
Distributed Reconfiguration of Metamorphic Robot Chains
(July 14, 2000 revision of PODC 2000 paper.)

Jennifer E. Walter
�

Jennifer L. Welch
y

Nancy M. Amato
z

ABSTRACT
The problem we address is the distributed recon�guration
of a metamorphic robotic system composed of any number
of two dimensional hexagonal modules from speci�c initial
to speci�c goal con�gurations. We present a distributed

algorithm for recon�guring a straight chain of hexagonal
modules at one location to any intersecting straight chain
con�guration at some other location in the plane. We prove
our algorithm is correct, and show that it is asymptotically
optimal in the number of moves and in the time required for
parallel recon�guration. We then consider the distributed

recon�guration of straight chains of modules to a more gen-
eral class of goal con�gurations.

1. INTRODUCTION
A topic of recent interest in the �eld of robotics is the devel-

opment of motion planning algorithms for robotic systems
composed of a set of modules that change their position rela-
tive to one another, thereby reshaping the system. A robotic
system that changes its shape due to individual module mo-
tion has been called self-recon�gurable [5] or metamorphic

[2].

A self-recon�gurable robotic system is a collection of inde-
pendently controlled, mobile modules, each of which has the

�Department of Computer Science, Texas A&M Univer-
sity, College Station, TX 77843-3112. jennyw@cs.tamu.edu.
Walter is supported by GE Faculty of the Future and De-
partment of Education GAANN fellowships.
yDepartment of Computer Science, Texas A&M Univer-
sity, College Station, TX 77843-3112. welch@cs.tamu.edu.
Welch is supported in part by NSF Grant CCR-9972235.
zDepartment of Computer Science, Texas A&M Univer-
sity, College Station, TX 77843-3112. amato@cs.tamu.edu.
Amato is supported in part by NSF CAREER Award
CCR-9624315, NSF Grants IIS-9619850, EIA-9805823, and
EIA-9810937, DOE ASCI ASAP (Level 2 Program) grant
B347886, and by the Texas Higher Education Coordinating
Board under grant ARP-036327-017.

ability to connect, disconnect, and move around adjacent
modules. Metamorphic robotic systems, a subset of self-
recon�gurable systems, are further limited by requiring each
module to be identical in structure, motion constraints, and
computing capabilities. Typically the modules have a regu-
lar symmetry so that they can be packed densely, i.e., packed

so that gaps between modules are as small as possible. In
these systems, modules achieve locomotion by moving over
a substrate composed of other modules. The mechanics of
locomotion depends on the hardware and can include mod-
ule deformation to crawl over neighboring modules [3, 9] or
to expand and contract to slide over neighbors [10]. Al-

ternatively, moving modules may be constrained to rigidly
maintain their original shape, requiring them to roll over
neighboring modules [6, 12, 13].

Shape changing in these composite systems is envisioned as

a means to accomplish various tasks, such as bridge building,
satellite recovery, or tumor excision [9]. The complete inter-
changeability of the modules provides a high degree of sys-
tem fault tolerance. Also, self-recon�guring robotic systems
are potentially useful in environments that are not amenable
to direct human observation and control (e.g., interplanetary

space, undersea depths).

The motion planning problem for a metamorphic robotic
system is to determine a sequence of module motions re-
quired to go from a given initial con�guration (I) to a de-
sired goal con�guration (G).

Many developers of self-recon�gurable robotic systems [5,
6, 7, 9, 10, 11, 12] have devised motion planning strate-
gies speci�c to the hardware constraints of their prototype
robots. Most of the existing motion planning strategies rely

on centralized algorithms to plan and supervise the motion

of the system components [1, 3, 5, 9, 10, 11]. Others use
distributed approaches which rely on heuristic approxima-
tions and require communication between modules in each
step of the recon�guration process [6, 7, 12, 13].

We believe there is a rich opportunity for the distributed
computing community to make a contribution in this prob-
lem domain by designing robust and eÆcient distributed
motion planning algorithms for self-recon�guration of meta-
morphic robotic systems. As a �rst step, we consider a dis-
tributed motion planning strategy, given the assumption of

initial global knowledge of G. Our distributed approach
o�ers the bene�ts of localized decision making and the po-

1



tential for greater system fault tolerance. Additionally, our

strategy requires no communication between modules. We
focus on a system composed of planar, hexagonal robotic
modules as described in [3] as a starting point in this dis-
tributed motion planning.

2. RELATED WORK
The papers of [3] and [9] discuss centralized algorithms for
planar hexagonal modules that use the distance between all
modules in I and the coordinates of each goal position to

accomplish the recon�guration of the system. In [9], the
distance between con�gurations is de�ned as a metric. This
metric is applied to system self-recon�guration using a simu-
lated annealing technique to drive the process towards com-
pletion. Upper and lower bounds on the number of moves
for recon�guration between general shapes are given in [3].

The upper bounds on the minimal number of moves are
functions of the distance along the perimeter of the initial
and �nal con�gurations, the maximum perimeter distance
possible in a connected con�guration of n modules, and the
overlap between the initial and �nal con�gurations. General
lower bounds are obtained by �nding a perfect matching be-

tween modules in I and positions in G such that the sum of
the distances between pairs is minimized.

