
Distributed recon�guration of hexagonal metamorphic robots in

two dimensions

Jennifer E. Waltera, Jennifer L. Welcha, and Nancy M. Amatoa

a Department of Computer Science, Texas A&M University, College Station, TX 77843-3112.

ABSTRACT

The problem addressed is the distributed recon�guration of a metamorphic robotic system composed of any number

of two dimensional hexagonal modules from speci�c initial to speci�c goal con�gurations. The initial con�guration

considered is a straight chain of modules, while the goal con�gurations considered satisfy a more general \admis-

sibility" condition. A centralized algorithm is described for determining whether an arbitrary goal con�guration

is admissible. The main result of the paper is a distributed algorithm for recon�guring a straight chain into an

admissible goal con�guration. Di�erent heuristics are proposed to improve the performance of the recon�guration

algorithm and simulation results demonstrate the use of these heuristics.

Keywords: Metamorphic robots, distributed recon�guration

1. INTRODUCTION

A topic of recent interest in the �eld of robotics is the development of motion planning algorithms for robotic

systems composed of a set of modules that change their position relative to one another, thereby reshaping the

system. A robotic system that changes its shape due to individual module motion has been called self-recon�gurable5

or metamorphic.2

A self-recon�gurable robotic system is a collection of independently controlled, mobile modules, each of which has

the ability to connect, disconnect, and move around adjacent modules. Metamorphic robotic systems, a subset of self-

recon�gurable systems, are further limited by requiring each module to be identical in structure, motion constraints,

and computing capabilities. Typically the modules have a regular symmetry so that they can be packed densely,

i.e., packed so that gaps between modules are as small as possible. In these systems, modules achieve locomotion

by moving over a substrate composed of one or more other modules. The mechanics of locomotion depends on the

hardware and can include module deformation to crawl over neighboring modules3,9 or to expand and contract to

slide over neighbors.10 Alternatively, moving modules may be constrained to rigidly maintain their original shape,

requiring them to roll over neighboring modules.6,13,14

Shape changing in these composite systems is envisioned as a means to accomplish various tasks, such as bridge

building, satellite recovery, or tumor excision.9 The complete interchangeability of the modules provides a high

degree of system fault tolerance. Also, self-recon�guring robotic systems are potentially useful in environments that

are not amenable to direct human observation and control (e.g., interplanetary space, undersea depths).

The motion planning problem for a metamorphic robotic system is to determine a sequence of module motions

required to go from a given initial con�guration (I) to a desired goal con�guration (G).

Many developers of self-recon�gurable robotic systems5{7,9,10,12,13 have devised motion planning strategies speci�c

to the hardware constraints of their prototype robots. Most of the existing motion planning strategies rely on

centralized algorithms to plan and supervise the motion of the system components.1,3,5,9,10,12 Others use distributed

approaches which rely on heuristic approximations and require communication between modules in each step of the

recon�guration process.6,7,13,14

We focus on a system composed of planar, hexagonal robotic modules as described by Chirikjian.3 We consider a

distributed motion planning strategy, given the assumption of initial global knowledge of G. Our distributed approach

o�ers the bene�ts of localized decision making and the potential for greater system fault tolerance. Additionally, our

strategy requires no communication between modules. We have previously applied this approach to the problem of

recon�guring a straight chain to an intersecting straight chain.11

Authors' email addresses are fjennyw,welch,amatog@cs.tamu.edu.

In this paper we address the problem of distributed recon�guration from a straight chain of modules to goal

con�gurations that satisfy a more general \admissibility" condition. A centralized algorithm is described for de-

termining whether an arbitrary goal con�guration is admissible, and if so, �nding a path with certain properties.

The main result of the paper is a distributed algorithm for recon�guring a straight chain into an admissible goal

con�guration, which uses the path found by the previous algorithm. Di�erent heuristics for choosing the path are

proposed to improve the performance of the recon�guration algorithm and the performance of these heuristics is

explored through simulation.9

2. RELATED WORK

Chirikjian3 and Pamecha9 discuss centralized algorithms for planar hexagonal modules that use the distance between

all modules in I and the coordinates of each goal position to accomplish the recon�guration of the system. Pamecha

et al.9 de�ne the distance between con�gurations as a metric and apply this metric to system self-recon�guration

using a simulated annealing technique to drive the process towards completion. Upper and lower bounds on the

number of moves for recon�guration between general shapes are given by Chirikjian.3 The upper bound on the

minimal number of moves is a function of the distance along the perimeter of the initial and �nal con�gurations, the

maximum perimeter distance possible in a connected con�guration of n modules, and the overlap between the initial

and �nal con�gurations. Lower bounds for the general case are obtained by �nding a perfect matching between

modules in I and positions in G such that the sum of the distances between pairs is minimized.

