
Crash Resilient Communication in Dynamic

Networks�

Shlomi Dolevy Jennifer L. Welchz

July 2, 1996

Abstract

An end-to-end data delivery protocol for dynamic communication networks is

presented. The protocol uses bounded sequence numbers and can tolerate both

link failures and (intermediate) processor crashes. Previous bounded end-to-end

protocols could not tolerate crashes.

We present a self-stabilizing version of the algorithm that can recover from

crashes of the sender and the receiver as well as of intermediate processors. Start-

ing with the network in an arbitrary state, the self-stabilizing version guarantees

proper transmission of messages following a �nite convergence period.
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1 Introduction

A basic communication task in any network is end-to-end communication, that is, de-

livery in �nite time of data items generated at a designated sender processor, to a

designated receiver processor, without duplication, omission or reordering of data items.

End-to-end communication is easy to achieve in a reliable network, where links never fail

and processors do not crash. However, in existing communication networks both link

failures and processor crashes are possible. A network that is subject to such failures is

called a dynamic network.

One approach to constructing end-to-end protocols for dynamic networks is to use

unbounded sequence numbers to uniquely identify the data items sent by the sender.
Such an approach is used in the protocol of [4]. The use of unbounded sequence numbers
implies that both message size and the amount of memory needed will grow with the
number of data items transmitted. Therefore, much e�ort has been spent in designing
end-to-end protocols that use bounded sequence numbers.

An important aspect of an end-to-end communication protocol is the type of faults
that it can tolerate. Clearly the end-to-end task is unsolvable when there is a permanent
sender-receiver link cut of the network such that all of its links are down forever. Thus,
some assumption on the behavior of faulty links is necessary. Three common assumptions
in the literature are:

� in�nitely frequent stability: In�nitely often the network topology stabilizes for a
period of time and there is no sender-receiver link cut in this stabilized topology
(e.g., [2, 11]).

� in�nitely frequent path stability: In�nitely often there is a period of time during
which links forming at least one path between the sender and the receiver are
operating (e.g., [7, 17]).

� eventual connectivity: The only assumption is that there is no permanent sender-

receiver link cut | or equivalently, there exists at least one \viable" path between
the sender and the receiver, a path that contains no permanently faulty link (e.g.,

[5, 9, 6, 8]).

Almost all existing end-to-end protocols depend on having physical links that are, or

can be made to be, \well-behaved" in that the sequence of messages delivered is always a

pre�x of the sequence sent, i.e., no messages are lost in the middle. If processors do not
crash, then this behavior can be ensured by running the alternating bit protocol [12].

But if processors can crash, then this good behavior cannot be achieved without keeping

1



information, including the message currently being transmitted, in stable storage.1. A

message that is transferred in the network can be instantly lost if the processor that

receives it crashes (after acknowledging the sending neighbor of the message arrival).

In addition to the the major problem of losing messages because of crashes, the data

link protocol that forwards the message from one processor to the next cannot function

correctly in the presence of crashes. Even if only a weaker behavior of the data link

protocol is required, namely that once there are no more crashes of the end points, the

sequence delivered is a pre�x of the sequence sent, either stable storage is required as

proved in the impossibility results of [16] or a bound on the capacity of the link must

be known, in a similar fashion to the data link protocol presented in [3]. Unfortunately,

in existing dynamic networks processors may repeatedly crash and recover losing the

contents of their memory, including messages received and the state of the data link
protocol. This violation of the assumption made by the end-to-end protocols of [5, 9, 6, 8]
may result in a violation of the requirements, e.g., the loss of data items.

We would like to have a protocol that is resilient to crashes of the intermediate
processors, i.e., those processors in the network other than the designated sender and
receiver, and does not rely on stable storage. For the �rst version of our protocol, we

exclude the possibility of the sender and receiver failing, since if they do, stable storage
would be required by the same argument alluded to above for a physical link. The
second version of our protocol, which is self-stabilizing, can recover following crashes of
the sender or the receiver, if the capacity (i.e., number of messages in transit) of the
communication links is bounded and known.

In the presence of processor crashes the previous de�nition of eventual connectivity is
not su�cient for the existence of a protocol, since a permanent cut of any combination of
crashed processors and crashed links could eliminate the connection between the sender
and the receiver. Thus, we make the weakest assumption possible, namely that there
exists at least one \viable" path between the sender and the receiver, a path that contains
no permanently faulty link and no processor that is permanently crashed (for this path),

i.e., at least one path along which communication is possible. Thus, our protocol works

under more severe conditions than the protocols that assume eventual connectivity. We
call this new setting eventual connectivity in the presence of processor crashes.

A elegant approach to designing a communication protocol is to view the network on

which it will run as a black box that provides a message transfer service in which messages

can be lost, reordered and duplicated, but not corrupted.2 However this approach has

1The only known end-to-end protocol that can withstand processor crashes (without stable storage)
is the randomized protocol presented in [17]. However, this protocol has a bounded probability of failure
and uses headers that are not strictly bounded

2In practice, there is a non-zero probability of a message being corrupted, however due to error
detection schemes it is assumed that those messages are identi�ed and discarded.
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limitations: [18] show that no bounded sequence number protocol can tolerate reordering

and duplication, while [1] show that although there is a bounded sequence number

protocol that can tolerate reordering and loss, any such protocol must have the property

that the number of messages needed to transmit a data item increases without bound.

These impossibility results hinge on the assumption that the black box network can

reorder messages arbitrarily. This assumption models the situation when the user of

the network does not know how the network layer protocols (which implement the black

box) route messages or even what the network topology is. An alternative approach,

which avoids arbitrary reordering, is to use knowledge of the network topology and

explicitly control the retransmissions on the routes. A packet can indeed be lost while

it is traveling over a (physical) link. However, duplications are caused by protocols

that retransmit packets under certain circumstances; if no packet is retransmitted by

a protocol, then no duplication exists. Reordering is also a protocol property. If the
protocol uses only a single path from the sender to the receiver and a single path from
the receiver to the sender, the FIFO property in each direction is preserved by the
network. Thus our protocol is designed to work on top of the \bare" network, consisting
of nodes connected by FIFO non-duplicating links that can lose messages. Although

our protocol does retransmit and uses multiple paths, and thus messages are duplicated,
reordered, and lost, these activities are carefully coordinated.

Contribution of this paper: In this paper we de�ne the eventual connectivity in
the presence of processor crashes paradigm. We present two end-to-end protocols for
dynamic networks that can tolerate crashes of nodes and failures of the links in the com-
munication network and use only bounded sequence numbers. The protocols presented
do not require any stable storage. Our �rst protocol does not assume knowledge of the

link capacities (assuming that the sender and the receiver do not crash). Our second
protocol is self-stabilizing; This protocol does assume knowledge of the link capacities in
order to tolerate crashes of processors including crashes of the sender and the receiver.

The existence of the above protocols proves (somewhat, surprisingly) that end-to-end
communication is such sever environment is possible.

The protocols use source routing (i.e., each message sent has its entire path speci�ed

by the sender) instead of 
ooding, which is used in most other end-to-end protocols (e.g.,

[5, 7]). The space complexity of the protocol, i.e., the maximumamount of space used by
any processor's program, is O(P2 logP), where P is the number of simple paths in the
network. The message size is O(P logP) bits. The time complexity is O(L), where L is
the length of a viable path, and the message complexity is O(nP(1 + L=T )), where n is

the number of processors in the system, and T is the retransmission parameter. Roughly

speaking the time and message complexity are measured only for runs in which the time
for a message to travel over a viable link is 1; this is comparable to the complexity

measures in [8] (which assumes a reliable data link layer). A comparison with previous
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Reference Communication Complexity Space Complexity Assumptions

[AE86] 1 1 eventual stability

[AG88] O(exp(n)) O(log n�) eventual connectivity

[AMS89] O(n9) O(n5�) eventual connectivity

[AGR92] O(n2jEj) O(n�) eventual connectivity

eventual connectivity

Present work O(nP2 logP(1 + L=T )) O(P2logP) in the presence of crashes

Figure 1: Comparison of Routing Schemes

protocols appears in Figure 1. In Figure 1 n, jEj and � respectively denotes, the
number of processors, the number of communication links and the maximal number of
links connected to a single node.

