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Abstract

The session problem is an abstraction of synchroniza-

tion problems in distributed systems. It has been used

as a test-case to demonstrate the di�erences in the time

needed to solve problems in various timing models, for

both shared memory (SM) systems [2] and message-

passing (MP) systems [4]. In this paper, the session

problem continues to be used to compare timing mod-

els quantitatively. The session problem is studied in two

new timing models, the periodic and the sporadic. Both

SM and MP systems are considered. In the periodic

model, each process takes steps at a constant unknown

rate; di�erent processes can have di�erent rates. In the

sporadic model, there exists a lower bound but no up-

per bound on step time, and message delay is bounded.

We show upper and lower bounds on the time complex-

ity of the session problem for these models. In addition,

upper and lower bounds on running time are presented

for the semi-synchronous SM model, closing an open

problem from [4]. Our results suggest a hierarchy of

various timing models in terms of time complexity for

the session problem.

1 Introduction

Early work in distributed computing usually as-
sumed one of two extreme timing models: either

0

the completely synchronous model, in which pro-
cesses operate in lockstep rounds of computation,
or the completely asynchronous, in which there are
no upper bounds on process step time or message
delay. Since both of these timing assumptions are
often unrealistic, researchers began to investigate
the impact on distributed computing if those tim-
ing assumptions are relaxed or tightened to some
extent in order to reect the real time situation.
This question has been studied for a variety of prob-
lems, including Byzantine agreement [7, 8, 1, 13],
mutual exclusion [3], leader election [5], transaction
commit [6], and the session problem [2, 4].

The (s; n)-session problem, �rst presented
in [2], is an abstraction of the synchronization
needed to solve many distributed computing prob-
lems. Therefore, it is an important tool for under-
standing the behavior of distributed systems under
di�erent timing constraints. Informally, a session

is a minimal-length computation fragment that in-
volves at least one \synchronization" step by ev-
ery process in a distinguished set of n processes.
An algorithm that solves the (s; n)-session problem
must guarantee that in every computation there are
at least s disjoint sessions and eventually all the n
processes become idle.

We study the problem in two di�erent interpro-
cess communication models: shared memory and
message passing. In the shared memory model, pro-
cesses communicate only by means of shared vari-
ables. Each variable is shared by no more than b
processes, where b is a constant relative to the to-
tal number of processes. In the message passing
model, communication is done by exchanging mes-
sages across a network. A process can broadcast a
message at a step; the message is guaranteed to be
delivered to every process after some �nite time.

The relevant timing aspects of a model are the



lower bound on process step time, c1, the upper
bound on process step time, c2, and additionally,
for the message passing model, the lower bound on
message delay, d1, and the upper bound on message
delay, d2. The running time of an algorithm for the
(s; n)-session problem is the maximum time, over
all computations, until all the n processes become
idle. If there is an upper bound in real time on c2
and d2, then it makes sense to measure the running
time in terms of real time. If not, then the common
way to measure the running time is with rounds. A
round is a minimal computation fragment in which
every process takes at least one step.

Arjomandi, Fischer and Lynch [2] studied the
(s; n)-session problem in synchronous and asyn-
chronous shared memory models. Synchronous

means that c1 = c2, a �nite number. Asynchronous
means that c1 and c2 are in�nite. Their results
showed a signi�cant time complexity gap between
the synchronous and asynchronous models, namely
that s rounds are suÆcient for the synchronous
case but (s � 1)blogb nc rounds are necessary for
the asynchronous case, where n is the size of the
distinguished set of processes. The implication is
that no communication is needed at all in the syn-
chronous case, but it is needed for every session in
the asynchronous case. (The blogb nc factor is es-
sentially the cost of communication when no more
than b processes can access any shared variable.)

Attiya and Mavronicolas [4] addressed the prob-
lem in semi-synchronous and asynchronousmessage
passing systems. Semi-synchronous means that
c1 > 0, c2 and d2 are �nite, and these constants are
known to the processes. They modeled the asyn-
chronous system di�erently than [2]: they let c1 = 0
and d1 = 0, while c2 and d2 are �nite. Their re-
sults also indicated an important time separation
between semi-synchronous and asynchronous net-
works, again based on whether or not communica-
tion is necessary.

We present almost matching upper and lower
bounds for the session problem in the semi-
synchronous shared memory model. Our bounds
are similar to those in [4] for the message pass-
ing model when the cost for information propa-
gation in the shared memory model is substituted
for the message delay. They indicate that if the
time for one communication is less than that for
one step multiplied by the ratio of c2 and c1, the
model behaves like the asynchronous; otherwise it
behaves like the synchronous (inated by the ra-

tio). Mavronicolas [12] has also independently de-
veloped the same lower and upper bounds for the
shared memory semi-synchronous model.

We introduce two new timing models for the
(s; n)-session problem: the periodic and the spo-
radic. In the periodic model, for each process there
exists an unknown constant such that the process
makes one step at every period of the constant. In
the message-passing variant, d2 is �nite and known.
The upper bounds for both the shared memory and
message passing models are the time for the slow-
est process to take s steps plus the time for one
communication. The lower bounds for both are the
maximum of the time for the slowest process to
take s steps and approximately the time for one
communication. Our results indicate that the pe-
riodic model, which requires one communication,
falls in between the synchronous and asynchronous
models, which require no and s�1 communications
respectively.