Centralized motion planning strategies for systems of two dimensional robotic modules are examined by Nguyen

et al.8 and analysis is presented for the number of moves necessary for speci�c recon�gurations. The authors show

that the absence of a single excluded class of initial con�gurations is suÆcient to guarantee the feasibility of motion

planning for a system composed of a single connected component.

A centralized motion planning strategy for three dimensional cubic robots is presented by Rus and Vona.10 In

this paper, the proposed modules incorporate an actuator mechanism that causes module expansion and contraction,

resulting in the sliding movement of a module over its neighbors. A centralized algorithm which takes O(n2) time

to recon�gure a system of n modules is presented.

Centralized algorithms for decomposing a system of modules into a hierarchy of two dimensional substructures

are presented by Casal and Yim.1 Recon�guration of the system involves connectivity changes within and between

these substructures, along with substructure relocation. The paper concentrates on the decomposition algorithms

and does not present algorithms for motion planning within substructures.

A distributed approach is taken by Murata et al. to recon�gure a system of two dimensional hexagonal modules,6

and a system of three dimensional cubic modules.7 In these approaches, each module senses its own connection type

and classi�es itself by the number of modules that it physically contacts. Modules use a formula that relates their

connection type to the set of connection types in the goal con�guration to quantify their �tness to move. Modules

communicate with physical neighbors to ensure that only the modules that have �tness greater than the local �tness

average move in the same time step, choosing a direction at random. These distributed algorithms use random local

motions to converge toward the goal con�guration, a slow process that appears impractical for large con�gurations.

These schemes also ignore the consequences of module collision and do not distinguish the relative location of modules

in the plane, i.e., two con�gurations are the same if the modules composing them have the same connections.

Another distributed recon�guration algorithm, for three dimensional rhombic dodecahedron shaped modules, is

presented by Yim et al.13 In this strategy, each module uses local information about its own state (the number and

location of its current neighbors) and information about the state of its neighbors obtained through inter-module

communication to heuristically choose moves that lower its distance to the goal con�guration.

Several heuristic approximation algorithms for distributed motion planning of three dimensional rhombic do-

decahedral robots are presented by Zhang et al.14 In this two phase approach, modules use neighbor-to-neighbor

communication in the �rst phase to achieve a semi-global view of the initial con�guration, using as many rounds as

necessary to avoid violation of module motion constraints prior to each phase of movement.

3. OUR APPROACH

This paper will examine distributed motion planning strategies for a planar metamorphic robotic system undergoing a

recon�guration from a straight chain to a goal con�guration satisfying certain properties. We believe one contribution

of our work is how our system model abstracts from speci�c hardware details about the modules.

In this paper, we consider two dimensional, hexagonal modules like those described by Chirikjian,2 using his

de�nition of lattice distance between modules in the plane. Our proposed scheme uses a new classi�cation of module

types based on connected edges similar to the classi�cation used by Murata et al.6 for connected vertices. In the

algorithms presented in this paper, each module independently determines whether it is in a movable state based

on the cell it occupies in the plane, the locations of cells in the goal con�guration, and on which sides it contacts

neighbors. Modules move from cell to cell and modify their state as they change position. Since the modules know

the coordinates of the goal cells, we show that each of them can independently choose a motion plan that avoids

module collision.

Because we are attempting to de�ne the necessary building blocks for recon�guration, the algorithms presented in

this paper do not rely on communication between adjacent modules like the other distributed approaches.6,13,14 One

of our future goals is to determine how complex the con�guration shapes can be before communication is required

during recon�guration.

In Sect. 4 we describe the system assumptions and the problem de�nition. Section 5 contains a centralized

algorithm that determines whether or not a given con�guration is admissible. Section 6 presents and analyzes a

distributed algorithm for recon�guring a straight chain to an admissible goal con�guration. In Sect. 7 we present

simulation results comparing the performance of our algorithm using di�erent heuristics. Section 8 provides a

discussion of our results and future work.

4. SYSTEM MODEL

4.1. Coordinate System

The plane is partitioned into equal-sized hexagonal cells and labeled using the coordinate system shown in Fig. 1, as

in Chirikjian.2

X

Y

(0,-2)

(0,-1)

(0,1)

(0,2)

(3,0)

(2,0)

(1,0)

(-3,0)

(-2,0)

(-1,0) (1,-1)

(-1,1)

(0,0)

Figure 1. Coordinates in a system of hexagonal cells.

Given the coordinates of two cells, c1 = (x1; y1) and c2 = (x2; y2), we de�ne the lattice distance, LD, between

them as follows: Let �x = x1 � x2 and �y = y1 � y2. Then

LD(c1; c2) =

�
max(j�xj; j�yj) if �x ��y < 0;

j�xj+ j�yj otherwise:

The lattice distance describes the minimum number of cells a module would need to move through to go from

cell c1 to cell c2.