The number of possible paths P between two processors in the system is theoretically

exponential in jEj, the number of links in the system. This could be a drawback of
our protocol. However, most practical communication schemes are based on sending
messages along a single route from source to destination (see [17] for a nice discussion
of practical protocols). Thus our protocol is not only of theoretical interest but could
be used to improve existing protocols by using a constant number of paths from the

source to the destination; as long as at least one of them is viable then the data items
will be delivered. Moreover, the delivery time during each time interval will be due to
the fastest and most reliable path during that period.

Another application of our protocol is to the case of parallel physical links between
two processors. Such application would provide an implementation of a very reliable

(non-parallel) link. In this situation, the number of paths would obviously be extremely

small.

The remainder of the paper is organized as follows. In the next two sections we for-

malize the network and requirements, respectively. The protocol is presented in Section
4. Section 5 contains the self-stabilizing version of the protocol. Concluding remarks

are in Section 6.

2 The Bare Network

We model a communication network as a graph G(V;E), jV j = n, jEj = m, where the

nodes are processors and the edges are undirected communication links. Each undi-

rected link consists of two directed links, delivering messages in opposite directions.
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Each communication link connects two processors. Two processors that are connected

by a link are called neighbors. The communication over the links obeys the FIFO dis-

cipline, and no bound on the transmission delay is known. Every processor knows the

full network topology | the topology that includes all the processors and links. How-

ever, the processor does not know the status of the processors (crashed/active) or links

(faulty/operational).

Each processor in the system is viewed as a state machine executing a program. An

execution of a program consists of a sequence of steps. Each step consists of (1) one

receive operation, during which zero or one message is received, (2) internal computa-

tions, and (3) zero or more send operations. The only exception is the �rst step in the

execution, which does not include a receive operation. The internal computation of the
sender can include the input of data items, while the internal computation of the receiver
can include the output of data items.

We assume that the sender and receiver are not subject to crashes. Any other

processor is called an intermediate processor. Intermediate processors are subject to
crashes. Following a crash, a processor reenters its initial state and it may continue
executing. The crash of an intermediate processor could occur in the middle of a step,
modeled as a partial step, in which only a subset of the messages that should have been
sent are actually sent.

We model the link between processors P and Q as two FIFO queues, one holding
the messages in transit from P to Q and the other holding the messages in transit from
Q to P . Links are subject to failures; a link failure causes one or more messages to be
eliminated from the component queues.

A con�guration of the system is the set of states of the processors and the contents
of the messages in the links. A run is a sequence of con�gurations c0; c1; c2; : : : such that
c0 is an initial con�guration (each processor is in its initial state and all the links are
empty), and for each i, in going from ci to ci+1, one of the following holds.

� Some processor P takes the next step (possibly a partial step) according to its

program: the message received, if any, is at the head of the relevant queue in
ci and is dequeued in ci+1, P changes state accordingly (enters its initial state if

this is a partial step), and the messages sent are enqueued in ci+1. Nothing else
changes.

� A link fails: the only change is that one or more of the messages that are in the

queues of a particular link in ci are no longer there in ci+1.

We are only going to be concerned with runs that satisfy certain basic conditions, as

given now. A run is admissible if
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� the sender takes an in�nite number of steps,

� the receiver takes an in�nite number of steps,

� there exists at least one viable path between the sender and the receiver.

It remains to de�ne a viable path. Assume an in�nite run satisfying the �rst two

admissibility conditions. An intermediate processor P is viable provided whenever P

receives a message m in�nitely often, it succeeds in sending m in�nitely often3. A link

is viable provided whenever an in�nite number of messages is sent on that link, then an

in�nite number of messages is received by the receiving processor. We assume this is

true in both directions of the link. (Note that our de�nition of a viable link implies that

the receiving processor must take an in�nite number of steps or partial steps.) A path is
viable if every intermediate processor and every link on the path is viable. Our de�nition
of viability is weaker than that in [8] since the latter does not consider processor crashes.
If there is no viable path in the network between the sender and receiver, then every
path between them either has a nonviable processor or a nonviable link, and thus there

is a sender-receiver cut.

Note that there are no restrictions concerning relative ordering of processor steps or
the number of steps between the sending of a message and its receipt. Thus we have an
asynchronous system.

We assume that whatever entity supplies the data items to the sender provides one
when and only when the sender requests one.

3 Problem Statement

An algorithm solves the end-to-end communication problem if in every admissible run
the following properties are satis�ed:

Safety: In any pre�x of the run, the sequence of data items output by the receiver is a

pre�x of the sequence of data items input by the sender.

Liveness: The receiver does an in�nite number of outputs.

3This de�nition restricts the behavior of the intermediate processor in ways that are not compatible
with some systems, such as those that are supposed to strip o� part of the header or send m on more
than one link. A more general de�nition of a viable processor would be: upon receiving a message m
in�nitely often P executes in�nitely often a (complete) step that starts with receiving m. However, for
our protocol the weaker condition of in�nite execution of a partial step that succeeds in forwarding m
is su�cient.
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The time and message complexity are only discussed for ideal runs, which we now

de�ne. An admissible run is ideal if

1. Whenever a processor has taken k steps, at least T real time has elapsed.

2. If processor P receives message m at time t which is addressed to travel through a

viable path Path through P 's neighbor Q, then Q receives m at time t0, t < t0 �

t+ 1.

We now elaborate on the above de�nition of an ideal run. Processors send messages

either in response to receiving messages or based on some timeout parameter (in order

to guard against message loss). We say that a message is retransmitted if it is sent

based on a timeout expiring; otherwise it is new. The time between retransmissions
is a function of the speed of the processor. Naturally, the frequency of retransmission
in
uences the total time and number of messages needed to deliver a data item. At each
processor there is a procedure responsible for sending messages. The Send procedure
keeps track of the number of steps, k, that the processor has taken in order to estimate

when T real time has elapsed, where T is some system-dependent value (that depends
on, say, the probability of loss and the distribution of message delays on links). We want
this estimate based on k to be a good one; this is the rationale for condition 1 of the
de�nition of ideal. The goal of retransmitting every T units of time is to ensure that a
message will be delivered within one time unit, assuming the link is viable. This is the
rationale for condition 2 of the de�nition of ideal.

We are interested in these complexity measures:

� space: the maximum amount of space required by any node's program,

� message size: the maximum number of bits in any message.

� message number: the maximum number of messages sent to transfer a data item,

in any ideal run, between two successive inputs.

� time: the maximum length of time between two successive inputs, in any ideal run.

4 The Protocol

The main problem that our protocol has to cope with is keeping track of the set of

sequence numbers that label messages in transit in the network. The key observation

is that the FIFO property of the links can be used to ensure FIFO delivery in every
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path from the sender to the receiver (and vice versa). If each message is sent with the

description of the path it should take, then messages that are sent through the same

path obey the FIFO order. Note that two di�erent paths might have some shared links.

Thus, the set of messages in transit in some link could be related to more than one path.

The order of two messages within one link does not necessarily imply anything about

the relative order of their sending or receipt, unless the two messages have the same

path.