In the sporadic model, there exists a nonzero
lower bound c1, but no upper bound, on the time
between any two consecutive steps of any process.
The sporadic shared memory model is essentially
equal to the asynchronous shared memory model
and is not considered. For the message passing
model, the message delay is within [d1, d2], where
d1 � 0, d2 is �nite, and both are known. The
combination of the lower bound on step time and
upper bound on message delay allows processes to
make inferences about the computation, namely,
that enough time has elapsed so that a message
must have arrived. The lower bound on the per-
session time is maxfb u

4c1
c�K; c1g, where u = d2�d1

and K = 2d2c1
d2�u=2

. The upper bound on the per-

session time is minf(b u
c1
c+3) �+u; d2+g, where

 is the largest step time by a process before ter-
mination. As the message delay approaches a con-
stant (i.e., d1 approaches d2), the per-session time
becomes maxf0; c1g = c1 for the lower bound and
minf3; d2+g = O() for the upper bound, which
is like the synchronous model.

As the message delay uctuates within a bigger
interval (i.e., d1 approaches 0), the per-session time
becomes maxfd2; c1g = d2 for the lower bound and
minf(bd2

c1
c + 3) �  + d2; d2 + g = O(d2 + ) for

the upper bound, which is like the asynchronous
model.

These two timing constraints are inspired by
constraints with the same names commonly used



in many real-time problems, especially in schedul-
ing of real time tasks for a uniprocessor [9, 10, 11]
where the period of task occurrences conforms to
the constraints. In practice, as quoted in [10], pe-
riodic timing constraints are used in applications
such as avionics and process control when accurate
control requires continual sampling and processing
of data. The sporadic timing constraint is associ-
ated with event-driven processing such as respond-
ing to user inputs or non-periodic device interrupts;
these events occur repeatedly, but the time inter-
val between consecutive occurrences varies and can
be arbitrarily large. Therefore, the sporadic timing
constraint models processes that can be blocked for
an arbitrarily long (but �nite) time waiting for a
certain condition to be true or a certain event to
occur, but that cannot make two consecutive steps
faster than a certain lower bound.

Table 1 summarizes the bounds. L means lower
bound, U means upper. In the periodic model, cmin

and cmax are the smallest and the largest step times
respectively of all processes. The bounds for the
asynchronous shared memory case are in rounds.
The bounds from [4] have been converted in three
aspects for purposes of comparison: (1) That paper
considers point-to-point networks; thus the results
include a factor of the network diameter. In our
model, d2 subsumes the diameter factor; we have
replaced all occurrences of the diameter factor with
1. (2) In [4], the constant 1 is used as the value of
c2; we have replaced all appropriate occurrences of
1 with c2. (3) [4] assumes that all processes take
their synchronized �rst steps at time 0, resulting
in one session at time 0; although we assume that
all processes start at time 0, we don't assume that
all take a synchronized step at time 0. We rather

assume that all steps (including the �rst step) obey
the timing constraints of a speci�c model starting
time 0.

Our results indicate that the periodic model is
more eÆcient than the semi-synchronous system
when cmax = c2, 2c1 < c2 and n is constant rel-
ative to s. The lower bound for the sporadic sys-
tem and the upper bound for the periodic system
suggest that the periodic system is more eÆcient
than the sporadic system if cmax is smaller than
b u
4c1

c �K � d2u
2(d2�u=2)

and n is constant relative to

s. In shared memory, the sporadic system is clearly
less eÆcient than the semi-synchronous one, but
the relationship between the sporadic and the semi-
synchronous systems for message passing is rather

unclear and understanding it requires further study.

The rest of the paper is organized as follows.
Section 2 contains the de�nition of system models
and Section 3 describes how to accomplish com-
munication in the shared memory model. Sec-
tion 4 concerns the periodic model, Section 5 the
shared memory semi-synchronous, and Section 6
the message-passing sporadic. Please note that
our lower bound proof technique combines those
in [2, 4]. Some proofs are omitted or only sketched
due to space constraints.

2 De�nitions

2.1 Systems

The generalized system model de�nition for shared
memory and message passing models is similar to
that de�ned in [2].

There are �nite sets P of processes and X of
shared variables. A process consists of a set of in-
ternal states, including an initial state. Each shared
variable has a set of values that it can take on,
including an initial value. A global state is a tu-
ple of internal states, one for each process, and
values, one for each shared variable. The initial

global state contains the initial state for each pro-
cess and the initial value for each shared variable.
A step � consists of simultaneous changes to the
state of some process and the values of some num-
ber of variables, depending on the current state of
that process and current values of the variables.
More formally, we represent the step � with a tuple
((s; p; r); (u1; x1; v1); : : : (uk; xk; vk)), where s and r
are old and new states of a process p 2 P ; ui and vi
are old and new values of a shared variable xi 2 X

for all i. We say that step � is applicable to a global
state if p is in state s and xi has value ui for all i
in the global state.