In [8], centralized motion planning strategies for systems of
two dimensional robotic modules are examined and analysis

is presented for the number of moves necessary for speci�c
recon�gurations. The authors show that the absence of a
single excluded class of initial con�gurations is suÆcient to
guarantee the feasibility of motion planning for a system
composed of a single connected component. These authors
de�ne speci�c motion constraints based on the rigid nature

of the modules and use knowledge about the initial con�g-
uration to plan the recon�guration process.

Centralized motion planning algorithms are proposed in [5]
and [4] that allow three dimensional modules to accomplish
self-locomotion relative to a structure composed of identical

robotic modules by pivoting on attachment points. These
modules, called \molecules", are composed of identical units
connected by a rigid bond.

A centralized motion planning strategy for three dimen-
sional cubic robots is presented in [10]. In this paper, the

proposed modules incorporate an actuator mechanism that
causes module expansion and contraction, resulting in the
sliding movement of a module over its neighbors.

Centralized algorithms for decomposing a system of mod-

ules into a hierarchy of two dimensional substructures are
presented in [1]. Recon�guration of the system then in-
volves connectivity changes within and between these sub-
structures, along with substructure relocation. The paper
concentrates on the decomposition algorithms and does not
present algorithms for motion planning within substructures.

A distributed approach is taken in [6] to recon�gure a system
of two dimensional hexagonal modules, where each module
senses its own connection type and classi�es itself by the
number of modules that it physically contacts. Since con-
tacts are limited to the vertices of a planar hexagonal mod-

ule, the number of connection types is �nite and a subset of

these types are designated movable. Modules use a formula

that relates their connection type to the set of connection
types in the goal con�guration to quantify their �tness to
move. Modules communicate with physical neighbors to en-
sure that only the modules that have �tness greater than the
local �tness average move in the same time step, choosing a
direction at random.

In [7], a distributed recon�guration algorithm for three di-
mensional cubic modules is presented. The distributed ap-
proaches in [6] and [7] use random local motions to converge
toward the goal con�guration, a slow process that appears
impractical for large con�gurations. These schemes also ig-

nore the consequences of module collision and do not distin-
guish the relative location of modules in the plane, i.e., two
con�gurations are the same if the modules composing them
have the same connections.

Another distributed recon�guration algorithm, for three di-

mensional rhombic dodecahedron shaped modules, is pre-
sented in [12]. In this strategy, each module uses local in-
formation about its own state (the number and location of
its current neighbors) and information about the state of
its neighbors to heuristically choose moves that lower the
distance to the goal con�guration.

In [13], several heuristic approximation algorithms for dis-
tributed motion planning of three dimensional rhombic do-
decahedral robots are presented. In this two phase ap-
proach, modules use neighbor-to-neighbor communication

in the �rst phase to achieve a semi-global view of the initial
con�guration, using as many rounds as necessary to avoid
violation of module motion constraints prior to each phase
of movement.

Our approach: This paper will examine distributed mo-

tion planning strategies for a planar metamorphic robotic
system undergoing a very simple recon�guration, from a
straight chain to any intersecting straight chain. We be-
lieve one contribution of our work is how our system model
abstracts from speci�c hardware details about the modules.

In this paper, we consider two dimensional, hexagonal mod-
ules like those described in [2], using their de�nition of lat-
tice distance between modules in the plane. Our proposed
scheme uses a new classi�cation of module types based on
connected edges similar to the classi�cation used by [6] for
connected vertices. In the algorithms presented in this pa-

per, each module independently determines whether it is in
a movable state based on the cell it occupies in the plane,
the locations of cells in the goal con�guration, and on which
sides it contacts neighbors. Modules move from cell to cell
and modify their state as they change position. Since the

modules know the coordinates of the goal cells, each of them
can independently choose a motion plan that avoids module
collision.

Unlike the authors of [6, 12] and [13], we have chosen to
develop the distributed recon�guration algorithm starting

from a simple, rather than a complex, initial con�guration,
in the attempt to rigorously de�ne the code and data struc-
tures necessary at each module. Because we are attempt-
ing to de�ne the necessary building blocks for recon�gu-

2



ration, the algorithms presented in this paper do not rely

on communication between adjacent modules like the other
distributed approaches. One of our future goals is to deter-
mine how complex the con�guration shapes can be before
communication is required during recon�guration.

In Section 3 we describe the system assumptions and the

problem de�nition. Section 4 presents and analyzes a dis-
tributed algorithm for a chain-to-chain recon�guration for
the case where I and G lie on the same straight line in the
plane and intersect in one cell. An extension to generalize
the collinear algorithm when I and G are straight chains
that occur in any initial relative intersecting orientation is

also presented in Section 4. In Section 5 we present lower
bounds on the number of moves and time required for the re-
con�guration algorithms. We introduce the next step in our
solution to the general recon�guration problem in Section
6, where we describe an algorithm to recon�gure straight
chains to a well-de�ned class of goal con�gurations. Section

7 provides a discussion of our results and future work.

3. SYSTEM MODEL
3.1 Coordinate system

The plane is partitioned into equal-sized hexagonal cells
and labeled using the coordinate system shown in Figure 1,
as in [2].

X

Y

(0,-2)

(0,-1)

(0,1)

(0,2)

(3,0)

(2,0)

(1,0)

(-3,0)

(-2,0)

(-1,0) (1,-1)

(-1,1)

(0,0)

Figure 1: Coordinates in a system of hexagonal cells.