4.2. Assumptions About the Modules

Our model provides an abstraction of the hardware features and the interface between the hardware and the appli-

cation layer.

� Each module is identical in computing capability and runs the same program.

� Each module is a hexagon of the same size as the cells of the plane and always occupies exactly one of the cells.

� Each module knows at all times:

{ its location (the coordinates of the cell that it currently occupies),

{ its orientation (which edge is facing in which direction), and

{ which of its neighboring cells is occupied by another module.

Modules move according to the following rules.

1. Modules move in lockstep rounds.

2. In a round, a module M is capable of moving to an adjacent cell, C1, i� (see Fig. 2 for an example)

(a) cell C1 is currently empty,

(b) module M has a neighbor S that does not move in the round (called the substrate) and S is also adjacent

to cell C1, and

(c) the neighboring cell to M on the other side of C1 from S, C2, is empty.

3. Only one module tries to move into a particular cell in each round.

(a) (b)

C2C2

M

S

M

S

C1

f
e

g

e
C3

f

g

Figure 2. Before (a) and after (b) module movement: M is moving, S is substrate, C1, C2, and C3 are empty cells.

If the algorithm does not ensure that each moving module has an immobile substrate, as speci�ed in rule 2(b),

then the results of the round are unpredictable. Likewise, the results of the round are unpredictable if the algorithm

does not ensure rule 3.

4.3. Problem De�nition

We want a distributed algorithm that will cause the modules to move from an initial con�guration, I , in the plane

to a known goal con�guration, G.

5. ADMISSIBLE CONFIGURATIONS

In this section we de�ne admissible con�gurations and describe a centralized algorithm that tests whether a given

con�guration is admissible.

5.1. De�nition of Admissible Con�guration

Without loss of generality, assume I is oriented north-south, no goal cell is to the west of I , and I and G intersect

in the southernmost module of I and nowhere else, as shown in Figs. 3(a) and (b), where occupied cells have solid

borders and goal cells are shaded. To see why these assumptions can be made without loss of generality, if I is

a straight chain that is not oriented in this way, the algorithms we presented for straight chain to straight chain

recon�guration11 can be used to reorient I in relation to G. The number of modules in I and the number of cells in

G is n.

Let G1; G2; : : : ; Gm be the columns of G from west to east.

A substrate path p is a sequence of distinct cells, c1; c2; : : : ; ck, such that

� each cell is adjacent to the previous, but not to the west,

� p begins with the cells in I , from north to south,

� subsequent cells are all in G, and

� the last cell is in the easternmost column of G (Gm).

1

2

10

2
G

1
G

3 4 5 6
G G G G

1

2

6

8

7

5
4

3

9

1

2

12

(a) (b)

10

Figure 3. Example admissible (a) and inadmissible (b) G.

A segment of p is a contiguous subsequence of p of length � 2. In a south segment, each cell is south of the

previous and analogously for a north segment.

A substrate path is admissible if

� for each south segment of p ending with ci, no goal cell is north of ci+1, ci+2, or ci+3, and

� for each north segment of p ending with ci, no goal cell is south of ci+1, ci+2, or ci+3.

G is an admissible goal con�guration if

1. each column Gi of G, 1 � i � m, is contiguous and

2. there exists an admissible substrate path in G with respect to the cell north of the intersection of I and G.

Intuitively, an admissible substrate path is a chain of goal cells whose surface allows the movement of modules

without collision or deadlock, provided the choices of module rotation and delay are correct. That is, provided the

motion planning algorithm allows for adequate space between moving modules, there are no pockets or corners on

the surface of the substrate path in which modules will become trapped.

The admissibility conditions for a substrate path are directly related to the degree of parallelism desired, i.e.,

how closely moving modules can be spaced. If moving modules are separated by only a single empty cell they will

become deadlocked in acute angle corners when running our algorithms.11 But ruling out any con�guration in which

modules have to move through an acute angle turn would be overly restrictive, since any two straight chains meet at

either an acute or obtuse angle due to module shape. Since moving modules separated by two empty cells can move

though acute angles without becoming deadlocked, we chose to base our de�nition of admissibility on con�guration

surfaces over which moving modules with two empty cells between them can move without becoming deadlocked.

Figure 3(a) depicts an example of an admissible con�guration ofG, where the line through I andG is an admissible

substrate path. Figure 3(b) depicts a con�guration of G that violates admissibility condition 2. The substrate path

shown is inadmissible, as is every other possible substrate path for this con�guration.

Our de�nition of admissible classes of goal con�gurations di�ers from that presented by Rus and Vona10 because

the modules used by these authors were cubic, with a di�erent set of motion constraints and mode of locomotion.