A system is speci�ed by describing P , X , and
set � of possible steps. For all processes p 2 P and
all global states g, there must exist some step in-
volving process p that is applicable to global state
g. A computation of a system is a sequence of steps
�1; �2; : : : such that: (1) �1 is applicable to the ini-
tial global state, (2) each subsequent step is appli-
cable to the global state resulting from the previous
steps, and (3) if the sequence is in�nite, then every
process takes an in�nite number of steps. That is,
there is no process failure. A timed computation of



Model Shared Memory Message Passing

Sync. L s � c2 [2] s � c2
U s � c2 [2] s � c2

Peri- L maxfs � cmax; blog2b�1 (2n� 1)c � cming maxfs � cmax; d2g
odic U s � cmax +O(logb n) � cmax s � cmax + d2

Semi- L minfb c2
2c1

c � c2; blogb nc � c2g � (s� 1) minfb c2
2c1

c � c2; d2 + c2g � (s� 1) [4]

sync. U minf(b c2
c1
c+ 1) � c2; O(logb n) � c2g � (s� 1) + c2 minf(b c2

c1
c+ 1) � c2; d2 + c2g � (s� 1) + c2 [4]

Spor- L See Async. SM maxfb u
4c1

c �K; c1g � (s� 1)

adic U See Async. SM minf(b u
c1
c+ 3) �  + u; d2 + g � (s� 1) + 

Async. L (s� 1) � blogb nc [2] (s� 1) � d2 [4]
U (s� 1) � O(logb n) [2] (s� 1) � (d2 + c2) + c2 [4]

Table 1: Bounds for the Session Problem

a system is a computation �1; �2; : : : together with
a mapping T from positive integers to real num-
bers that associates a real time with each step in
the computation. T must be nondecreasing and, if
the computation is in�nite, increase without bound.
We will abuse notation and let T (�i) indicate the
time at which step �i occurs.

2.1.1 Shared Memory Model (SMM)

We specialize the general system into the shared
memory system in which processes communicate
with each other by means of shared variables. Each
step � has the property that k = 1. That is, it in-
volves only one shared variable. A process can read
and write a shared variable in a single atomic step,
and we don't assume any upper bound on the size
of the variables. We let b be the maximum number
of processes that access any single variable, in all
the steps of the system. We assume b is constant
relative to the number of processes.

2.1.2 Message Passing Model (MPM)

We specialize the general system into the mes-
sage passing system, in which processes commu-
nicate with each other by exchanging messages.
P = R[fNg, where R is the set of regular processes
and N is the network. The network schedules the
delivery of messages sent among the regular pro-
cesses. X = fnetg [ fbufp : p 2 Rg, where the
values taken on by each variable are sets of mes-
sages. net models the state of the network, i.e.,
the set of messages in transit. bufp holds the set
of messages that have been delivered to p by the
network but not yet received by p.

A step of a process p in R consists of p receiv-
ing the set M of messages in its bu�er bufp, and
based solely on those message and its current state,
changing its local state and sending out some mes-
sage m to all the regular processes. The result is
to set bufp to empty and to add (m; q) to net, for
all q in R. So, the step involves two shared vari-
ables, bufp and net. A step of N is to deliver some
message of the form (m; q) in net to q. The result
is to remove (m; q) from net and add m to bufq.
Accordingly, the step also involves two shared vari-
ables, net and bufq.

This de�nition of the MPM is an abstract model
of a reliable strongly connected network with any
topology.

In a timed computation, each message has a de-
lay, de�ned to be the di�erence between the time
of the step that adds it to net and the time of the
step that removes it from net. If the message is
never removed, then it has in�nite delay. The delay
only counts the time in transit in the network and
does not include the time that the recipient takes
to receive the message. That is, the time elapsed
between the delivery step and the step which �-
nally removes the message from the bu�er is not
counted toward the message delay, even if the mes-
sage remains in the bu�er for a long time before the
recipient picks it up from its bu�er.

2.2 The Real Time Constraints

For each timing model considered, we de�ne the
set of admissible timed computations to consist of
timed computations which obey the stated condi-
tion on the step times of all processes in the SMM



(all regular processes in the MPM) and, addition-
ally for the MPM, the stated condition on the mes-
sage delay.

Synchronous There exist constants c2 and d2 such
that in every timed computation, for every p in P
(p in R for MPM), the time between every pair of
consecutive steps of p is c2, and the delay of every
message is d2. Thus c2 and d2 are \known" to the
processes and can be used in algorithms.

Asynchronous In every timed computation, every
process takes an in�nite number of steps and every
message is eventually delivered.

Periodic There exists a constant d2 such that in
every timed computation, for every pi in P (pi in
R for MPM), there exists constant ci such that the
time between every pair of consecutive steps of pi
is ci, and the delay of every message is in [0; d2].
Thus the ci's are unknown but d2 is known.

Semi-Synchronous There exist constants c1 > 0,
c2 and d2 such that in every timed computation, for
every p in P (p in R for MPM), the time between
every pair of consecutive steps of p is in [c1; c2] and
the delay of every message is in [0; d2]. Thus c1, c2
and d2 are known.

Sporadic There exist constants c1, d1, and d2 such
that in every timed computation, for every p in P
(p in R for MPM), the time between every pair of
consecutive steps of p is at least c1, and the delay
of every message is in [d1; d2]. Thus c1, d1, and d2
are known.

2.3 The Session Problem

We now state the conditions that must be satis�ed

for a system to solve the (s; n)-session problem (also
called an (s; n)-session algorithm).

(1) Each process in P (in R for the MPM) has
a subset of idle states. The set � of steps of the
system guarantees that once a process is in an idle
state, it always remains in an idle state.