Given the coordinates of two cells, c1 = (x1; y1) and c2 =
(x2; y2), we de�ne the lattice distance, LD, between them as
follows: Let �x = x1 � x2 and �y = y1 � y2. Then

LD(c1; c2) =

�
max(j�xj; j�yj) if �x ��y < 0;
j�xj+ j�yj otherwise:

The lattice distance describes the minimum number of cells
a module would need to move through to go from cell c1 to
cell c2.

3.2 Assumptions about the modules
Our model provides an abstraction of the hardware features
and the interface between the hardware and the application
layer.

� Each module is identical in computing capability and
runs the same program.

� Each module is a hexagon of the same size as the cells
of the plane and always occupies exactly one of the

cells.

� Each module knows at all times:

{ its location (the coordinates of the cell that it

currently occupies),

{ its orientation (which edge is facing in which di-
rection), and

{ which of its neighboring cells is occupied by an-
other module.

Modules move according to the following rules.

� Modules move in lockstep rounds.

� In a round, a module M is capable of moving to an
adjacent cell, C1, i�

{ cell C1 is currently empty,

{ module M has a neighbor S that does not move
in the round1 (called the substrate) and S is also
adjacent to cell C1, and

{ the neighboring cell to M on the other side of
C1 from S, C2, is empty. See Figure 2 for an
example.

� Only one module tries to move into a particular cell in
each round.2

(a) (b)

C2C2

M

S

M

S

C1

f
e

g

e
C3

f

g

Figure 2: Before (a) and after (b) module move-
ment: M is moving, S is substrate, C1, C2, and C3

are empty cells.

3.3 Problem definition
We want a distributed algorithm (local program for each
module) that will cause the modules to move from an initial
con�guration, I, in the plane to a known goal con�guration,

G.

4. CHAIN ALGORITHMS
In this section, we develop a distributed recon�guration al-
gorithm for a particular con�guration of the system de-
scribed in Section 3. We focus on recon�guring a straight-
line chain of modules in I to an intersecting straight-line
chain of modules in G, where I overlaps G in exactly one

cell. Section 4.1 describes a simple algorithm for the case in
which I and G are collinear. Section 4.2 analyzes this algo-
rithm. Section 4.3 extends the ideas in the �rst algorithm
for the non-collinear cases.

1If the algorithm does not ensure that each moving module
has an immobile substrate, then the results of the round are
unpredictable.
2If the algorithm does not ensure that there are no collisions,
then the results of the round are unpredictable.

3



4.1 Collinear case (case 0)
We classify modules according to their possible connections
during an execution of our algorithm in a new classi�cation

based on edge contacts. This classi�cation is similar to the
one used in [6] that is based on vertex contacts. In Figure
3, modules are classi�ed into three categories (trapped, free,
and other) based on the number and orientation of their con-
tact and non-contact edges. Non-contact edges are those on
which the module is adjacent to an empty cell and contact

edges signify that the adjoining cell is occupied by another
module. This classi�cation applies to any rotation of a mod-
ule. Modules in the trapped category do not have suÆcient
adjacent non-contact edges to satisfy hardware constraints
on movement (see Section 3.2). Modules classi�ed as free

are required to move in our algorithm. The other category
includes modules whose movements are restricted by our
algorithm even though their movement would not violate
hardware constraints.

TRAPPED

                Indicates non-contact edge

                Indicates contact edge

FREE OTHER

Figure 3: Con�guration types possible in case 0 al-
gorithm.

4.1.1 Algorithm assumptions
1. Each module knows the total number of modules in

the system, n, and the goal con�guration, G.

2. Initially, one module is in each cell of I.

3. I and G are collinear and overlap in exactly one cell.

4.1.2 Overview of algorithm
The algorithm works in synchronous rounds. Initially, each

module calculates whether it will be moving clockwise (CW)
or counter clockwise (CCW) throughout the execution. The
modules alternate direction. This is achieved by using the
parity of the module's distance from the overlap cell to de-
cide direction of movement. In each round, each module
calculates whether it is free (cf. Figure 3) and moves if it is

free in the direction calculated initially.

4.1.3 Data structures at each module

� contacts: Boolean array indicating which edges have
neighboring modules. Assumed to be automatically
updated at each round by some lower layer.

� myCoord: The coordinates of the module in the plane.

� goalCell: Array of all coordinates of cells 2 G listed in

decreasing order of y coordinate.

� d: Variable containing the direction of movement, CW

or CCW.

� 
ips: Counter used to determine whether the module
is free.

4.1.4 Case 0 reconfiguration algorithm

Code for each module =2 G:

Initially:

1. if ((n � LD(myCoord, goalCell[1])) is even)

2. d = CCW

3. else d = CW

In round r = 1; 2; : : : :

4. if (isFree())

5. move d

Procedure isFree():

6. 
ips = 0

7. for (i = 0 to 5) do

8. if (contacts[i] 6= contacts[(i + 1) % 6])

9. 
ips++

10. return (
ips == 2)

Because modules in goal cells are not allowed to move in
this algorithm, we call it a goal-stopping algorithm.

4

1

2
3

3
2

1

4 4

1

2

3

7 85

2
1

4
3

2
1

4
3

6  9

 1 32

3

2
1

2
1

3

4 44

3
2

1

0 

1

2

3

4

4

3
2

4
1

Figure 4: Example recon�guration.

4.1.5 Example of algorithm operation
In Figure 4 we depict an execution of the case 0 recon�gu-
ration algorithm when n = 4. In this �gure, occupied cells
have solid borders and goal cells are shaded. For purposes
of analysis, modules are labeled 1 through 4. Nine rounds

are required for this recon�guration.