The sender and receiver use a set of 2P+1 sequence numbers (shortly it is explained

why this number is su�cient). Both the sender and receiver remember the sequence num-

ber of the most recent message sent and received on each path. The sender uses the arrays

SentSR and RecvRS, with an entry for each possible path. We use the following con-
vention: the index SR of, say, SentSR denotes that the array SentSR stores information

concerning the messages sent from S to R. Whenever the sender sends a message with
sequence number SeqNum on path Path, the sender assigns SentSR[Path]:=SeqNum.
Similarly, whenever the sender receives a message with sequence number SeqNum the
sender assigns RecvRS[Path]:=SeqNum. The receiver uses the arrays SentRS and RecvSR
for its bookkeeping.

The sender uses only clean paths to send a new data item with a new sequence
number. A path, Path, from the sender to the receiver is considered clean when

SentSR[Path]=RecvSR[Path]. That is to say, the sequence number that is currently
being repeatedly sent through that path has arrived at its destination. The use of clean
paths ensures that the set of sequence numbers on the messages in any particular sender-
receiver path, Path, is contained in (SentSR[Path] [ RecvSR[Path]). Moreover, in case
there are two sequence numbers in some path, Path, then the messages are ordered in

that path such that the ones with sequence SentSR[Path] are closer to the sender than
any message with sequence number RecvSR[Path].

Unfortunately, the array RecvSR is updated by the receiver and thus the value of

RecvSR[Path] is not known to the sender. Since the sender does not know which of the
paths is clean and can be used for transmission it tries to receive information concerning
all the possible paths from the receiver. Consequently, the receiver sends the array

RecvSR to the sender. However, the sender has to be able to distinguish old values of

RecvSR from more current values. This is done by implementing independent alternating
bit protocols [12], one for each entire path from S to R (not for individual physical links).

The alternating bit protocol uses the sequence numbers 0 and 1 for delivering information
using a single FIFO link (or path). Whenever the sender receives an acknowledgment

with a sequence number that is identical to the sequence number that the sender is

currently sending, the sender inputs a new data item, alternates the sequence number
bit (from 0 to 1, or vice versa) and starts repeatedly sending the new data item with

the new sequence number. Whenever the receiver receives a sequence number that is

8



di�erent from the previous arriving sequence number, the receiver outputs the data

item and continues to acknowledge every message with an acknowledging message that

contains the sequence number of the arriving message.

Using the alternating bit protocol on a given path, the protocol keeps track of the

number of alternating bit tokens (i.e., the number of times the sender receives an ac-

knowledgment for the same bit it is currently trying to send) that have arrived at the

sender over that path since the sender input the last data item. The sender uses the

information concerning RecvSR that arrives through some path only if it comes after the

second token has arrived through the same path since the last data item was input. As

we show in the sequel in Lemma 4.1 and Figure 8, this rule ensures that the information

received re
ects the current state of the path. Whenever such information concerning
RecvSR arrives, the sender updates its view of RecvSR in an array called VRecvSR. The

pre�x V of VRecvSR stands for \virtual," signifying that the source is RecvSR. Note
that Recv and the SR subscript of RecvSR indicate that RecvSR is maintained by R

and thus VRecvSR is maintained by S. The sender uses the information in SentSR and
VRecvSR to determine whether a sender-receiver path is clean or not. Similarly, the
receiver uses SentRS and VRecvRS to determine whether a receiver-sender path is clean

or not.

We view a run of the protocol as a sequence of alternating stings. The intuition
behind our choice of the term sting is that the receiver may receive stream of messages
with many di�erent sequence number, but non of these messages will cause the receiver
to deliver a message to its host. Only a message with a particular sequence number
(called sting-tag) will cause the delivery of the data. Similarly, the sender may receive

stream of (non-up-to-date) acknowledgments. The sender will start dealing with the
next data item only after a particular sequence number (sting-tag) will arrive to it.

Clearly, the clean paths concept ensures that at most 2P di�erent sequence numbers
are in each direction (the sender-receiver direction, denoted SR, and receiver-sender
direction, denoted RS). Thus, an outside observer can easily choose a sequence number

for StingTagSR, out of the 2P + 1 possible sequence numbers, that does not exist in
transit. Assume for a moment that the sender can successfully choose such a sequence

number for StingTagRS . In such a case how does the receiver identify this sequence
number as a \new sequence number" (a sting) upon its arrival? Our approach is to let

the receiver choose a non-existing sequence number in the SR direction, and suggests
this number to the sender as a value for StingTagSR. To do so the receiver, upon arrival

of a sting, chooses a sequence number value that is not in RecvSR, nor in the last received

value of SentSR.

At the beginning the sender uses sequence number 1 to sting the receiver with the

�rst data item. The sender repeatedly sends a message with sequence number 1 through
all possible paths. Eventually such a message arrives at the receiver, which uses sequence
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number 1 to sting the Sender with an acknowledgment. At the same time the receiver

sends the next sequence number, called the sting-tag, that will be used by the sender

to sting the receiver with the second data item. The receiver chooses this sequence

number to be the minimal sequence number that does not appear either in RecvSR or

in VSentSR; thus a sequence number set of size 2P + 1 is big enough. In this case,

both RecvSR and VSentSR include only the sequence number 1, and thus the receiver

chooses 2 to be the next sequence number to be used by the sender to sting the receiver.

The sender eventually is stung with an acknowledgment from the receiver when the �rst

message with sequence number 1 arrives at the sender. Now the sender calculates the

next sting-tag that will be used to sting itself (with an acknowledgment) by similar

arguments as above; this sequence number will be 2. A detailed example is described in

Section 4.1.

When the sender is ready to send the i'th data item (after getting the acknowledg-
ment for the i� 1'st data item), the sequence numbers in the entries of SentSR could all
be distinct. Roughly speaking, each entry contains the last sequence number that was
sent and has not yet cleaned its path (i.e., arrived at the other side). However, since
there is at least one viable path Path, this path is eventually cleaned (by the sequence

number SentSR[Path]). The sender eventually gets two tokens through this path and
updates its VRecvSR so that VRecvSR[Path]=SentSR[Path]. Then the sender uses Path
for sending the i'th data item. The i'th data item is sent with SeqNumSR that was
chosen by the receiver during the i� 1'st acknowledgment.

Until the i'th acknowledgment arrives, the sender continues to update the clean/dirty

status of the sender-receiver paths by the use of the information concerning RecvSR that
arrives with the messages from the receiver. When a sender-receiver path changes status
to clean before the i'th acknowledgment arrives, the sender uses this path also to send
the i'th data item with SeqNumSR. The receiver uses a similar scheme to deliver the
i'th acknowledgment.

The formal description of the protocol appears in Figures 3 through 5. The variables

used by the sender and their initial values appear in Figure 2. The variables of the

receiver are similar except the order of the subscripts S and R is reversed. When no
confusion is possible we use the name of an array, e.g., SentSR, to represent the set of

sequence numbers yielded from its entries. An intermediate processor has a data struc-
ture Pending which is an array of messages, with one entry for each directed path from

S to R and from R to S; initially each entry is nil.

Description of the code of the sender (S), refer to Figure 3:

Line 02 | S inputs a data item from its host.
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Line 03 | S computes the set of clean paths from S to R. Every path for which there

is an evidence in VRecvSR that the sequence number currently sent by S arrives

to R is included in the set of the clean paths.

Line 04 | The StingTagRS that will be sent to R (in order to sting S) is the minimal

sequence number not in transit from R to S.

Lines 05 to 21 | This operation in this loop repeats until the StingTagRS (computed

in line 04) arrives in a message from R.