Even though our modules are two dimensional and hexagonal, like those of Nguyen et al.,8 our de�nition of admissible

classes of goal con�gurations is di�erent than theirs because our assumptions about module motion are di�erent.

Nguyen et al. assume that a module moves by rigid rotation around a vertex it shares with another module. Our

motion constraints are similar to those presented by Chirikjian,2 where locomotion is accomplished by a combined

rigid body rotation and shape transformation produced by changing joint angles.

5.2. Detecting Admissible Con�gurations and Finding Substrate Paths

Condition 1 for determining the admissibility of G can be easily accomplished by scanning G in columns from north

to south, northwest to southeast, and northeast to southwest, to determine if there exists an orientation in which

each Gi is contiguous. If there is no orientation in which each Gi is contiguous, then G is not admissible.

Our procedure for �nding an admissible substrate path in G (condition 2 for the admissibility of G) proceeds by

�rst constructing a directed graph H as follows:

� Label the columns of G as described in Sect. 5.1, with the cells in each Gi labeled Gi;1, Gi;2,: : :, from north to

south. Then cell G1;1 is also in I , but no other goal cells are in I .

� Represent each goal cell as a node in the graph H . Add an extra node to the graph in position directly north

of cell G1;1 and call this node G1;0. Initially there is an undirected edge between each pair of adjacent goal

cells.

� The cells to the north, south, northeast, and southeast ofGi;j are labeled Ni;j , Si;j , NEi;j , and SEi;j , respectively

(note that some of these cells might not be goal cells and thus are not represented in the graph).

mG

G1

Figure 4. Directed graph H formed by algorithm.

The �rst phase directs edges in the undirected graph and marks the nodes that are determined to have an

admissible path to a goal cell in the easternmost column. The columns are processed from east to west. First, every

node in column Gm is marked. As shown in Fig. 4, each column west of column Gm consists of three segments:

(A) the north segment of nodes with no goal cells to the east (shaded light gray), (B) the central segment of nodes

that have goal cells to the east (unshaded), and (C) the south segment of nodes that have no goal cells to the east

(shaded dark gray). Segment (A) is initially skipped. Each node in segment (B) is given an outgoing edge to each of

its marked east neighbors. If the node has at least one such neighbor, then it is marked. Nodes in segment (C) are

processed north to south. Each node is marked and given a directed edge to its north neighbor if the north neighbor

is marked and if the goal cells in a local neighborhood satisfy a certain \admissibility" condition (discussed below).

Finally, nodes in segment (A) are processed south to north. Similarly to segment (C), each node is marked and given

a directed edge to its south neighbor if the south neighbor is marked and if the goal cells in a local neighborhood

satisfy a certain \admissibility" condition (discussed below). The arrows in Fig. 4 show the edges that are directed

and the direction given to the edges and the cross-hatched cells are those that remain unmarked after the algorithm

has been run. The cell on the north and the two cells on the south of column G1 do not satisfy the \admissibility"

condition, so no edges are directed from these cells in the algorithm.

The following pseudocode directs some of the edges in the graph, as described above. The variables used in the

pseudocode are as follows:

� onPathi;j : Boolean variable. Initially, onPathi;j is false for all goal cells in columns 1 � i � m� 1 and true for

all nodes in column Gm. At a particular node i, the status of the onPathi;j variable at the nodes Ni;j , Si;j ,

NEi;j , and SEi;j is onPathNi;j
, onPathSi;j

, onPathNEi;j
, and onPathSEi;j

.

� x: Variable used to save the position of the southernmost cell that has not been checked by the algorithm.

� d: Direction to be checked, either N = �S or vice versa.

� remove: Set of goal cell coordinates. Initially, remove = f;g at all nodes.

� path: List of coordinates of goal cells that are added to the substrate path.

For each column i := m� 1 downto 1 do:

1. x := 1

2. j := 1

3. while (j � jGij) 22. while (j � jGij)
4. while (Gi;j has no adjacent nodes to the east) 23. if ((onPathNi;j

) and

5. j++ 24. (isAdmissible(N; i; j))) then

6. end while 25. onPathi;j := true

7. x := j � 1 26. direct edge to N

8. while ((j � jGij) and 27. end if

9. (Gi;j has � one adjacent node to the east)) 28. j++

10. if ((Gi;j has node to NE) and 29. end while

11. (onPathNEi;j
)) then 30. while (x > 0)