4.2 Analysis of reconfiguration algorithm
Without loss of generality, assume that I and G run north-
south and I is north of G. Number the cells in I and G

from 1 through 2n � 1 from north to south. We will refer
to the module originally in cell i as module i, 1 � i �

n. We will refer to a cell's neighboring cells as north (N),

northeast (NE), southeast (SE), south (S), southwest (SW),
and northwest (NW).

Theorem 4.1. The case 0 recon�guration algorithm is

correct.

4



Proof. We show that the following properties I1{I3 are

invariant throughout the execution. For each i, 1 � i � n,
and each round S � 1, at the end of round S,

I1: if S < 2i� 1, then module i is in cell i,

I2: if S = 2i� 1 + j, 0 � j � n� 1,

a) if i is odd, then module i is SE of cell i+ j,

b) if i is even, then module i is SW of cell i+ j,
and

I3: if S � 2i� 1 + n, then module i is in cell i+ n.

We proceed by induction on the number of rounds, S, in the
execution. The basis is S = 0 (i.e., just before round 1.) In
the initial state, I2 and I3 are not applicable and I1 is true
by assumption.

For the inductive hypothesis, assume that the invariants
hold for round S � 1, S > 0. Figure 5 illustrates the con�g-
uration at the end of round 2k � 1. In this �gure, occupied
cells have solid borders and goal cells are shaded.

...
k+5

k-4
k+4

k-3
k+3

k-2
k+2

k+1
k

k-1

Figure 5: Con�guration at end of round 2k � 1, k is
even.

Choose i to be even (without loss of generality.)

Case 1: S < 2i� 1.

Thus, S � 1 < 2i� 2.

By I1, module i � 1 is in cell i � 1 and module i + 1
is in cell i + 1 at the end of round S � 1. Therefore,
module i does not move in round S because it will have
contacts on sides N (with module i � 1) and S (with

module i + 1), and possibly on sides NW and SE or
sides NE and SW, due to the staggered spacing of the
modules in the outer columns. These contacts will be
non-contiguous, so module i will not be free in round S.
Referring to Figure 5, module k + 2 has contacts that

correspond to those described for module i.

By I1, module i is in cell i at the end of round S� 1, so
it is still in cell i at the end of round S.

Case 2: S = 2i� 1 + j for some j, 0 � j � n� 1.

Thus, S � 1 = 2i� 1 + (j � 1) = 2(i� 1) + j + 1.

j = 0: Then I1 implies module i is in cell i at the end of
round S� 1 and I2 implies module i� 1 is SE of cell i
at the end of round S�1, since S�1 = 2(i�1)+0+1.

Then module i is free at the end of round S�1 because

it has contacts only on its S and SE sides. So module i

moves CCW, by the code, to be SW of cell i in round
S. In Figure 5, module k corresponds to the position
described for module i and module k � 1 corresponds
to the position described for module i� 1 in round S.

j > 0: Then I1 implies that module i is in the cell SW of

cell i+(j�1) at the end of S�1. Module i will be free
at the end of round S � 1 because i will have contacts
only on its NE and SE edges, due to the spacing of the
cells in the outer columns. Therefore, module i will
move CCW in round S to be SW of cell j. Referring
to Figure 5, module k � 2 is in a position like that

described for module i at the end of round S � 1.

Case 3: S � 2i� 1 + n.

Thus, if S = 2i � 1 + n, then S � 1 = 2i � 1 + n� 1 =

2i�2+n. By I3, module i�1 is in cell i+n�1 in round
S � 1, so module i� 1 will not move in round S � 1 or
any round after that, by the code. By I2, module i is in
the cell SW of cell i+ n� 1 at the end of round S � 1.
Therefore, module i is free at the end of round S � 1
because it has only one contact, on its NE side, with

module i� 1. Module i has no other neighbors in round
S � 1 due to the staggered state of the modules in the
outer columns and due to I3, which says that if module
i�1 is in cell i+n�1, then modules i�2; i�3; : : : ; 1 must
have ceased movement before round S � 1. So in round
S, module i moves into cell i + n in a CCW direction

and stops moving in this round by the code. In Figure
5, module k � 4 is in a position like that described for
module i, and module k + 4 is in a position like that of
module i� 1 at the end of round S � 1.

If S > 2i � 1 + n, then, since at the end of round S,
module i is already in cell i+ n by I3, then it is still in

cell i + n in every round after S. By the code, once a
module is in a goal position, it does not move.

These invariants imply that the modules only use three col-
umns. Initially, modules are all in the center column and,
during the execution, modules in outer columns are spaced
or staggered such that there is an empty cell between any

two modules. Invariant I3 implies that, after round 3(n�1),
all modules are in goal positions.

Theorem 4.2. The case 0 recon�guration algorithm takes

3(n� 1) rounds and makes n2 � 1 module movements.

Proof. Invariants I1 through I3, from the proof of Theo-
rem 4.1, imply that the recon�guration takes 3(n�1) rounds.
Invariants I2 and I3 show that n� 1 of the modules origi-
nally in I make n+1 moves each, resulting in n2�1 module
movements for the whole recon�guration.

The case 0 recon�guration algorithm works when there is a
variable sized overlap in the modules of I and positions in G.
With an overlap of size h, the algorithm takes (n�h)(n+1)

moves and 2(n� h) + n� 1 rounds.