(2) There is a distinguished set Y of n variables
called ports; Y is a subset of X in the SMM and the
set of buf 's in the MPM. There is a unique process
in P (in R for the MPM) corresponding to each
port, which is called a port process.

(3) Let p be a port process which corresponds
to a port y. A port step is any step involving p
and y. A session is any minimal sequence of steps

containing at least one port step for each port in
Y . In every admissible timed computation, there
are at least s disjoint sessions and eventually all
port processes are in idle states.

In the timing models with �nite upper bounds
on step time and message delay, we measure the
running time of an algorithm in real time as follows.
An algorithm runs in time t if, for every admissi-
ble timed computation, every process is in an idle
state by time t. In the case of the asynchronous
and sporadic models, step time and/or message de-
lay is unbounded (but �nite). For these cases, we
measure the running time in rounds [14, 2, 4]. A
round is a minimal-length computation fragment in
which every process appears at least once. An algo-
rithm runs in r rounds if, in every admissible timed
computation C, the pre�x of C before all processes
are idle consists of at most r disjoint rounds. It
is also informative in these models to express the
time complexity of an algorithm in terms of a new
parameter , the largest step time during the com-
putation of the algorithm before all the processes
are idle. The values of  is dependent on a par-
ticular computation of the algorithm. This type of
per-computation based time complexity measure is
also used in [1].

3 Communication in SMM

In describing our algorithms, we use a subroutine
called broadcast as a generic operator for communi-
cation in both of the communication models.

In the MPM, the broadcasting of message m by
process p is taken care of by the network. It takes
at most d2 + c2 time for a message to be received
by all processes in the MPM.

However, the communication in the SMM is
constrained by the number of processes which can
access a shared variable. Therefore, broadcasting in
the SMM involves relaying messages from process
to process by means of shared variables.

In a b-bounded shared memory system, we can
build a tree networks of processes and shared vari-
ables by making port and port processes the leaves
of the tree. This network can accomplish the neces-
sary communication to propagate a peice of infor-
mation originaing from a process to all other pro-
cesses in O(logb n) steps.

In this paper, when we say broadcast in the
SMM, it implies all the interaction of processes



in the tree network to accomplish the broadcast-
ing. Throughout this paper, we only describe the
role of port processes in an algorithm and assume
that broadcast encapsulates the interactions among
port processes and other processes which partici-
pate in the tree-network communication. In addi-
tion, we use the term \step" interchangeably with
\port step"; when necessary, we make the proper
distinction.

4 The Periodic Model

The periodic model and the synchronous model
are similar in that a process takes steps at regu-
lar time intervals, yet they di�er from each other
in that there is no bound on the relative speed of
processes in the periodic model. We �rst present
an algorithm A(p) for the (s; n)-session problem
in this model and then show that for all peri-
odic algorithms which solve the (s; n)-session prob-
lem, there exists a computation of A which takes
at least maxfs � cmax; d2g time for the MPM and
maxfs; blogb ncg � cmax for the SMM.

Algorithm A(p): (This algorithm runs in the
MBM and the SMM.) Each port process accesses
its own port s � 1 times and at its s � 1th step,
broadcasts the fact. It enters an idle state after it
hears that all other processes have taken s�1 steps
and it has taken at least one more port step.

Theorem 4.1 A(p) solves the (s; n)-session prob-

lem in time s � cmax + d in the MPM and time

s � cmax + O(logb n) � cmax in the SMM, where

cmax = maxfci : pi 2 Pg.

Theorem 4.2 No MP periodic algorithm for the

(s; n)-session problem runs in time less than

maxfs � cmax; d2g.

Theorem 4.3 No SM periodic algorithm for the

(s; n)-session problem runs in time less than

maxfs � cmax; blog2b�1 (2n� 1)c � cming.

Proof: Suppose that s � cmax

� blog2b�1 (2n� 1)c�cmin. Since all processes must
take at least s steps to have s sessions, s � cmax is
obviously the lower bound.

Suppose that s�cmax < blog2b�1 (2n� 1)c�cmin.
By way of contradiction we assume that there ex-
ists an algorithm A which solves the (s; n)-session

problem in the periodic SMM in time Z strictly less
than blog2b�1 (2n� 1)c � cmin. We prove that there
exists an in�nite admissible computation of A that
contains less than s sessions.

Let (�; T ) be the admissible timed computation
in which processes take steps in round robin order
and each process's ith step occurs at time i � cmin

Each consecutive group of steps for p1 through pjP j

is a round. (Round i occurs at time i � cmin and
consists of the i th step of each process.) Since
all processes should enter idle states by time Z in
� and all the step time periods are equal to cmin

in (�; T ), there are at most r = bZ=cminc rounds
required until termination in �.

We will perturb (�; T ) in order to get a new ad-
missible timed computation (�0; T 0). We will prove
that there exists at least one port process in (�0; T 0)
which enters an idle state before another port pro-
cess takes any step, resulting in an admissible com-
putation that contains less than s sessions.

Fix any port process p0 and change p0s step time
period to be blog2b�1 (2n� 1)c � cmin. Run A with
this modi�ed set of processes to get a new timed
admissible computation (�0; T 0).