12. onPathi;j := true 31. if ((onPathSi;x) and

13. direct edge to NE 32. (isAdmissible(S; i; x))) then

14. end if 33. onPathi;x := true

15. if ((Gi;j has node to SE) and 34. direct edge to S

16. (onPathSEi;j
)) then 35. end if

17. onPathi;j := true 36. x--

18. direct edge to SE 37. end while

19. end if 38. end while

20. j++

21. end while

Procedure isAdmissible(d; i; j) returns boolean

1. if (9 a goal cell in or �d of: dEi;j, �dE of dEi;j, or �dE of �dE of dEi;j) then // Case 1

2. return false

3. end if

4. if ((i � m� 4) and (cell dE of di;j is goal cell)

5. and (the cell �dE of �dE of dE of di;j is a goal cell)) then // Case 2

6. if (the cell �dE of dE of di;j is not a goal cell)

7. return false

8. end if

9. else if (9 an edge directed �d out of the cell �dE of dE of dE of di;j) then

10. removei;j = f(dE of dE of di;j), (�dE of dE of dE of di;jg
11. end else if

12. end if

13. return true

From the isAdmissible procedure, we can see that if any edges at a node are directed to the east, then no edges

at that node will be directed to the north or south. Also, since the cells in each column are contiguous, if an edge at

a node is directed to the north, then no edge at that node will be directed to the south and vice versa.

After constructing H , if onPath1;0 = true, then there exists an admissible substrate path from G1;0 to some cell

in Gm because of the way H is constructed. We believe, but have not yet proven, that if the algorithm fails to �nd

an admissible substrate path with respect to G1;0, then G does not contain such a path.

To �nd an admissible substrate path, we begin at node G1;0 and move in any allowable direction (i.e., over any

directed edge to a goal cell for which onPath is true) until reaching some goal cell in column Gm. If a node has a

directed edge to only one neighbor for which onPath is true (either N, S, NE, or SE), then we go in that direction.

The only other possibility is that a node has two neighbors for which onPath is true, NE and SE. In this case, a

heuristic is used to decide whether to go NE or SE. If the decision to go N or S is taken, then certain nodes in the

graph in columns to the east have onPath set to false (the \remove" cells calculated in the admissibility check, case

2). The choice of this edge means that certain later choices are no longer available.

The following algorithm is used to �nd and construct an admissible substrate path:

Initially, i := 1 and j := 0 and path := hG1;0i

1. while ((onPathi;j) and (i < m))

2. if Gi;j has at least one east neighbor with onPath true then

3. update i and j to index one of those neighbors (heuristic choice)

4. append Gi;j to path

5. end if

6. else if Gi;j has a north or south neighbor then

7. update i and j to index that neighbor // will only have one

8. append Gi;j to path

9. for all goal cells with coordinates in removei;j, set onPath = false

10. end else if

11. end while

(a) (b)

i,j

i,j i,j

 Q

 Z

 P

 X
 Y

 G

 S
i,j

 N

i,j

i,j
 SE

 NE

 N

i,j
 NE

 SE
i,j

 Gi,j

 Si,j

 C
 D

Figure 5. Scenarios for case 1 (a) and case 2 (b) of isAdmissible procedure.

The isAdmissible procedure is important both for constructing an admissible path from cell G1;0 to some cell

in column Gm and for dynamically choosing goal cells as they are included in an admissible substrate path. These

functions are illustrated in Fig. 5, parts (a) and (b). In this �gure, the unshaded cells are goal cells, the shaded

cells are non-goal cells, the cross-hatched cell may or may not be a goal cell, and arrows indicate directed edges.

The decision statement labeled case 1 in the isAdmissible procedure and depicted in Fig. 5(a), ensures that there

are no goal cells in or south of the non-goal cells marked NEi;j , C, and D, if the edge (Gi;j , Ni;j) is directed N and

onPathi;j is set to true. If there are goal cells in or south of NEi;j , C, or D, edge (Gi;j , Ni;j) will remain undirected

and onPathi;j will remain false. An example of a case 1 violation is shown in Fig. 4, where the south edge out of cell

G1;0 is not directed in H , so onPath1;0 remains false.

Figure 5(b) depicts the function of the decision statement labeled case 2 in the isAdmissible procedure for goal

cells in column Gi, where i � m� 4. If the cells labeled X and Z in Fig. 5(b) are goal cells and cell Y is not a goal

cell, then goal cell Gi;j is not part of H . If the cells labeled X , Y , and Z are goal cells and goal cells Gi;j and Ni;j

are added to the substrate path, then if cell Q has an edge directed to the south, the coordinates of goal cells P and

Q are added to removei;j . Goal cells P and Q are then removed from possible inclusion in the admissible substrate

path when goal cells Gi;j and Ni;j are included. This prevents the inadmissible dashed path through cells P , Q and

Z from being added to the substrate path after cell Ni;j is added.