5



4.3 Non-collinear chain cases
We have developed an extension to the case 0 recon�gu-
ration algorithm to allow the recon�guration of an initial

chain to an overlapping �nal chain that may intersect the
initial chain in any orientation. This extension also does
not require any communication between modules, but uses
counting techniques combined with knowledge of goal posi-
tions to determine the �nal position of each module.

4.3.1 Algorithm assumptions
For our presentation of the non-collinear algorithm, we as-
sume:

1. I is oriented in a north-south fashion,

2. G is oriented in a southwest-northeast fashion,

3. the northernmost module in I is not in G,

4. if there are cells in I on both the north and south sides
of the intersection of I and G, then there are goal cells
on the east side of I,

5. if there are cells in I on both the north and south sides

of the intersection of I and G and cells in G on both
the east and west sides of I, then the north segment
of I is at least as long as the west segment of G, and

6. as in Section 4.1.1, initially, each module knows the

total number of modules in the system and the coor-
dinates of the goal cells and one module is in each cell
of I.

S

N N

W

E

S

E

E

N N

W

W

E

N

Case 1

Case 4 Case 5

1
2
3
4
5

1
2
3

2
1

Case 3Case 2

Figure 6: Cases for calculating rotation direction
and delay.

The cases for general chain-to-chain recon�guration are shown
in Figure 6, where modules in I have solid borders and goal
cells are shaded. Note that if a particular orientation of I
and G does not satisfy assumptions 1{5, the coordinates can

be 
ipped horizontally and/or vertically so that the assump-
tions are satis�ed. For example, in Figure 6, the variant of
case 4 with G SW instead of NE of I can be obtained from
case 4 by a horizontal and a vertical inversion.

In Figure 6, modules in I in cases 1 through 3 are numbered

as shown in case 1 and modules in I in cases 4 and 5 are

numbered as shown in case 4. Throughout the remainder of

this paper, we will refer to these numbers as module posi-

tions in I. N , S, E, and W refer to the number of cells in I
or G to the north, south, east, and west of the intersection
of I and G. The darker shaded goal cells in cases 3 and 5
are used by certain modules to the north to \cut through"
the west side of G to �ll in goal cells on the east side of G,

as discussed below.

The number of possible con�guration types is larger in the
general case, as shown in Figure 7. The modules labeled
trapped are unable to move due to hardware constraints and
those labeled free represent modules that must move in our

algorithm, possibly after some initial delay. The modules in
the other category are restricted from moving by our algo-
rithm, not by hardware constraints.

                Indicates non-contact edge

                Indicates contact edge

TRAPPED FREE OTHER

Figure 7: Con�guration types possible in general
chain cases.

The algorithms for cases 1 through 5 are similar to that for
case 0. The di�erences are

� determining whether a module is free,

� calculating the direction in which to move, and

� calculating the delay, i.e., how long to wait after be-
coming free until beginning to move.

The isFree() procedure presented in Section 4.1 must be

modi�ed to take into account the increased number of con�g-
uration types available (cf. Figure 7). This is accomplished
at the module in position i in I by counting its contact edges
and returning true if

� the neighboring cell in position i � 1 is unoccupied,

ips = 2, and the number of contact edges < 5,

and false otherwise.

Modules calculate direction and delay by counting modules
with lower initial positions as they pass. The progress made
on �lling in goal cells in the east and west sections of G
is determined locally by maintaining separate tallies (numE

and numW) for modules passing on the east and west side.

6



The algorithm schema is:

Code for module =2 G:

Initially, numW = numE = 0.

In round r = 1; 2; : : : :

If module is north of G:

� if N neighboring cell is occupied or newly vacated,

then

- if NW neighboring cell is newly occupied, then

numW++

- if NE neighboring cell is newly occupied, then

numE++

� if N neighboring cell is newly vacated, then

- calculate direction and delay using numW and

numE

If module is south of G:

� if S neighboring cell is occupied or newly vacated,

then

- if SW neighboring cell is newly occupied, then

numW++

- if SE neighboring cell is newly occupied, then

numE++

� if S neighboring cell is newly vacated, then

- calculate direction and delay using numW and

numE

If isFree():

- if delay = 0 then move direction

- else delay��

The goals for the choice of direction and delay at a module
are to

1. avoid collisions,

2. avoid deadlock (a situation where the module is not

free but not in a goal position), and

3. try to minimize the total elapsed time (i.e., maximize
parallelism.)

From Figure 6, we can see that, in all cases shown, modules
originally in I will be rotating toward either an obtuse or
an acute angle intersection with G. In case 0, modules will
begin rotating in the CW direction. De�ne the following

patterns of direction and delay:

� 1-directional obtuse: Modules in I move in same direc-

tion, toward the obtuse angle intersection with G, with
no delay for the module in position 1 and a delay of 1
for all other modules.

� 1-directional acute3: Module 1 in I starts moving to-
ward the acute angle intersection with G with no delay.
Subsequent modules move in the same direction with a
delay of 2.

3This pattern is not used until Section 6.

� 2-directional obtuse: Module 1 in I starts moving with

no delay. Subsequent modules alternate direction with
no delay.

� 2-directional acute: Module 1 in I starts moving toward
the acute angle intersection with G with no delay. Sub-
sequent modules alternate direction with a delay of 1.