We de�ne a subround to be a minimal compu-
tation fragment of �0 that involves all processes ex-
cept p0. A variable v is contaminated in subround
k of �0 if there exists j � k and process p 6= p0 such
that v's value in the global state of �0 following p's
step on subround j is not equal to v's value in the
global state of � following p's step in round j. We
de�ne no variable to be contaminated in subround
0. A process p is contaminated in subround k of
�0 if p 6= p0 and there exists j � k such that in
subround j of �0, p accesses a variable that is con-
taminated in subround j. We de�ne no processes
to be contaminated in subround 0.

Let P (t) be the set of processes that are contam-
inated in subround t, and let V (t) be the set of vari-
ables that are not contaminated in subround t � 1
but are contaminated in subround t. Let Pt and
Vt satisfy the recurrence equations: P0 = V0 = 0,
Vt = 2 � Pt�1 + 1, and Pt = (b� 1) � Vt + Pt�1.

Lemma 4.4 jP (t)j � Pt and jV (t)j � Vt for 0 �
t � r, where r = bZ=cminc.

Proof: By induction on t. The key points are
that p0 contributes at most one variable to V (t),
while each contaminated process contributes at



most two. Also, in the worst case a process be-
comes contaminated as soon as possible, processes
only become contaminated due to the variables that
just become contaminated, and each variable con-
taminates at most b� 1 other processes.

Soving the recurrence equation, we get

Pt =
(2b� 1)t � 1

2
:

Thus the total number of processes that are con-
taminated in subround r is at most n� 1.

Since less than n processes are contaminated in
subround r, at least one port process p 6= p0 is in the
same state at the end of subround r in �0 as it is at
the end of round r in � | an idle state. But p0 has
not taken a step yet. Thus (�0; T 0) is an admissible
timed computation that contains less than s ses-
sions. Contradiction. (Note that log2b�1 (2n� 1)
approaches logb n as b and n increase.)

5 Semi-Synchronous Model

In this section, we address the upper and lower
bounds in the semi-synchronous shared memory
model. The semi-synchronous algorithm in [4] can
be adapted to work in the shared memory semi-
synchronous model simply by replacing the commu-
nication primitives (send and receive) with the ex-
plicit propagation of information through the tree
network of shared variables using the broadcast sub-
routine described in Section 2.

The proof of the lower bound for the semi-
synchronous SMM is rather complicated, because
the propagation of information relies on reading
and writing shared variables, and also because com-
putations constructed in the proof must satisfy the
real time constraints.

Theorem 5.1 There is no semi-synchronous al-

gorithm which solves the (s; n)-session prob-

lem in the SMM within time strictly less than

minfb c2
2c1

c; blogb ncg � c2 � (s� 1).

Proof: Let B = minfb c2
2c1

c; blogb ncg.

If c2 � 2c1, then B � 1 and it is obvious that
the bound holds since every process must take at
least s steps to have s sessions.

Suppose c2 > 2c1. Assume, by way of contra-
diction, that there exists a semi-synchronous algo-
rithm, A, which solves the problem in SMM within
time Z strictly less than B � c2 � (s � 1). Then
dZ=(B � c2)e � (s� 1).

Let (�; T ) be the admissible timed computation
in which processes take steps in round robin order
and each process' ith step occurs at time i�c2. Each
consecutive group of steps for p1 through pjP j is a
round.

There are t = dZ=c2e rounds required until ter-
mination in �. Let � = �, where � contains the
�rst t rounds of �.

Following the proof of Theorem 1 in [2], we will
show that there is a reordering �0 of � that results
in the same global state as � but that contains at
most s � 1 sessions. Thus �0 = �0 is a computa-
tion with at most s�1 sessions. We then will show
how to time the events in �0 to produce an admis-
sible timed computation (�0; T 0) with at most s�1
sessions, a contradiction.

We construct a partial order �� on the steps in
�, representing dependency. Let � �� � for every
pair of steps � and � in �, and say � is dependent
on �, if � = � or if � precedes � in � and � and �
either involve the same process or involve the same
variable. Close �� under transitivity. The follow-
ing claim is not diÆcult to prove.

Claim 5.2 �� is a partial order, and every total

order of steps of � consistent with �� is a compu-

tation which leaves the system in the same global

state as � does.

Let � = �0; �1; : : : ; �m where m = dZ=(B � c2)e.
Each �k (except possibly the last one) consists of
B rounds. Let y0 be an arbitrary port in Y . For
all k, 1 � k � s � 1, we show that there exists
a port yk and two sequences of steps �k and  k,
such that the following properties hold. (pyi is the
corresponding port process to yi, 1 � i � s� 1.)

(i) �k k is a total ordering of the steps in �k,
consistent with ��.

(ii)�k does not contain any step by process pyk�1
which accesses yk�1.

(iii) k does not contain any step by process pyk
which accesses yk.

Then de�ne �0 to be �1 1�2 2:::�m m.



For all k, 1 � k � m, yk, �k, and  k are de�ned
inductively. If there is some port variable that is
not accessed by any step in �k, then let yk be that
port, �k the empty sequence, and  k = �k. Oth-
erwise (every port variable is accessed in �k), let
�k be the �rst step in �k that accesses yk�1. As a
consequence of a very general result proved in [1],
there exists a port variable yk such that:

(iv) it is not the case that �k �� �k, where �k
is the last step in �k that accesses yk.

We now assign times (the mapping T 0) to every
step in �k and then let �0k be any total ordering of
the steps in �k consistent with the times. We then
de�ne �k and  k.