The removal of goal cells P and Q from consideration for inclusion in an admissible substrate path will not prevent

the algorithm from �nding an admissible substrate path. To see why this is so, refer to Fig. 5(b) and consider that

since goal cells Gi;j and Ni;j were added to H , goal cell Z cannot have a directed edge to the south, by case 1 of the

isAdmissible procedure. Also, by case 2 of the isAdmissible procedure, goal cell Q has an edge directed to the south

and no edges directed NE or SE. Thus, goal cell Z must have an edge directed to the SE or onPath would be false

at Z. Therefore, the substrate path will continue to progress eastward through goal cell Z after goal cells P and Q

are removed from consideration for inclusion in an admissible substrate path.

The running time of the algorithm to �nd the graph H and to �nd an admissible substrate path is O(n), since

each node has a constant number of (undirected) neighbors.

6. DISTRIBUTED RECONFIGURATION ALGORITHM

6.1. Algorithm Assumptions

1. Each module knows the total number of modules in the system, n, and the goal con�guration, G.

2. Initially, one module is in each cell of I .

3. I is a straight chain.

4. G is an admissible con�guration.

5. I and G overlap in goal cell G1;1, as described in Sect. 5.1.

To simplify the presentation of our recon�guration algorithm, we assume the coordinates of G are ordered at each

module as follows:

� The coordinates of cells on the substrate path are stored in a list, in the order in which the cells occur on the

directed path from G1 to Gm, beginning with the cell on the substrate path which has a directed edge incoming

from cell G1;1.

� The coordinates of cells in G that are north of the substrate path are stored in a list starting with the cell

adjacent to and north of the cell on the substrate path in Gm to Gm;1, followed by the cell adjacent to and

north of the cell on the substrate path in Gm�1 to Gm�1;1, and so on, ending with the northwesternmost cell

north of the substrate path in G.

� The coordinates of cells in G that are south of the substrate path are stored starting with the cell adjacent to

and south of the cell on the substrate path in Gm to Gm;j , where j is the length of column Gm , followed by

the cell adjacent to and south of the cell on the substrate path in Gm�1 to Gm�1;k, where k is the length of

column Gm�1, and so on, ending in the southwesternmost cell south of the substrate path in G.

6.2. Overview of Algorithm

The algorithm works in synchronous rounds. In each round, each module calculates whether it is free (cf. Fig. 6).

In this �gure, the modules labeled trapped are unable to move due to hardware constraints and those labeled free

represent modules that must move in our algorithm, possibly after some initial delay. The modules in the other

category are restricted from moving by our algorithm, not by hardware constraints.

 Indicates non-contact edge

 Indicates contact edge

TRAPPED

OTHER

FREE

Figure 6. Contact patterns possible in algorithm.

Modules in I initially calculate their position in I , direction of rotation, possible delay and �nal coordinates in G

by determining their lattice distance from cell G1;1. A module calculates the goal cell it will occupy by comparing

its position in I to the length of the arrays of coordinates on, north, and south of the substrate path.

Let p be the substrate path, starting with the cell that has an edge incoming from cell G1;1. Modules in positions

� jpj �ll in the substrate path �rst. After p is �lled, modules alternate rotation directions, �lling the columns

projecting north and south of p from east, Gm, to west, G1. Figure 3(a) has numbered goal cells showing how initial

module positions correspond to �nal goal positions.

As in our previous paper,11 modules use speci�c patterns of rotation and delay in our algorithm, as listed below.

Note that only patterns 2 and 4 are used in our general algorithm schema.

1. (0,0)-bidirectional: modules alternate direction with no delay after free.

2. (1,0)-bidirectional: modules alternate direction with delay of 1 time unit after free for modules in positions > 1

rotating CW and no delay after free for modules rotating CCW.

3. 1-unidirectional: modules rotate same direction with delay of 1 after free for modules in positions > 1.

4. 2-unidirectional: modules rotate same direction with delay of 2 after free for modules in positions > 1.

The recon�guration proceeds as follows:

� For modules in positions 1 through jpj:

{ Modules use 2-unidirectional pattern in CW direction.

{ When a module is in the goal cell that it should occupy in p, it stops in that cell.

� For modules in positions > jpj:

{ Modules use (1,0)-bidirectional pattern until all cells on one side of p are �lled. After this, modules use 2-

unidirectional pattern, with either CW or CCW direction, depending on whether there are cells remaining

to be �lled on the north or south side of p.

{ When a module is in the goal cell it should occupy, it stops.

� Once a module stops in the goal cell it should occupy for a round it never moves out of that goal cell.

6.3. Algorithm Pseudocode

The algorithm uses the following local variables at each module:

� n: Number of cells in G and number of modules in I .

� myCoord: The coordinates of the module in the plane.

� position: Order of modules in I , starting at the northernmost end of I . Initially calculated as n�LD(myCoord,

coordinates of G1;1).