Since modules can only move into cells that are empty, there
must be at least one empty cell between all modules mov-
ing in the same direction over modules in I toward G. For
modules rotating toward the acute angle intersection, there
must be at least 2 empty cells between all modules moving
in the same direction over modules in I toward G to avoid

deadlock in the corner.

Case 0: 2-directional obtuse, starting in CW direction.

Case 1: Round-conserving algorithm { 2-directional obtuse,
starting in CW direction for odd n and CCW direc-
tion for even n.
Move-conserving algorithm { 1-directional obtuse, be-
ginning with CCW direction.

Case 2: 2-directional acute.

Case 3: If module is north of G and has position � E, pat-
tern = 2-directional acute. Modules north of G in
positions � E and moving in CCW direction move

through goal cell with darker shading in Figure 6. If
module is north of G and has position > E, pattern
= 1-directional obtuse.

Case 4: If module is south of G, pattern = 1-directional ob-

tuse. If module is north of G and position is 1, delay
= (3�S)�N+1 and rotation is toward the acute an-
gle intersection. If module is north of G and position
> 1, pattern = 2-directional acute.

Case 5: If module is south of G, pattern = 1-directional ob-

tuse. If module is north of G and N = W , then
pattern = 1-directional obtuse. Otherwise, if mod-
ule is north of G and N > W :

� If position is 1, delay = (3 � S) � N + 1 and
rotation is toward the acute angle intersection.

� If 1 < position� (E�S), pattern = 2-directional

acute. Modules on the north of G in positions

� (E�S) and moving in CCW direction toward
the obtuse angle intersection move through the
darker shaded goal cell in Figure 6.

� If position > (E � S), pattern = 1-directional

obtuse.

The number of moves made and number of rounds used
in case 0 was discussed in Section 4.2. It is easy to show

that the round-conserving algorithm for case 1 uses the same
number of rounds and moves as case 0 if n is odd and the
same number of rounds and one less move than case 0 if n
is even. It is also easy to show that the move-conserving

algorithm for case 1 uses n2�n movements and 4(n�1)�2
rounds. Case 2 uses n2 � n=2 � 1=2 moves and 4(n � 1)

rounds for odd n, and n2 � n=2� 1 moves and 4(n� 1)� 1

7



rounds for even n. Cases 3 through 5 use �(n2) movements

and �(n) rounds, although the constants will vary based on
the relative values of N , S, E, and W .

Simple extensions to the algorithm allow the recon�guration
of a chain in any initial location to any �nal location by
calculating intermediate con�gurations that lead to eventual

intersection and then running the algorithm described in this
section.

5. LOWER BOUND PROOFS
The problem of �nding bounds for the number of moves
needed to recon�gure a metamorphic system was addressed
for general con�gurations in [3]. We show a tight lower
bound on the number of moves required for the recon�g-
uration of case 0 (for goal-stopping algorithms) and for case

1 and give proof sketches that show the remaining cases are
asymptotically tight. We also consider the lower bound for
the total elapsed time of this recon�guration, a measure that
was not addressed in [3]. Our bounds are asymptotically
tight in this measure.

5.1 Lattice distance sum
A key concept for our lower bounds on both number of moves
and number of rounds is that of the initial lattice distance

sum, denoted D0. For given initial and goal con�gurations,
let D0 be the minimum, over all (deterministic) algorithms,

of the sum, over all modules i, of the lattice distance between
i's initial position and i's �nal position.

As shown below, our lower bounds are functions of D0, the
initial lattice distance sum. First we calculate lower bounds
on D0 for Cases 0 through 5.

Theorem 5.1. For cases 0 and 1, D0 � n
2 � n.

Proof. Number the cells in the initial con�guration I

from 1 to n and the cells in the goal con�guration G from
n to 2n � 1. Let vi be the lattice distance between module

i's initial position, cell i, and its �nal position, cell gi, for
1 � i � n. For both case 0 and case 1, this lattice distance
is gi � i. Note that g1 through gn form a permutation of n
through 2n� 1. Thus

D0 �

nX
i=1

vi =

nX
i=1

(gi � i) = n
2
� n:

Theorem 5.2. For case 2, D0 � (n2 � n)=2.

Proof. Number the cells in the initial con�guration I

from 1 to n. The shortest distance between module n � i

and any goal cell is i, 1 � i � n� 1. Thus

D0 �

n�1X
i=1

(n� i) = (n2 � n)=2:

Theorem 5.3. For cases 3 through 5, D0 = 
(n2).

Proof. Referring to Figure 6, for case 3, Theorems 5.1

and 5.2 imply that D0 is at least (W 2 �W ) + E
2�E
2

. For

case 4, we have that D0 is at least (S2 � S) + N
2�N
2

. For

case 5, D0 is at least
N
2�N
2

+ S
2�S
2

.

Since one of W and E is at least n=2 while the other is

at most n=2, and similarly for N and S, the theorem fol-
lows.

5.2 Number of module movements
The following theorem follows from a result of Chirikjian
and Pamecha [3]:

Theorem 5.4. Any algorithm to recon�gure a metamor-

phic system under the system assumptions given must cause

at least D0 module movements.

Plugging in the lower bounds on D0 from subsection 5.1, we
obtain:

Corollary 5.5. Lower bounds on the number of module

movements are n2�n for cases 0 and 1, (n2�n)=2 for case

2, and 
(n2) for cases 3 through 5.

The bound for case 0 is tight for goal-stopping algorithms.