� For each process p 2 P , if there are some
steps of p in �k which �k is dependent on, we
let � be the step that occurred last among
them. We retime � and all the steps of p that
happened earlier than � such that the �rst
step of p in �k occurs at 2c1B(k�1)+ c1, the
next step occurs c1 time later, and so on.

� For each process p, if there are some steps of p
in �k which are dependent on �k , we let � be
the step that occurred �rst among them. We
retime � and all the steps of p that occurred
later than � such that the last step of p in �k
occurs at 2c1Bk, the step before that occurs
c1 time earlier, and so on.

� All other steps in �k are assigned the same
time as they are under T (the original tim-
ing).

Let �k be all the steps that happened up to
time(�k) including �k, and let  k be the remainder.

Lemma 5.3 �0 is consistent with ��.

Proof: For any k, 1 � k � s � 1, pick any two
steps, � and �0 in �k such that � �� �0. Thus
T (�) � T (�0). (Recall that T is the original tim-
ing.) We only need to prove that T 0(�) � T 0(�0),
where T 0 is the new timing.

Each of � and �0 belongs to either �k or  k and
is either retimed or not. If � is retimed in �k and
�0 is not retimed in �k, then T

0(�) � T 0(�0) since
T 0(�) � T (�) and T 0(�0) � T (�0). All other cases
can be proved similarly.

Lemma 5.4 (�0; T 0) is admissible.

Proof: We need to prove that all steps in (�0; T 0)
satisfy the real time constraint imposed on the
semi-synchronous model.

By the construction, no two consecutive steps
by a process in the system are closer than c1 in
(�0; T 0); therefore, the lower bound on step time is
preserved.

We now show that the maximum time between
any two consecutive steps of a process is c2. Let
� and �0 be two consecutive steps of some process
p. First assume that � and �0 both occur in �k for
some k, � is the i-th step of p in �k and �0 is the
i+ 1-st. If � and �0 are both in �k or are both in
 k, then either there is no change in their times or
they are retimed to be c1 apart.

Now suppose � is in �k and �0 is in  k. By
construction,

T 0(�0)� T 0(�)

= B � c1 + c1

= minfb
c2

2c1
c; logb ng � c1 + c1

�
c2

2
+ c1:

Since c1 < c2=2, this di�erence is less than c2.

Now suppose � occurs in �k�1 and �0 occurs
in �k. In the worst case, � is retimed to occur at
x � c2=2 and �0 is retimed to occur at x + c2=2,
where x is the time at the end of �k�1. (This is
true by the de�nition of B.) So the time between
� and �0 is at most c2.

Lemma 5.5 �0 contains less than s sessions.

Lemma 5.5 is true because of the way  k�1 and �k
are de�ned. The theorem now follows.

6 The Sporadic Model

In the MPM, a lower bound c1 on step time and
lower and upper bounds [d1; d2] on message delay
are imposed. The correctness of our sporadic algo-
rithm A(sp) depends on the following observation:
If a process pi receives a message m from a process
pj at time t, then the message must have been sent
no later than t�d1, because it takes at least d1 time
for a message to be delivered. All the messages re-
ceived by pi after t + d2 � d1 must have been sent



after m was, because it takes at most d2 time for a
message to be delivered.

Using the above fact, each process broadcasts
a message at every step carrying its knowledge on
the number of sesssions happened by the time that
the step occurs. After receiving a message m which
says there are at least k� 1 sessions in the system,
a process waits for d2 � d1 time. After that, the
process waits to receive at least a message from
every process. it is clear that there are at least k
sessions in the system by the time because every
message received after t + d2 � d1, where t is the
time that m is sent, must have been sent after the
time there are at least k � 1 sessions.

We �rst proceed by presenting the algorithm
A(sp). A message is denoted m(i; V ), where i is
the identi�er of a sending process pi and V is an
integer in [0; s� 1]. We let � be a don't care value
for either of the �elds and u = d2 � d1.

A(sp) for process pi:
B := b u

c1
c+ 1;

count := session := 0;
msg buf := temp buf := ;;
while( session < s� 1 )

read bufi and let the set of messages
obtained be M ;

msg buf := msg buf [M ;
if for all j 2 [n], m(j; session) is in msg buf
then /* condition 1 */

count := 0;
session := session+ 1;

elsif (count > B)
then

temp buf := temp buf [M ;
if for all j 2 [n], at least one m(j; �)

is in temp buf
then /* condition 2 */

count := 0;
session := session+ 1;
temp buf := ;;

end if;
end if;
broadcast m(i; session);
count := count+ 1;

end while;
Enter an idle state.

Theorem 6.1 A(sp) solves the (s; n)-session prob-

lem within time

minfb u
c1
+1c+(u+2); d2+ g(s� 2)+ d2+2 :

Proof: Consider an arbitrary admissible timed
computation C of A(sp). The following lemma
(proof omitted) can be used to prove the theorem.

Lemma 6.2 There exists at least one step in C in

which a process sets its session to k, 0 � k � s� 1.

Let pik be the �rst process which sets sessionik
to k � 0. To increment session, a process must
receive a message(s) which noti�es the process that
there is at least one session after the last update
to session. Let Mk be the set of messages re-
ceived by pik that causes pik to set sessionik to
k. (We de�ne M0 to be the empty set.) In more
detail: If condition 1 was true, Mk is the set of
message m(j; sessionik�1) for all integers j 2 [n] in
msg buf . If condition 2 was true, Mk is the set of
messages in temp buf at the time. Assuming that
mk is the message which is sent last amongMk, we
prove the following lemma.