Lines 06 to 10 | S checks every path Path. If Path is a clean path then S starts sending

a message with the current sequence number SeqNumSR through it. Once S sends

such a message the path is not clean anymore, yet S has to resend the message
with SeqNumSR through it. Therefore, a message with SeqNumSR is sent through
every clean path or a path through which the last message sent used SeqNumSR.
Otherwise, S executes line 10 in which the last sequence number sent on Path

is re-sent in order to clean the Path. Note that the sequence number stored in
SentSR[Path] does not sting the receiver.

Line 11 | S examines its incoming bu�ers for arriving messages. The result of such

an examination is either, nil, if no message arrived, or a message Msg 6= nil if a
message is present in the incoming messages bu�ers.

Lines 12 to 20 | If a message did arrive then store its SeqNum in RecvRS[Msg.Path].
Then decide on the bit of the alternating bit protocol to be used (lines 14,15) and
count the number of tokens that arrived on this path (line 16) since, t0, the time
of the last sting arrival. If the number of arriving tokens, since the last arrival of a
sting, is 2 then Msg.RecvSR is a value re
ecting a value of RecvSR following t0. In
such a case, S updates VRecvSR[Path] of every Path, if there is an indication that

Path is a clean path (lines 18,19). In line 20 the set of clean paths is recomputed

according to the new update.

Line 22 to 23 | Some initialization following the arrival of a sting including the use of
Msg.SentRS for VSentRS, assigning the recommendation of R to a new SeqNumSR

(line 23) and initializing the array TknsRS to 0.

Note that every time the sender executes line 11 of its code, the sender starts a new
step.

Description of the code of intermediate processor, refer to Figure 4:
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Variable Name Type Initial Value

|||||||||||||||||||||||||||||||||||||{

CleanPathsSR : set of paths ; empty

SentSR : array[1..P] of integer 1..2P + 1 ; all entries nil

VRecvSR : array[1..P] of integer 1..2P + 1 ; all entries nil

VSentRS : array[1..P] of integer 1..2P + 1 ; all entries nil

RecvRS : array[1..P] of integer 1..2P + 1 ; all entries nil

BitSR : array[1..P] of integer 0..1 ; all entries 0

TknsRS : array[1..P] of integer 0..2 ; all entries 0

SeqNumSR : integer 1..2P + 1 ; 1

StingTagRS : integer 1..2P + 1 ; arbitrary

Figure 2: The Variables of the Sender

Lines 02 to 04 | Examining the incoming messages bu�ers for a message. If such a
message exists (Msg 6= nil) then the intermediate processor determines the di-
rection of the message from the path of the message and the incoming bu�er it

arrived to. If the direction is from S to R then the message is assigned to Pend-
ing[Msg.Path(SR)], otherwise it is assigned to Pending[Msg.Path(RS)]. Note that
the value of X (and Y ) in line 04 of Figure 4 is S or R where X 6= Y .

Lines 05 to 06 | the intermediate processor forwards the messages stored in the Pend-
ing array to the appropriate neighbors.

Note that every time an intermediate processor executes line 02 of its code, the inter-
mediate processor starts a new step.

The description of the code of the receiver is similar to the one of the sender.

4.1 Execution Sample

In this section we will demonstrate the operation of the protocol on a network of six

processors. The sender S the receiver R and four intermediate processors P1 to P4. The
topology of the network is described in the left portion of Figure 6. Our protocol sends

every message with the description of the path it should take. Thus, we can view the

network as the right portion of Figure 6. There are three possible undirected paths:
Path1 is (S; P1; P2; R), Path2 is (S; P1; P3; R) and Path3 is (S; P4; R).
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01 do forever

02 Input(DataItem)

03 CleanPathsSR := f Path j SentSR[Path] = VRecvSR[Path]g

04 StingTagRS := min(fNum j Num 62 (VSentRS [ RecvRS)g)

05 repeat
06 8 Path
07 if Path 2 CleanPathsSR or SentSR[Path] = SeqNumSR then
08 SentSR[Path] := SeqNumSR

09 Send(Path,DataItem,SeqNumSR,BitSR[Path], StingTagRS ,SentSR,RecvRS)
10 else Send(Path,nil,SentSR[Path],BitSR[Path],nil, SentSR,RecvRS)
11 Recv(Msg)
12 if Msg 6= nil then
13 RecvRS[Msg.Path] := Msg.SeqNum

14 if BitSR[Msg.Path] = Msg.Bit then
15 BitSR[Msg.Path] := not(Msg.Bit)
16 if TknsRS [Msg.Path] < 2 then TknsRS [Msg.Path] := TknsRS[Msg.Path] + 1
17 if TknsRS[Msg.Path] = 2 or Msg.SeqNum = StingTagRS then
18 8 Path s.t. SentSR[Path] = Msg.RecvSR[Path]

19 VRecvSR[Path] := Msg.RecvSR[Path]
20 CleanPathsSR := f Path j SentSR[Path] = VRecvSR[Path]g
21 until Msg.SeqNum = StingTagRS
22 VSentRS := Msg.SentRS
23 SeqNumSR := Msg.StingTag

24 8 Path TknsRS[Path] := 0

25 od

Figure 3: The Program of the Sender
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01 do forever

02 Recv(Msg)

03 if Msg 6= nil then

04 Pending[Msg.Path(XY)]:=Msg

05 8 Neighbor

06 Send to Neighbor all the messages in Pending s.t. Neighbor is their next hop

07 od

Figure 4: The Program of an Intermediate Processor

While describing the execution we choose a particular scenario, one of many possible

scenarios.

We now follow Figure 7 to describe an execution sample. The description of the exe-
cution starts in the upper left corner portion, marked by (a), and follows the alphabetic
order up to the portion denoted by (d).

We start in the system con�guration (a) in which R is stung by a message,
Msg, with SeqNum=5, arriving through Path1. In this con�guration S main-

tains the following values: SentSR[Path1]=5, SentSR[Path2]=1, SentSR[Path3]=7,
RecvRS[Path1]=4, RecvRS[Path2]=3 and RecvRS[Path3]=5. The values R has in con�gu-
ration (a) are: SentRS[Path1]=2, SentRS[Path2]=3, SentRS[Path3]=6, RecvSR[Path1]=5,
RecvSR[Path2]=6, and RecvSR[Path3]=2.

Upon the arrival of Msg to R (in the execution of line 13 of Figure 5) R updated

RecvSR[Path1]=5. R outputs Msg.DataItem (line 24 of its code) and assigns VSentSR by
SentSR i.e. (5,1,7) (line 25 of its code). Then R uses Msg.StingTag as its next sequence
number (used to sting the sender). A possible value (chosen by S) for Msg.StingTag is

a value that is not in transit from R to S, say 1 (see the right side of con�guration (a)).
The set of CleanPathRS computed in line 05 (of Figure 5) is a function of the value of

VRecvRS. We choose to start with VRecvRS=RecvRS=(4,3,5). Thus, CleanPathRS in-
cludes only Path2, for which SentRS[Path2]= VRecvRS=3. Then (in line 06) R computes

StingTagSR to be 3 (VSentSR is equal to SentSR at this stage).

Now R repeatedly sends a message with sequence number SeqNumRS = 1 over Path2.
If this path stops operating R will not be able to sting S through Path2. If Path3 is

operating then it will be cleaned, i.e. all messages in transit from R to S will carry

sequence number SeqNumRS=6. This is a consequence of the repeated transmission of
messages with SeqNumRS=6 on Path3 (in line 12 of Figure 5). This stage is depicted

by con�guration (b).