� d: Variable containing the direction of movement, CW or CCW.

� delay: Number of time units module waits after it is free and before it makes its �rst move. Initially set to 0.

� myGoalCoord: Coordinates of goal cell in which module will stop moving. Initially module in I overlapping

G has myGoalCoord = coordinates of G1;1 and all other modules in I calculate myGoalCoord after calculating

their position.

� substrateCoords, coordsNorth, and coordsSouth: Arrays of coordinates of goal cells on, north, and south of the

substrate path, in the order described in Sect. 6.1.

Code for each module for which myCoord 6= myGoalCoord:

Initially:

Modules calculate position based on distance from G1;1,

then calculate myGoalCoord, rotation direction d, and delay

based on the value of position and the length of the substrateCoords,

coordsNorth, and coordsSouth arrays.

In round r := 1; 2; : : : :

if (isFree())

if (delay = 0) then

move d

end if

else

delay--

end else if

end if

Procedure isFree():

Return true if contact pattern is free (cf. Fig. 6) and false otherwise

7. SIMULATION RESULTS

Our simulation experiments were inspired by the work of Pamecha et al.,9 where con�gurations of similar shape

but varying number of modules were used to evaluate their algorithm. Direct comparison of the complexity of the

algorithms presented in this paper with the results obtained by the centralized recon�guration algorithm of Pamecha

et al. is not possible due to the fact that their simulations involved the recon�guration of arbitrary shapes of I to

arbitrary shapes of G.

We experimented with running our algorithm on various shapes using di�erent numbers of modules. In these

preliminary simulation results, we tested the e�ect of the heuristic choice in line 3 of the algorithm to �nd an admis-

sible substrate path (presented in Sect. 5.2) on the performance of the recon�guration algorithm, where performance

is measured in terms of number of rounds and number of moves needed for the recon�guration.

The shapes experimented on included: 1) wedges of similar orientation and variable size, 2) rectangles that

lengthened on the E-W axis while remaining �xed on the N-S axis, and 3) diamonds of similar orientation and

variable size. These shapes were chosen because they are simple and yet illustrative of how heuristics can a�ect the

performance of the recon�guration algorithm.

The �rst heuristic (SN for \select north") chose the NE edge whenever there was a choice of NE or SE edges,

biasing the substrate path to \hug" the north side of G. The second heuristic (SS) used a \seesaw" pattern, selecting

the edge in the opposite direction as the edge last selected when there was a choice. The third heuristic (GR) used a

greedy strategy in which the edge to the NE or SE was selected based on whichever choice most evenly divided the

next column to the east.

Figure 7 illustrates the paths found by the SN heuristic, the SS heuristic, and the GR heuristic for a wedge of 29

cells, a rectangle of 21 cells, and a diamond of 26 cells. Heuristic GR was able to more evenly split G into halves for

each shape when n was suÆciently large.

SN SS GR

Figure 7. Example paths found for SN, SS, and GR heuristics.

In Figs. 8 and 9(a), we depict the results obtained from experiments with wedges of similar orientation and

increasing size. Figures 8 and 9(b) show the results obtained when experiments were performed on lengthening

rectangles and Figs. 8 and 9(c) show the results on diamond shapes. For each shape, the number of moves increased

more than linearly for increasing values of n and the number of moves was nearly the same for each heuristic

for all values of n. For each shape when n > 9, heuristic GR used fewer rounds than did the SN or SS heuristics.

Performance, in terms of number of rounds used, improves when the substrate path evenly divides G because modules

can alternate direction, allowing more modules to move in parallel.

Therefore, while any directed path of marked nodes may be chosen as the substrate path, heuristics can improve

the number of rounds required for recon�guration.

050 101010 201520 302030 402540 503050 3560 40
0

20

40

60

80

100

120

140

0

50

100

150

200

250

0

50

100

150

200

Number of Modules

N
um

be
r

of
 R

ou
nd

s GR

SN

SS

Number of Modules

N
um

be
r

of
 R

ou
nd

s GR

SN

SS

Number of Modules

N
um

be
r

of
 R

ou
nd

s

(a) (c)(b)

 GR

SN

SS

Figure 8. Rounds used for wedge (a), lengthening rectangle (b), and diamond shaped (c) con�gurations.

0 5 010 10 1020 15 2030 20 3040 25 4050 30 5060 35 40
0

200

400

600

800

1000

0

500

1000

1500

2000

2500

0

200

400

600

800

1000

1200

1400

1600

SN
SS

 GR

SN
SS

 GR

SN
SS

 GR

(a)

N
u

m
b

er
 o

f
M

o
ve

s

Number of Modules

N
u

m
b

er
 o

f
M

o
ve

s

Number of Modules Number of Modules
N

u
m

b
er

 o
f

M
o

ve
s

(b) (c)

Figure 9. Moves used for wedge (a), lengthening rectangle (b), and diamond shaped (c) con�gurations.