Lemma 6.3 Let � be the step which sends mk.

There are at least k sessions by the time � occurs

in C.

Proof: We proceed by induction on k.

For the basis, when k = 0, it is always true that
there are at least 0 sessions in C.

Inductively when k > 0, assuming the lemma is
true for k � 1, we show that when � occurs, there
are at least k sessions.

Let � be the step that sent mk�1 and � be the
step in which pik�1 sets sessionik�1 to k � 1. For
pik to update its session, one of conditions 1 and
2 in the algorithm must hold.

First, assume that condition 1 is true. Accord-
ing to the algorithm, a process broadcasts a mes-
sage with a new session value k � 1 after it sets its
session to the new value k � 1, before which time
there were k�1 sessions in C because the induction
hypothesis dictates that there were k�1 sessions in
C when mk�1 was sent. Because � is the �rst step
to set sessionik�1 to k�1, all messages inMk, must
have been sent when or after � occurs. Because all
processes take at least one step to send messages in
Mk after there were at least k � 1 sessions, there
must be at least k sessions in C by the time that
message mk is sent.

Second, assume that condition 2 is true. Since
pik is the �rst process which sets sessionik to k,



sessionik must have taken on k � 1 according to
the proof of Lemma 6.2. Let t be the time when �
occurs at which time mk�1 was sent and t0 be the
time that pik sets sessionik to k � 1. The message
mk�1 must arrive at bufik�1 at time between [t +
d1; t+ d2] because of the bounds on message delay.
Thus, t0 � t � d1. Since count in the algorithm
is reset whenever session is updated, when countik
is equal to B most recently before when pik sets
sessionik to k, say, at time t

00, at least time B �c1 >
u must have elapsed since t0. So, t00 > t0 + u �
t + d. Therefore, all messages received at t00 or
later must be sent after time t, at which time there
were k � 1 sessions by the assumption. Since at
least one message is sent by each process after time
t, there must be at least one additional step by all
processes between time t and the time � occurs.
Therefore, there must be at least k sessions by the
time � occurs.

To analyze the time complexity of the algorithm
A(sp), we use the actual maximum step time 

since in our sporadic model the upper bound on
the step time is not available.

We de�ne for each k, 2 � k � s � 1, Tk =
maxft : pi sets sessioni to k at time t in C for all
pi 2 Rg.

Lemma 6.4 For each k, 2 � k � s� 1,
Tk+1 � Tk +minfb u

c1
+ 1c) + (u+ 2); d2 + g.

Proof: According to the algorithm, a process
broadcasts a message at every step. Thus, if pro-
cess pi receives a message from process pj at time
t, it will receive at least one more message from pj
by time � t + u + 2. Let pik be the last process
to set sessionik to k and pik+1 be the last process
to set sessionik to k + 1. We now look at each of
the possible cases which may cause sessionik+1 to
be updated to k + 1:

If condition 2 is true when sessionik+1 is up-
dated to k+1, pik+1 has made at least B = bu

c
+1c

steps since the last update to sessionik+1 . Because
a process must wait, since then, at most u + 2
time to receive another set of messages sent from
all processes, at most (bu

c
+ 1c) + (u + 2) time

has elapsed.

If condition 1 is true when sessionik+1 is up-
dated to k + 1, let t be the time at which pik
broadcastsm(ik; k); note that by de�nition, t = Tk.

Message m(i; k) must be received by pik+1 by time
t+ d2 + .

Since both conditions take at most minfbu
c
+

1c+(u+2); d2+g time to be true since the last
update to session, the lemma follows.

From Lemmas 6.2 and 6.3, it follows that there
are at least s � 1 sessions at the time that ms�1

is sent. All processes will eventually set their
session's to s � 1 ( since session can't be bigger
than s � 1). Each process sets session to s � 1
because it receives a certain message. Therefore,
there is at least one additional step by all processes
after there have been s � 1 sessions in C. Thus,
there are at least s sessions in C.

By the algorithm, initially it takes at most
d2 + 2 to receive at least one message from all
processes in order to accomplish the �rst session.
Using Lemma 6.4, it is clear now that it takes at
most minfb u

c1
+1c+(u+2); d2+g(s�2)+d2+2.

(This equals minf(b u
c1
c+3) �+u; d2+g(s�1)+

if d1 < b u
c1
+ 1c � ).

We now prove the lower bound.

Theorem 6.5 No sporadic algorithm solves the

(s; n)-session problem in the MPM within time <

maxfb u
4c1

c �K; c1g(s� 1) where K = 2d2c1
(d2�

u

2
)
.

Proof: The general structure of this proof follows
that of Theorem 5.1.

Let B = b u
4c1

c.

When B�K � c1, the lower bound holds because
a process must execute at least s steps to achieve s
sessions.

Suppose that B � K > c1. Assume, by way
of contradiction, that there exists a sporadic al-
gorithm, A, which solves the (s; n)-session prob-
lem in the MPM within time Z strictly less than
B � K � (s � 1). Then dZ=(B �K)e � (s � 1). We
show that there exists an admissible timed compu-
tation of A which does not include s sessions.

Let (�; T ) be the admissible timed computation
in which regular processes take steps in round robin
order and each process' ith step occurs at time i �
K, and all message delays are exactly d2. Each
consecutive group of steps for p1 through pn is a
round.