14



01 Wait until Recv(Msg 6= nil)

02 Output(Msg.DataItem)

03 RecvSR[Msg.Path] := Msg.SeqNum

04 do forever

05 CleanPathsRS := f Path j SentRS[Path] = VRecvRS[Path]g

06 StingTagSR := min(fNum j Num 62 (VSentSR [ RecvSR)g)

07 repeat
08 8 Path
09 if Path 2 CleanPathsRS or SentRS[Path] = SeqNumRS then

10 SentRS[Path] := SeqNumRS

11 Send(Path,Ack,SeqNumRS,BitRS[Path],StingTagSR,SentRS,RecvSR)
12 else Send(Path,nil,SentRS[Path],BitRS[Path],nil, SentRS,RecvSR)
13 Recv(Msg)
14 if Msg 6= nil then
15 RecvSR[Msg.Path] := Msg.SeqNum

16 if BitRS[Msg.Path] 6= Msg.Bit then
17 BitRS[Msg.Path] := Msg.Bit
18 if TknsSR[Msg.Path] < 2 then TknsSR[Msg.Path] := TknsSR[Msg.Path] + 1
19 if TknsSR[Msg.Path] = 2 or Msg.SeqNum = StingTagSR then
20 8 Path s.t. SentRS[Path] = Msg.RecvRS[Path]

21 VRecvRS[Path] := Msg.RecvRS[Path]
22 CleanPathsRS := f Path j SentRS[Path] = VRecvRS[Path]g
23 until Msg.SeqNum = StingTagSR
24 Output(Msg.DataItem)

25 VSentSR := Msg.SentSR
26 SeqNumRS := Msg.StingTag
27 8 Path TknsSR[Path] := 0

28 od

Figure 5: The Program of the Receiver
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Figure 6: Equivalent network

R will discover that Path3 is cleaned in the direction from R to S by receiving an
updated RecvRS: in line 19 of Figure 5 it is checked that Msg.RecvRS re
ects the contents
of RecvRS following the con�guration (a) (See Lemma 4.1). Thus, when R receives

the second (or later) token, say on Path1, in the form of Msg, R uses Msg.RecvRS to
update VRecvRS[Path3] by the sequence number 6 (line 21 of Figure 5). R includes
Path3 in CleanPathRS (line 22 of Figure 5) and starts repeatedly sending the message
with sequence number SeqNumRS = 1 through Path3 as well (line 11)

4. The message
eventually reaches S and S is stung.

Con�guration (c) immediately follows the arrival of the sting to S (line 11 of Figure

3). Note that during the execution that started in con�guration (a), Path3 has been
cleaned in the direction from S to R as well, was identi�ed as a clean path and messages
with sequence number 5 were repeatedly sent through it. In lines 17 to 19 of Figure
3 VRecvRS is updated to (5,6,5). In line 22, VSentRS is assigned by (1,1,1) (assuming
that Path1 has been identi�ed as a clean path by R in addition to the identi�cation

of Path3). The sequence number used by S to sting R is Msg.StingTag=3 (line 23).
S receives a new data item (line 02), compute CleanPathsSR to be Path1 and Path3.
S Chooses StingTagRS to be 4 (i.e, the minimal number not in (1,1,1) (2,3,1)). Then

S starts sending messages with sequence number 3 on Path1 and Path3 as depicted in
con�guration (d).

4.2 Correctness Proof

Throughout this section we assume an admissible run R = c0; c1; c2; : : :. Step i is the
step that causes the transition from ci�1 to ci in R. Recall that each step consists of

(1) one receive operation, during which zero or one message is received, (2) internal

4Note that although Path3 is not clean after the �rst such transmission, the condition in line 09
continues to hold since SentRS [Path3]=SeqNumRS.
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computations, and (3) zero or more send operations. The internal computation of the

sender can include the input of data items, while the internal computation of the receiver

can include the output of data items.

We denote by Var(i) the value of variable Var in con�guration ci.

The correctness proof is by induction on the number of stings in R. The sender is

stung whenever the sender executes a step during which it executes line 02 in Figure 3.

The receiver is stung whenever the sender executes a step during which it executes line

02 or line 24 in Figure 5.

Each copy of the alternating bit protocol is implemented for a distinct undirected

path. Consider a single such copy of the alternating bit protocol for undirected path
Path. The token of the alternating bit protocol arrives at the sender when the sender
receives a message with the same bit as the sender is currently sending. The token arrives

at the receiver when the receiver receives a message with the opposite bit to the last
bit the receiver sent. Given a con�guration we denote for a path Path the sequence of
messages from the sender to the receiver (i � 0 messages) and the sequence of messages
from the receiver to the sender (j � 0 messages) together with the current values of
BitSR[Path] and BitRS[Path] in the following form :
BitSeq � (BitSR[Path], msg1SR, msg2SR, : : :, msgiSR, BitRS[Path], msg1RS, msg2RS, : : :,

msgjRS)

It is well known (e.g., [12]) that if messages are only lost or duplicated then in
any con�guration of the alternating bit protocol if BitSeq contains more than a single
value (either 0 or 1) then there exists a single border in BitSeq between those values.
Furthermore, if there is no such border then the sender eventually changes the value of

BitSR so that a border is produced. If there is a border and we look at the sequence
BitSeq in successive con�gurations of the run, then this border \travels" towards the
end of BitSeq.

The important property of the alternating bit, used by the protocol, is that between

any two successive token arrivals at the sender there is one token arrival at the receiver.

Figure 8 demonstrates the behavior of the alternating bit protocol and the importance

of the second token arrival. The �gure consists of the sender (marked S) and the receiver

(marked R). The two directed lines represent an undirected Path. The circles represents
messages where white (black) circles represent messages with value 0 (1, respectively)

in the Bit �eld. Similarly, the circles inside S and R represent the values of BitSR
(maintained by S) and BitRS (maintained by R). The �gure contains a description for

seven con�gurations (a) to (g). It starts at time t0, immediately after S was stung and
assigned 0 to TknsRS. An important property of the protocol is that S updates VRecvSR
only due to a value of Msg.RecvSR that follows t0. In the con�guration marked (a),

BitSR = 0 and hence S is waiting for a message with Bit=0 to arrive before changing the
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value of BitSR. The messages in transit from S to R are all with Bit=0 while two messages

(that will arrive �rst to S) are with Bit=1. Con�guration (b) follows the acceptance of a

message with Bit=1, by S. Con�guration (c) is derived from (b) by performing message

send operation by S, message send and receive by R, and two message receives by S. The

last message receive of S contains Bit=0 and hence is a token arrival | i.e. a message

that causes a change in BitSR (or BitRS). Note that this token passed R before t0 and

thus the Msg.RecvSR of the message might not be up to date. Con�gurations (d) to

(g) demonstrate how the token (pointed by an arrow) travels through R (collecting an

updated RecvSR and arriving at S).

We conclude the following lemma.

Lemma 4.1 Suppose i and j are such that a message Msg arrives at the sender over

path P in step j > i with the token for P , and this is not the �rst token for P that the

sender has received since step i. Then there exists k, i < k < j, such that Msg.SentRS =

SentRS (k) and Msg.RecvSR = RecvSR(k). The analogous property is true for the receiver
as well.

The next lemma states that between consecutive stings at the sender (resp., receiver),
the set of values in fSeqNumSRg[ SentSR (resp., fSeqNumRSg[ SentRS) either remains
the same or decreases. It can be seen to be true by inspecting the code, since the sender

only changes an entry in SentSR by sending a message with sequence number equal to
SeqNumSR.

Lemma 4.2 For any i such that step i is not a sting at the sender, fSeqNumSR(i)g [
SentSR(i) � fSeqNumSR(i+1)g [ SentSR(i+1). The analogous property is true for the

receiver as well.

Both the safety and liveness properties are proved by induction on the number of

stings in R.

Lemma 4.3 In any con�guration for every sender-receiver path P , the sequence of se-

quence numbers in the messages in transit along P , in order starting with those closest

to the sender, has the form xjyk for some j; k � 0, where x = SentSR[P] and y =

RecvSR[P].