To see this, note that the module initially in cell n never
moves, since it is begins in a goal cell. Thus each of the
remaining n � 1 modules must make an additional move
out of the main column to go around that module. Adding
n � 1 to the n2 � n bound from Corollary 5.5 produces a
lower bound of n2 � 1, which matches the number of moves

taken by our case 0 algorithm.

However, the bound for case 0 is not tight for non-goal-
stopping algorithms. In this case, there is an algorithm that
uses roughly n2 � n=2 moves and 4(n� 1) rounds.

The move-conserving algorithm for case 1 from section 4.3
shows that the bound for case 1 is tight.

The bound for case 2 is not tight. A move-conserving algo-
rithm for this case, in which every module rotates toward the
acute angle, uses n2�3n+4 moves. However, this algorithm

is worse in the number of rounds than the two-directional
algorithm.

5.3 Number of rounds

We now show lower bounds on the number of rounds re-

quired for recon�guration.

Theorem 5.6. Any algorithm to recon�gure a metamor-

phic system in case 0 under the system assumptions given

must take at least D0

b 1
2
nc

rounds.

8



Proof. Clearly, at the end of the recon�guration, the

lattice distance between each module's initial position and
�nal position is zero. Note that, in each round, each module
can decrease its lattice distance to its �nal position by at
most one.

Claim 1. The maximum number of processors that can

decrease their lattice distance to their �nal position in one

round in case 0 under the system assumptions given is bn
2
c.

Proof. The maximum number of modules that can move
in one round is b 3

4
nc. However, in case 0, at most two out

of every four modules can decrease their lattice distance to
their �nal position during that round, as can be shown by
an exhaustive listing of all possible moves of three modules
over one substrate.

By theorem 5.4, at least D0 moves are needed to recon�gure.
Thus the number of rounds needed in case 0 is at least D0

b 1
2
nc
.

2

Because at most b 3
4
nc modules can move in one round due

to assumptions on module movement, at most b 3
4
nc mod-

ules can decrease their lattice distance to their �nal position
during that round in cases 1 through 5.

Theorem 5.7. Any algorithm to recon�gure a metamor-

phic system in cases 1 through 5 under the system assump-

tions given must take at least D0

b 3
4
nc

rounds.

Plugging in the lower bounds on D0 from subsection 5.1, we
obtain:

Corollary 5.8. Lower bounds on the number of rounds

are

� 2(n � 1) for case 0,

� 4

3
(n � 1) for case 1,

� 2

3
(n � 1) for case 2, and

� 
(n) for cases 3 through 5.

6. MORE GENERAL RECONFIGURATION
In this section we present a �rst step in extending our recon-
�guration of chains to more general shapes of G. We de�ne
an admissible class of con�gurations for G and give a dis-
tributed algorithm to accomplish the recon�guration. Since

we assume that modules have no initial global knowledge
of I, our admissible class of con�gurations for G is more
restrictive than that presented in [8].

Without loss of generality, assume I is oriented north-south,
no goal cell is to the west of I, and I and G intersect in the

southernmost module of I and nowhere else, as shown in

1

2

3

4

5

1

2

3

4

5

Figure 8: Example relationships of I and G.

Figure 8 (if I and G do not satisfy these conditions, then
I can be moved using the method sketched at the end of
Section 4). In all �gures in this section, modules in I have
solid boundaries and cells in G are shaded.

Let G1; G2; : : : ; Gm be the columns of G from west to east.

A substrate path p is a sequence of distinct cells, c1; c2; : : : ; ck,
such that

� each cell is adjacent to the previous, but not to the
west,

� p begins with the cells in I, from north to south,

� subsequent cells are all in G, and

� the last cell is in the easternmost column of G (Gm).

A segment of p is a contiguous subsequence of p of length

� 2. In a south segment, each cell is south of the previous
and analogously for a north segment.

A substrate path is admissible if

� for each south segment of p ending with ci, no goal cell
is north of ci+1, ci+2, or ci+3, and

� for each north segment of p ending with ci, no goal cell
is south of ci+1, ci+2, or ci+3.

G is an admissible goal con�guration if

1. each Gi, 1 � i � m, is contiguous and

2. there exists an admissible substrate path in G.

1

2

10

2
G

1
G

3 4 5 6
G G G G

1

2

6

8

7

5
4

3

9

10

Figure 9: Example recon�guration (G is admissible).

Intuitively, an admissible substrate path is a chain of goal

cells whose surface allows the movement of modules without

9



collision or deadlock, provided the choices of rotation and

delay are correct.

Figure 9 depicts an example of an admissible con�guration
of G, where the line through I and G is an admissible sub-
strate path. Figure 10 depicts a con�guration of G that vi-
olates admissibility condition 2. The substrate path shown

is inadmissible, as is every other possible substrate path for
this con�guration.

10

1

2

Figure 10: Example of inadmissible G.

We assume that the modules in I know the coordinates of
an admissible substrate path p in G. In the full paper we
will present eÆcient algorithms to �nd admissible substrate
paths in G that evenly partition the goal cells into those

above and those below the substrate path. Even partition-
ing of the goal cells is desirable since it allows modules to
alternate directions, maximizing parallelism.

Each module in I calculates the designated column Gi in

which it will stop in a goal position. Modules in positions
� jpj �ll in the substrate path �rst. After p is �lled, modules
alternate rotation directions, �lling the columns projecting
north and south of p from east, Gm, to west, G1. Figure 9
has numbered goal cells depicting how initial module posi-
tions correspond to �nal goal positions.

