical study of the choice of retransmission

timeout, based on competitive analysis. We have presented de�nitions for an appropriate cost

measure, which combines number of packets and elapsed time in a tunable way. We have made

choices for what information is available to on-line and o�-line algorithms respectively. We

12



described an o�-line algorithm and showed that it is optimal. We presented an on-line algorithm

and proved that it is optimal with respect to the competitive di�erence. For completeness, we

also analyzed the on-line algorithm with respect to the competitive ratio.

Many interesting questions remain. This paper has studied one part of the overall problem

of reliable message transfer in communication networks. An important generalization of this

work is to handle the case of transmitting a sequence of messages. Since this can take place

over a long period of time, generally p and v will change. Consequently, the choice of ts should

change dynamically. There is also potential feedback between lessening ts (i.e., sending packets

more frequently) and increasing p (i.e., the probability of packets being lost). This feedback

could perhaps be modeled by changing f in response to observed changes in vl, vu, and p.

Adaptive learning techniques could be used to compute current estimates for the parameters

f , vl, vu, and p; then, for the estimated parameters our on-line algorithm performs optimally.

Acknowledgments: Many thanks to Shmuel Aharon and Zohar Yaakov for simulating the

results.

References

[1] James Aspnes, Yassi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts, \On-Line Load Bal-

ancing with Applications to Machine Scheduling and Virtual Circuit Routing," Proceedings

of the 25th Annual ACM Symposium on the Theory of Computing, pp. 623{631, May 1993.

[2] Yair Bartal, Amos Fiat, and Yuval Rabani, \Competitive Algorithms for Distributed Data

Management," Proceedings of the 24th Annual ACM Symposium on the Theory of Com-

puting, pp. 39{50, May 1992.

[3] A. Borodin, N. Linial, and M. Saks, \An Optimal Online Algorithm for Metrical Task

Systems," Proceedings of the 19th Annual ACM Symposium on the Theory of Computing,

pp. 373-382, 1987.

[4] K. Bartlett, R. Scantlebury, and P. Wilkinson, \A Note on Reliable Full-Duplex Transmis-

sion over Half-Duplex Links," Communications of the ACM, 12(5):260-261, May 1969.

[5] Douglas Comer, Internetworking with TCP/IP, Volume I: Principles, Protocols and Archi-

tecture, Prentice-Hall, Englewood Cli�s, NJ, 1991.

[6] David Feldmeier and Ernst Biersack, \Comparison of Error Control Protocols for High

Bandwidth-Delay Product Networks," Proceeding of the IFIP Workshop on Protocols for

High Speed Networks, 1990.

[7] Michael R. Garey and David S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979.

13



[8] Raj Jain, \Divergence of Timeout Algorithms for Packet Retransmissions," Fifth Annual

International Phoenix Conference on Computers and Communications, pages 174{179,

March 1986.

[9] Mark Manasse, Lyle McGeoch, and Daniel Sleator, \Competitive Algorithms for On-line

Problems," Proceedings of the 20th Annual ACM Symposium on the Theory of Computing,

pp. 323{333, May 1988.

[10] Daniel D. Sleator and Robert E. Tarjan, \Amortized E�ciency of List Update and Paging

Rules," Communications of the ACM, 28(2):202{208, 1985.

[11] Andrew Tanenbaum, Computer Networks, Prentice Hall, Englewood Cli�s, NJ, 1988.

[12] Lixia Zhang, \Why TCP Timers Don't Work Well," Proceedings of the ACM SIGCOMM:

Communications, Architectures, and Protocols, pp. 397{409, August 1986.

14