Proof: The proof is by induction on the sting index i. We assume that the lemma
holds till the i'th sting and prove for the i'th +2.
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Basis: (i = 1). The sender is the �rst to be stung (executing line 02 of its code). At this

time the values of SentSR[P ] and RecvSR[P ] are nil and there is no message in transit.

Thus, the claim of the Lemma holds for i = 1.

Induction: Assume for all j � i and show for i + 2. We'll show it for i odd. Then

i+ 1 is even. Let ti be the index of the step when the i-th sting in S occurs.

Consider any step t of the sender after step ti. Assume the statement is true in all

preceding con�gurations. We'll show it's true in con�guration ct. Pick any path P . If the

message sent on P during step t has the same sequence number as in SentSR[P ](t� 1),

then clearly the induction assumption holds in ct.

Suppose the message sent on P has a sequence number that is di�erent from
SentSR[P ](t � 1). Then, during the step ti line 08 of the sender's code has been ex-
ecuted. This is only possible when P has been a member in the CleanPathsSR(t) set.

Moreover, once line 08 is executed it is not executed until the sender starts using a
new SeqNumSR i.e. the sender is stung. Note that S is not stung during ti and hence
SeqNumSR[P ](t�1)= SeqNumSR[P ](t), and both are not equal to SentSR[P ](t�1). Let
x be the value of SentSR[P ](t�1). Since P is in CleanPathsSR, SentSR[P ] = VRecvSR[P ].
Now look at the step between steps ti and t when VRecvSR[P ] was updated, causing P
to be put in CleanPathsSR. This was when for some path the second token was received

since ti. By Lemma 4.1, this information re
ects the value of RecvSR[P ] at the receiver
in some con�guration ct0 with t

0 > ti. Since t
0 < t, the inductive hypothesis holds and all

the messages in path P have the same sequence number, namely x. As long as that is
the only sequence number in P , RecvSR[P ] will continue to be x. Thus in con�guration
ct�1, SentSR[P ] = S = RecvSR[P ] and all messages on P have sequence number x. So

the induction hypothesis holds in con�guration ct.

Similarly, exchanging for and receiver-sender path and proving for the even number
stings.

Lemma 4.4 In any con�guration, for every receiver-sender path P , the sequence of

sequence numbers in the messages in transit along P , in order starting with those closest

to the receiver, has the form xjyk for some j; k � 0; where x = SentRS [P ] and y =

RecvRS[P ].

Now we prove the correctness of the protocol.

Theorem 4.5 The above protocol is a crash resilient end-to-end protocol.

20



Proof: Both the safety and liveness properties are proved by induction on the number

of stings in R. We will prove the following.

For all i � 1:

1. There are i stings.

2. If i is even then

a. The i-th sting occurs at the receiver and causes the i=2-th data item to be

output; the data of this output is equal to the data of the previous input.

b. In every con�guration between the (i�1)-st and i-th stings, if message Msg is
in transit from the sender to the receiver and Msg.SeqNum = StingSR, then
Msg.SentSR � SentSR.

3. Similarly, if i is odd then

a. The i-th sting occurs at the sender and causes the ((i�1)=2+1)-st data item
to be input.

b. If i > 1 then in every con�guration between the (i� 1)-st and i-th stings, if
message Msg is in transit from the receiver to the sender and Msg.SeqNum
= StingRS , then Msg.SentRS � SentRS.

We now prove this statement.

Basis: (i = 1). Obvious from the code or initialization, or else vacuously true.

Induction: Assume for all j � i and show for i+1. We'll show it for i odd (the case
for i even is similar and left to the reader). Then i + 1 is even. Let ti be the index of
the step when the i-th sting in R occurs.

To show 2a: We must show that the sender is never stung after step ti as long as
the receiver is not stung. I.e., we must show that every message received by the sender

after step ti has sequence number not equal to s = StingRS(ti). (Note that StingRS is

only changed when the sender is stung.) s is chosen to be not in VSentRS(ti) and not
in RecvRS(ti). Note that when the i-th sting arrives, the sender sets VSentRS according
to the information in the sting message M . By the inductive hypothesis (3b), since M

is in transit just before the sting, M .SentRS is a superset of SentRS(ti � 1), and thus

VSentRS(ti) is a superset of SentRS(ti � 1) = SentRS(ti). By Lemma 4.4 any message
in transit from R to S in con�guration cti�1 has a sequence number that is in either

SentRS(ti � 1) or RecvRS(ti � 1). Even though RecvRS is changed for M 's path during
the sting, any message on that path following M has a sequence number that is already
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included in SentRS(ti � 1) or has the same sequence number as M and thus is included

in RecvRS(ti). So no message that is in transit in con�guration cti will sting the sender.

Now we must show that no message that is sent by the receiver after step ti can sting

the sender. This follows from Lemma 4.2 and Lemma 4.4.

So the (i+1)-st sting, if it occurs, occurs at the receiver. By the inductive hypothesis

(2a) for i�1, this would be the (i�1)=2+1 = (i+1)=2-th output. It is straightforward

to check that the data is correct.

To show 2b: Immediately before the i-th sting, no message in transit from the sender

to the receiver has SeqNum = StingSR = s, because when the receiver chose s as its

next sting-tag back at sting i � 1, no message with SeqNum s was in transit from the

sender to the receiver.

Any message sent after sting i with SeqNum s has the current value of SentSR
attached to it and by Lemma 4.2, the current set of elements in SentSR can only shrink
relative to what was sent in the message.

To show 3: Vacuous since i+ 1 is even.

To show 1: We must show that eventually the receiver is stung after ti. I.e., the
receiver receives a message with sequence number equal to StingSR. Suppose this is not
true. First, note that StingSR is only changed when the receiver is stung. After ti, the

sender gets at least two tokens over a viable path P , then puts P in CleanPathsSR,
and sends the current message on P (by Lemma 4.1). This current message has Se-
qNum = StingSR. Eventually a copy of this message will get through to the receiver, a
contradiction.

4.2.1 Complexity Measures:

The message length is O(P logP) since each message consists of a constant number of

components, the largest of which are the Sent and Recv arrays, each of which consists
of P entries of size logP (assuming the data items are no bigger than this). The

space complexity, due to the intermediate processors' storing a message for each path,

is O(P2 logP).

Recall that the time and message complexity are de�ned for ideal runs. First we
explain in more detail when messages are retransmitted by the Send procedure. The

Send procedure keeps track, in Pending, of the most recent message that it has sent

for each path. Whenever the Send procedure is executed, it does the following. First,

consider the message that is the input to the procedure. The message is fresh if the last

message sent on that path, which is stored in the Pending array, di�ers from this one in
a component other than the Sent and Recv arrays. The message is stored in Pending
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(actually this has already been done in the intermediate nodes, but needs to be done

here for the sender and receiver). If the message is fresh, then it is immediately sent

onwards on its path. Otherwise, it is only sent if at least k steps have elapsed since it

was last sent. (This can be determined by counting steps modulo k.)

Consider viable path P of length LP and what can happen in between the input

of two successive data items. In the worst case, the path needs to be cleaned, costing

O(LP ) new messages and O(LP ) time; then the sender has to receive two alternating

bit tokens, costing O(LP ) new messages and O(LP ) time; and �nally the new sting-tag

must sting the receiver, costing O(LP ) new messages and O(LP ) time. A similar analysis

holds for the acknowledgment to come back to the sender.

Thus the time complexity is O(L), where L is the length of the shortest viable path.

We now discuss the message complexity. The number of retransmitted messages
sent between two successive data item inputs is O(nPL=T ). (Recall that T is the

retransmission parameter.) The reason is that during the O(L) time between the inputs,
each of the n processors retransmits for each of the P paths O(L=T ) times. Now we
consider the new messages. For each path P with length LP , the discussion above shows
that O(LP ) new messages are used. Since LP is at most n and there are P paths, the
number of new messages is O(nP). Thus the message complexity is O(nP + nPL=T )).