The recon�guration proceeds as follows:

� For modules in positions 1 through jpj:

{ Modules use 1-directional acute pattern (see Sec-
tion 4.3) in CW direction.

{ When a module is in a goal cell that is in its
designated column on the substrate path, it stops
in that cell.

� For modules in positions > jpj:

{ Modules use 2-directional acute pattern until all
cells on one side of p are �lled. After this, modules
use a 1-directional acute pattern (see Section 4.3),
with either CW or CCW direction, depending on

whether there are cells remaining to be �lled on
the north or south side of p.

{ When a module is in a goal cell in its designated
column, it stops.

� Once a module stops in a goal cell for a round it never
moves out of that goal cell.

7. CONCLUSIONS AND FUTURE WORK
The algorithm presented in this paper relies on total knowl-
edge of the goal con�guration. Each module precomputes all

aspects of its movement once it has suÆcient information to
reconstruct the entire initial con�guration. We believe that
a more 
exible approach will be helpful in designing recon-
�guration algorithms for more irregular con�gurations, more
asynchronous systems, and those with unknown obstacles.
Part of such a 
exible approach will include the ability for

modules to detect and resolve collisions and deadlock situa-
tions when they occur, rather than precomputing trajecto-
ries that avoid them. We have some initial ideas for ways
to deal with collision and deadlock on the 
y, which we are
currently testing and re�ning.

The recon�guration algorithms described in this paper are
simplistic, applying only to a narrow range of recon�gura-
tion options. On the other hand, the algorithms are com-
pletely distributed, requiring no communication between mod-
ules. The algorithms were shown to be optimal or asymptot-

ically optimal in terms of number of movements and asymp-
totically optimal in the recon�guration time used. We con-
jecture that the collinear algorithm is optimal in the time
used, but have not yet been able to improve the lower bound.

We are working on optimizations to the algorithm frame-

work outlined in Section 6. One of our future goals is to
develop algorithms to identify admissible con�gurations of
G and divide non-admissible con�gurations into admissible
subcon�gurations.

For the more general case of recon�guration, the modules

may need to communicate with each other (if all other hard-
ware constraints remain as described). Modules may also
need a more global picture of the initial and intermediate
con�gurations to make local planning strategies possible.
We believe that the chain recon�guration algorithms pre-

sented in this paper will provide a building block for dis-
tributed recon�guration of more arbitrary initial and �nal
con�gurations.

The goal of our future work is to develop more complex dis-
tributed recon�guration strategies from building blocks like

the one presented in this paper. During this development
process, we hope to further re�ne our system model by dis-
covering which assumptions are suÆcient and necessary to
recon�gure such a system.

10



8. REFERENCES
[1] A. Casal and M. Yim. Self-recon�guration planning

for a class of modular robots. In Proc. of SPIE

Symposium on Intelligent Systems and Advanced

Manufacturing, vol. 3839, pages 246{256, 1999.

[2] G. Chirikjian. Kinematics of a metamorphic robotic
system. In Proc. of IEEE Intl. Conf. on Robotics and

Automation, pages 449{455, 1994.

[3] G. Chirikjian and A. Pamecha. Bounds for
self-recon�guration of metamorphic robots. In Proc. of

IEEE Intl. Conf. on Robotics and Automation, pages

1452{1457, 1996.

[4] K. Kotay and D. Rus. Motion synthesis for the
self-recon�guring molecule. In IEEE Intl. Conf. on

Robotics and Automation, pages 843{851, 1998.

[5] K. Kotay, D. Rus, M. Vona, and C. McGray. The
self-recon�guring robotic molecule: design and control
algorithms. In Workshop on Algorithmic Foundations

of Robotics, pages 376{386, 1998.

[6] S. Murata, H. Kurokawa, and S. Kokaji.
Self-assembling machine. In Proc. of IEEE Intl. Conf.

on Robotics and Automation, pages 441{448, 1994.

[7] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and
S. Kokaji. A 3-D self-recon�gurable structure. In Proc.

of IEEE Intl. Conf. on Robotics and Automation,
pages 432{439, 1998.

[8] A. Nguyen, L. J. Guibas, and M. Yim. Controlled
module density helps recon�guration planning. To
appear in Proc. of 4th International Workshop on

Algorithmic Foundations of Robotics, 2000.

[9] A. Pamecha, I. Ebert-Upho�, and G. Chirikjian.
Useful metrics for modular robot motion planning.
IEEE Transactions on Robotics and Automation,
13(4):531{545, 1997.

[10] D. Rus and M. Vona. Self-recon�guration planning
with compressible unit modules. In Proc. of IEEE

Intl. Conf. on Robotics and Automation, pages

2513{2520, 1999.

[11] M. Yim. A recon�gurable modular robot with many

modes of locomotion. In Proc. of Intl. Conf. on

Advanced Mechatronics, pages 283{288, 1993.

[12] M. Yim, J. Lamping, E. Mao, and J. G. Chase.
Rhombic dodecahedron shape for self-assembling
robots. SPL TechReport P9710777, Xerox PARC,
1997.

[13] Y. Zhang, M. Yim, J. Lamping, and E. Mao.
Distributed control for 3D shape metamorphosis. To

appear in Autonomous Robots Journal, special issue

on self-recon�gurable robots, 2000.

11