Therefore, there are r = dZ=Ke rounds required
until termination in �. Let � = �, where � con-
tains the �rst r rounds of �.

We will show that there is a reordering �0 of �
that contains at most s�1 sessions. Thus �0 = �0

is a sequence with at most s�1 sessions. In order to
get an admisssible computation �0, we will assign
new times (T 0) to every step in � and let �0 be any
total ordering of the steps in � consistent with the
times, and then we will prove that (�0; T 0) is an
admissible timed computation which results in the
same global state as �. A contradiction.

Then we will show how to reorder � to produce
admissible timed computation (�0, T 0) that results
in the same global state as �.

Let � = �1 : : : �m wherem = dZ=(B �K)e. Each
�k, 1 � k � m (except possible the last one) con-
sists of B rounds, and for some sequence i0; i1 : : : im
of integers in [1; n], each computation fragment �k
consists of �k k such that:

(i) �k does not contain any step by process
pik�1 .

(ii)  k does not contain any step by process
pik .

Then de�ne �0 to be �1 1�2 2 : : : �m m. As
in Lemma 5.5, we prove that �0 has at most s � 1
session.

Lemma 6.6 �0 has at most s� 1 sessions.

Since all processes in  are in idle states, �0 has
at most s� 1 sessions.

We need to show how to reorder every step in
� to get an admissible timed computation (�0; T 0)
which preserves properties (i) and (ii), and results
in the same global state as �.

Let us �rst assign times (a new mapping T 00)
to every step, �, in � including all the steps of the
network N such that T 00(�) = T (�) � 2c1

K
. That

is, every process except N takes a step at every
2c1 and each round occurs at every 2c1. Since the
delivery steps of N are also remapped, the message
delay is reduced to d2 �

2c1
K

= d2 �
u
2
.

C 0 = (�; T 00) is an admissible timed computa-
tion because � is a computation, and the step times
and message delays obey the sporadic time con-
straint.

From C 0, we construct (�0; T 0), an admissible
computation which results in the same global state
as �00 (and �). We map T 00 to T 0 in order to get ik,
ik�1, �k and  k for all k , 1 � k � m.

For all k, choose ik arbitrarily, as long as ik 6=
ik�1. For all 0 � j � m, let tj = B � 2c1 � j. tj is
equal to the ending time of �j in C

0.

1. Let � be all steps of pik and all the steps of
N that deliver messages to pik in �k. Retime
� such that T 0(�) = tk�1+(T 00(�)� tk�1)=2.

2. Let � be all steps of pik�1 and all the steps of
N that deliver messages to pik�1 in �k. Re-
time � such that T 0(�) = tk� (tk�T

00(�))=2.

3. All other steps in �k are assigned the same
time as they are under T 00.

Fix up the states of the network in � so that the
state of the network is consistent with all the send
and receive steps of regular processes in �. Let �k
be the pre�x of �0k up to the last step of pik , and let
 k be the remainder. Let �0k be any total ordering
consistent with T 0.

We now prove the following lemma:

Lemma 6.7 (�0; T 00) is an admissible timed com-

putation which results in the same global state as

�.

Proof: The time period of �k in C 0 , 1 � k � m,
is equal to to B2c1 since �k in C 0 consists of B
rounds (except the last one) and the step time is c1.
Since no step is retimed outside the time boundary
of (�k; T

0), the time period of (�k; T
00) is also equal

to (�0k; T
00).

In (�; T 00), the message delay of all messages is
bigger than B2c1 by the de�nition of B, so that
the messages sent in �k are never received in �k. In
(�0; T 0), the messages sent in �0k are never received
in �0k too because no step is retimed outside the the
time boundary of (�k; T

00).

By the construction, in �0, the delivery steps of
all messages are retimed with the steps that receive
the messages, so that every message is delivered
always before received. Every step in �0 receives the
same set of messages as the corresponding step in �
does. Since states of processes are updated based
only on the current state and the set of message



received, �0 is a computation which leads to the
same global state as �.

Now, to prove that (�0; T 0) is admissible, we
need to show that (�0; T 0) obeys the sporadic time
constraints.

First, it is clear that every computation step
time in �0 is bigger than the minimum step time c1
by the construction.

Second, we need to prove the delay of any mes-
sage sent in �0 is within [d2�u; d2]. For any message
m sent in �0, let �i be the step of a process in R

which sends m and �j be the step of N which de-
livers m. We need to prove that T 0(�j)� T 0(�i) is
in [d2�u; d2]. Without loss of generality, assuming
�i is in �0k, T

0(�j) � T 0(�i) = T 00(�j) � T 00(�i) +
[T 0(�j)� T 00(�j)]� [T 0(�i)� T 00(�i)]:

It can be proved that for any step �,

�u=4 � T 0(�)� T 00(�) � u=4:

T 00(�j) � T 00(�i) = B � 2c1 � d2 � u=2 from
the construction of C 0. Therefore, it is clear that
T 0(�j) � T 0(�i) is always within [d2 � u; d2] in �

0.

Since there exists an admissible timed compu-
tation (�0; T 0) of A which has at most s�1 sessions
by Lemma 6.7 and Lemma 6.6, this contradicts the
assumed existence of algorithm A. Therefore, The-
orem 6.5 now follows.
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