(Note that some cost due to retransmissions is implicitly, but not explicitly, there for
protocols that assume a reliable data link layer.)

5 Self-Stabilizing Protocol

The self-stabilizing property [13] is important when a protocol should recover following

any number and any type of faults. Regardless of the initial state of the system, once
the assumptions made for the normal operation of the protocol start to hold (e.g., the

sender and the receiver do not crash, every corrupted message is identi�ed) the system

eventually begins to function correctly. On the event of the receiver or the sender
crashing as well as the acceptance of undetected corrupted message our protocol (and

other cited protocols) may stop functioning as desired and even deadlock. To avoid such
a possibility we introduce in this section a self-stabilizing version of our protocol.

A self-stabilizing end-to-end protocol is presented in [10]. This protocol is designed
for a fail-stop network, in which a crashed link never recovers. Our self-stabilizing proto-
col improves upon [10] by tolerating repeated link and processor crashes and recoveries.

The correctness condition desired of a self-stabilizing protocol is that every admissible
execution starting in any con�guration (not necessarily an initial con�guration) must

satisfy the safety and liveness properties from Section 3, with one change: there is a
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con�guration after which the sequence of data items output by the receiver is a pre�x

of the sequence of data items input by the sender.

For the self-stabilizing version we assume that the number of messages in transit in

a single path is bounded and known. We also assume that the number of processors

in a single path is bounded and known. Our self-stabilizing version uses the following

parameters.

� k1 : upper bound on number of nodes in each path

� k2 : upper bound on number of messages simultaneously in transit in one direction

of an undirected path.

� k3 : some constant > 2k1 + 2k2.

� k4 : some constant > k3 + 1.

� k5 : some constant > k4.

To make the previous version of the algorithm self-stabilizing, S and R need to ex-

plicitly clean the paths periodically. Informally, S and R explicitly clean a path by
exchanging enough messages on a path so that they can be sure that there are no old
leftover messages in the path. In more detail, the sender and the receiver check the
paths by sending 2k1 + 2k2 + 1 control messages as follows. We now describe how the

sender makes sure that a path Path is clean (the receiver uses a similar scheme). The
sender repeatedly sends the message (Path;Cln; 1) till the sender receives the mes-
sage (Path;ClnAck; 1). Then the sender repeatedly sends (Path;Cln; 2) and waits for
(Path;ClnAck; 2) and so on till the sender sends (Path;Cln; 2k1+2k2+1) and receives
(Path;ClnAck; 2k1+ 2k2 + 1). At that instant the sender is through checking the path
Path. Whenever the receiver receives (Path;Cln; i) the receiver sends (Path;ClnAck; i).

The reasoning behind this explicit clean is the fact that when S started cleaning the

path there were at most 2k1 + 2k2 distinct sequence numbers in Path: 2k1 in Pending
arrays and 2k2 in messages. Thus, during the explicit clean S starts sending at least
once a sequence number that does not exist in Path. Since the path is FIFO it holds that

when S receives an acknowledgment for this sequence number the path is (explicitly)

cleaned, i.e., all messages in transit have the same sequence number.

The protocol is asynchronous, thus the period of time after which S and R should

start the explicit clean cannot be measured in real time. Instead we use the alternating
bit protocol for every path to make sure that some data items are transferred between

any two successive explicit cleans. Namely S (R) keeps a counter of alternating bit
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tokens arriving at S (R) through each path. When the counter of some path reaches a

prede�ned bound then S (R) starts an explicit clean procedure to clean all the paths.

The explicit cleans of S and R should also be coordinated in a way that ensures the

clean property from Section 3 of explicitly cleaned paths. Ideally, S will communicate

the fact that it started the cleaning procedure to R and both S and R will clean paths

and initialize their variables in coordination. Unfortunately, S cannot be sure whether

a certain Path is clean or not (this is the cause for the explicit clean). Thus, S uses the

fact that R starts executing its cleaning when k4 tokens are received on some path. S

waits until k4 tokens are received by R and only then initializes its variables.

In more detail, the coordination of the explicit cleans is controlled by S. When S

starts an explicit clean of all the paths S does not transmit data untilR starts an explicit
clean too. S veri�es that R started the explicit clean procedure by discovering that the
counter of tokens received by R through some explicitly clean path had been set to zero.

Then S sets all of its token counters to zero. Note that following this operation it holds
for each path that the counters of tokens maintains by S and R for this path di�er
by at most 1. We choose k3 and k4 as the prede�ned bound on the number of tokens
that cause S and R, respectively, to start explicit cleaning. This choice guarantees that
following the �rst coordination of the explicit cleaning S starts cleaning �rst when R is

just about to start explicit cleaning too { then S causes R to enter the cleaning mode
by exchanging additional tokens with R.

In more detail, S keeps an array of counters ClnTknsRS[1::P] and R keeps an array of
counters ClnTknsSR[1::P]; they are used to count the number of alternating bit tokens
received over each path. S has three modes of operation|cleaning, inquiring and data
transfer. In the cleaning mode, no data is transferred; the purpose is to initiate the

explicit cleaning of the paths. Once at least one path has been explicitly cleaned, S enters
the inquiring mode during which S repeatedly asks R, over every explicitly cleaned path,
to send the value of ClnTknsSR for this path. Once S observes that for some path, the

ClnTknsSR entry at R has been initialized, S sets the entries of its ClnTknsRS array to
zero, and enters the data transfer mode. In this mode data transfer can start (or resume)
over the explicitly cleaned path(s); however, explicit cleaning continues in parallel on

the dirty paths (i.e., paths that are not explicitly cleaned). S exits the data transfer

mode and enters the cleaning mode (again) when some entry of ClnTknsRS reaches k3.
Upon entering the cleaning mode S sets ClnTknsRS to zero. R just has two modes of

operation, cleaning and data transfer. R exits the the data transfer mode and enters the
cleaning mode again when some entry of ClnTknsSR is greater than k4. Upon entering

the cleaning mode R sets ClnTknsSR to zero. Once at least one path has been explicitly

cleaned, R enters the data transfer mode.

The correctness of the protocol hinges on S repeatedly entering the cleaning mode.

By the nature of the alternating bit protocol and the existence of a viable path it is clear

25



that both the data transfer mode and the cleaning mode terminate. The termination

of the inquiring mode depends on S �nding out that R starts the explicit clean, i.e., R

sets ClnTknsSR to zero. We show that S de�nitely �nds out this fact through a clean

path. However, in case S starts in inquiring mode \knowing" that some set of paths

were explicitly cleaned S does not attempt to explicitly clean those paths. In such a case

S might not discover that R starts the explicit clean since the set of \explicitly clean

paths" contains only non cleaned paths that lose the information concerning R assigning

zero to ClnTknsSR. To eliminate such a possibility S counts tokens during the inquiring

mode and when k5 tokens are counted for some path, S starts the cleaning mode. Note

that k5 > k4; thus normally (i.e., following the �rst time S starts the explicit cleaning)

S succeeds in triggering R to enter the cleaning mode before k5 tokens are counted by

S.