8. CONCLUSIONS AND FUTURE WORK

The algorithm presented in this paper relies on total knowledge of the goal con�guration. Each module precomputes

all aspects of its movement once it has suÆcient information to reconstruct the entire initial con�guration. Since

we restrict the initial con�guration to a straight chain, it is rather simple for the modules to reconstruct the entire

initial con�guration. We believe that a more
exible approach will be helpful in designing recon�guration algorithms

for more irregular con�gurations, more asynchronous systems, and those with unknown obstacles. Part of such a

exible approach will include the ability for modules to detect and resolve collisions and deadlock situations when

they occur, rather than precomputing trajectories that avoid them. We have some initial ideas for ways to deal with

module collision and deadlock on the
y, which we are currently testing and re�ning.

We are experimenting with di�erent heuristics to improve the time used for recon�guration. For example, if

the substrate path is a straight chain to the SE or NE, it can be �lled using a pattern in which modules alternate

direction, as was done in our straight chain to straight chain algorithms.11 Such a heuristic improvement makes the

initial determination of �nal goal position slightly more complex, however, since modules do not always arrive on

the substrate path in the order of their initial positions in I . Another heuristic improvement is to choose a substrate

path for which all modules on the north or south of the path meet the path at an obtuse angle, since then the

inter-module spacing can be reduced to one space.

ACKNOWLEDGMENTS

We thank Debra Elkins for her assistance with the graphs in Sect. 7. Walter is supported by GE Faculty of the

Future and Department of Education GAANN fellowships. Welch is supported in part by NSF Grant CCR-9972235.

Amato is supported in part by NSF CAREER Award CCR-9624315, NSF Grants IIS-9619850, EIA-9805823, and

EIA-9810937, DOE ASCI ASAP (Level 2 Program) grant B347886, and by the Texas Higher Education Coordinating

Board under grant ARP-036327-017.

REFERENCES

1. A. Casal and M. Yim. Self-recon�guration planning for a class of modular robots. In Proc. of SPIE Symposium

on Intelligent Systems and Advanced Manufacturing, vol. 3839, pages 246{256, 1999.

2. G. Chirikjian. Kinematics of a metamorphic robotic system. In Proc. of IEEE Intl. Conf. on Robotics and

Automation, pages 449{455, 1994.

3. G. Chirikjian and A. Pamecha. Bounds for self-recon�guration of metamorphic robots. In Proc. of IEEE Intl.

Conf. on Robotics and Automation, pages 1452{1457, 1996.

4. K. Kotay and D. Rus. Motion synthesis for the self-recon�guring molecule. In IEEE Intl. Conf. on Robotics

and Automation, pages 843{851, 1998.

5. K. Kotay, D. Rus, M. Vona, and C. McGray. The self-recon�guring robotic molecule: design and control

algorithms. In Workshop on Algorithmic Foundations of Robotics, pages 376{386, 1998.

6. S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling machine. In Proc. of IEEE Intl. Conf. on Robotics and

Automation, pages 441{448, 1994.

7. S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji. A 3-D self-recon�gurable structure. In Proc.

of IEEE Intl. Conf. on Robotics and Automation, pages 432{439, 1998.

8. A. Nguyen, L. J. Guibas, and M. Yim. Controlled module density helps recon�guration planning. To appear in

Proc. of 4th International Workshop on Algorithmic Foundations of Robotics, 2000.

9. A. Pamecha, I. Ebert-Upho�, and G. Chirikjian. Useful metrics for modular robot motion planning. IEEE

Transactions on Robotics and Automation, 13(4):531{545, 1997.

10. D. Rus and M. Vona. Self-recon�guration planning with compressible unit modules. In Proc. of IEEE Intl.

Conf. on Robotics and Automation, pages 2513{2520, 1999.

11. J. Walter, J. Welch, and N. Amato. Distributed recon�guration of metamorphic robot chains. In Proc. of ACM

Symp. on Principles of Distributed Computing, pages 171{180, 2000.

12. M. Yim. A recon�gurable modular robot with many modes of locomotion. In Proc. of Intl. Conf. on Advanced

Mechatronics, pages 283{288, 1993.

13. M. Yim, J. Lamping, E. Mao, and J. G. Chase. Rhombic dodecahedron shape for self-assembling robots. SPL

TechReport P9710777, Xerox PARC, 1997.

14. Y. Zhang, M. Yim, J. Lamping, and E. Mao. Distributed control for 3D shape metamorphosis. To appear in

Autonomous Robots Journal, special issue on self-recon�gurable robots, 2000.