When S enters the cleaning mode: S initializes CleanPathsSR, SentSR, VRecvSR,
VSentRS, RecvRS, BitSR and TknsRS to the initial values presented in Figure 2. Similarly
R initializes CleanPathsRS, SentRS, VRecvRS, VSentSR, RecvSR and TknsSR to the
initial values upon entering the cleaning mode. Note that in order to ensure proper
\synchronization" of the alternating bit protocol through the paths R does not initialize

BitRS. R initializes BitRS[Path] to nil whenever R receives (Path,Cln,2k1 + 2k2 + 1).
We now explain why R sets BitRS to nil when it receives the last Cln message from S.
When S receives the last ClnAck, all the messages in transit from S to R are either Cln
or ClnAck and thus do not use the alternating bit protocol. Consequently, R doesn't
change its bit. When S receives the last ClnAck, all the messages in transit from R

to S either do not use the alternating bit protocol (because they are Cln or ClnAck

messages) or have nil as the value of the bit. Thus they will be ignored by S, since its
bit never equals nil. After receiving the last ClnAck, S starts using 0 for the alternating
bit protocol; this value will be accepted by R as being new.

Eventually, while in the inquiring mode S �nds that an entry in ClnTknsSR has
changed from a nonzero number to zero, i.e., the receiver has initialized its variables

too. Then S uses the alternating bit protocol to receive the values of SeqNumRS and

StingTagSR from R. Using those values, S decides whether a new data item should be

sent (if StingTagRS equals SeqNumRS) or the old data item should be sent (if StingTagRS
does not equal SeqNumRS). S assigns SeqNumSR := StingTagSR and StingTagRS :=

SeqNumRS � 1 (to make sure that R is stung �rst), initializes ClnTknsRS , and enters
the data transfer mode, sending the correct data item.

The coupling between the previous algorithm and this new part is that the set of
\all" paths considered in the previous version, in order to assign CleanPaths for instance,

is now the set of paths that have been explicitly cleaned since the last time the explicit

cleaning was initiated. S and R ignore any message that arrives on a dirty path except
for Cln or ClnAck.
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Lemma 5.1 S eventually enters its cleaning mode.

Proof: Assume towards contradiction that S never enters its cleaning mode. Since S

only enters the inquiring mode upon leaving the cleaning mode, there exists some time

after which S is forever in the same mode.

Consider �rst the case in which S is stuck in the cleaning mode. In this case S

is stuck sending Cln messages over every path. Since there exists a viable path Path,

eventually those messages reach R through Path. Whenever R receives a Cln message,

it responds with a ClnAck message. Repeated application of this argument yields that

eventually S �nishes sending Cln messages over Path and enters the inquiring mode.

Now consider the case in which S is stuck in the inquiring mode. Let t be the latest

time S enters the inquiring mode. Obviously it never enters the data transfer mode
after time t. We will show that S must eventually enter the cleaning mode, because for
some path Path, ClnTknsRS[Path] is incremented enough times. Since S tries to clean
every dirty path, eventually S considers every viable path as explicitly cleaned. Once
this occurs, S counts the inquiry tokens on each viable path. Suppose R never enters the

cleaning mode after time t. Then R eventually consider each viable path as an explicitly
cleaned path and sends back the alternating bit tokens that arrive through this path.
Thus, an entry in ClnTknsRS is incremented. Now suppose R does enter the cleaning
mode after time t. Then R has to receive k3 tokens from S between any two successive
cleaning of R. Thus, S must send tokens (and hence receive tokens), incrementing an
entry of ClnTknsRS . Repeated application of this argument yields that some entry of

ClnTknsRS eventually reaches k5.

The last case is when S is stuck in the data transfer mode. A similar argument to
the second case shows that some entry of ClnTknsRS eventually reaches k3.

Lemma 5.2 After S enters the cleaning mode for the �rst time and before S leaves the

inquiring mode thereafter, R enters the cleaning mode.

Proof: By Lemma 5.1, S enters the cleaning mode. By the existence of a viable path,

after S starts the explicit cleaning S eventually succeeds in sending all the Cln messages

and receives ClnAck through at least one path. Then S enters the inquiring mode.

Before S leaves the inquiring mode either S �nds through an explicitly cleaned path
that R entered the cleaning mode (and thus we are done) or S counts k5 tokens arriving

through an explicitly cleaned path. In the latter case R answered S with k5 > k3 tokens,

thus R must have entered the cleaning mode too.

Theorem 5.3 The above protocol is a self-stabilizing crash resilient end-to-end protocol.
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Proof: We prove the following facts.

1. Let t be the time of the �rst entrance of R to the cleaning mode following the �rst

entrance of S to the cleaning mode. Let It = i1; i2; � � � be the sequence of data

items input by S following t and let Ot = o1; o2; o3; � � � be the of data items output

by R following t. Then It is either a pre�x of Ot or a pre�x of o2; o3; � � �.

2. R does an in�nite number of outputs.

To prove these two facts, we need to show that after R entered the cleaning mode,

as guaranteed by Lemma 5.2, our non stabilizing protocol is initialized correctly. We

also have to show that the next explicit cleaning will not cause loss or duplication of the

data items.

When S starts the cleaning on Path there is at least one sequence number j such
that 1 � j � 2k1 + 2k2 + 1 and no Cln or ClnAck message with j is in transit in Path.
When S sends (Path,Cln,j) and receives (Path,ClnAck,j), all the messages in transit
from S to R in Path are (Path,Cln,j) and all the ClnAck messages from R to S have
j as sequence number. This ensures that when S sends any message (Path,Cln,i) with

i � j, R receives this message, and then S receives (Path,ClnAck,i). Thus, when S

sends (Path,Cln,2k1 + 2k2 + 1) this message arrives at R, causing R to assign BitRS :=
nil and then R starts to send (Path,ClnAck,2k1 + 2k2 + 1). Therefore, when S receives
(Path,ClnAck,2k1 + 2k1 + 1) all the messages in transit either do not have a bit �eld
or have nil value in their bit �eld. Thus, the alternating bit protocol is initialized for

Path: when S sends a message with Bit= 0 for the �rst time after the explicit cleaning,
S receives a message with Bit= 0 only after R does.

By the fact that the alternating bit protocol on each clean path of S is working
correctly, S receives the correct information about StingRS and SeqNumSR, and thus
stings R with the correct data. This fact ensures that no data is lost or duplicated.

6 Concluding Remarks

We have presented a crash resilient end-to-end protocol for dynamic networks in which
links and processors can crash and recover spontaneously. The protocol ensures reli-

able data transfer as long as there is at least one viable path between the sender and

the receiver. We have further presented a self-stabilizing version that can cope with
the sender and the receiver entering arbitrary states (due to failures) and undetected

corrupted messages.
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The partition of a communication protocol into separate layers is a common proce-

dure of implementation. Although our protocols bypassed the data-link layer, they will

still work if a data-link protocol is executed on each link, even in the presence of crashes.

A crash can a�ect the correct functioning of a data-link protocol in one of two ways:

either a message is lost, which the link could do even without the data-link protocol, or

a message is duplicated. However, this duplication is tolerable by our protocol, because

it could have happened at the same point with our intermediate node protocol as well

| the duplicate immediately follows what it is a duplicate of, and is not inserted later

in some malicious way.

Our protocol can be easily modi�ed to work in the case that viability in one direction

does not imply viability in the other direction. Let PSR be the number of paths from the

sender to the receiver and PRS be the number of paths from the receiver to the sender.
One possibility is to virtually implement PSR � PRS alternating bit protocols, one for
each possible combination of sender-receiver path with receiver-sender path. Since there
is at least one combination that is viable in both directions, current information about
the RecvSR array will reach the sender and current information about the RecvRS array
will reach the receiver.

Several optimizations are possible. For example, our protocol repeatedly sends a
single message and waits for acknowledgment. Instead we can send several di�erent
messages with the same sequence number of the single message sent, each message is
augmented with a (bounded) running sequence number too. The acknowledgment will
include the last running sequence number received in a similar fashion to the sliding

window protocol. For simplicity of presentation we have not incorporated the above
optimizations.
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Figure 8: The second token of the alternating bit protocol
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