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1 Introduction

The high bandwidth of today's �ber-optic technology suggests that processing time may

become the main bottleneck in future computer networks. Recently, extensive research has

considered the design of fast and primitive hardware switches to eliminate the processing delay.

A hardware switch is placed at each node and handles message routing without involving the

processor at the node. The result is systems whose behavior di�ers from that of traditional

networks in some important ways: (1) if the entire path is known, the message delay between

any two nodes in the network can be considered a constant (one time unit), no matter how

many intermediate nodes must be traversed; (2) broadcast can also be accomplished in O(1)

time units (e.g. [AA93]).

The design of high-speed networks and protocols has been addressed in many recent papers

(e.g., [CG88, CGK88, AC+90, OY90]). [CG88, CGK88, AC+90] present a high-speed network

design called PARIS. To obtain a simple hardware switch the design of PARIS uses source

routing and tree broadcast for messages. Hence, each processor has to know the current topol-

ogy (i.e., what links are currently functioning) in order to send messages. Thus, maintaining

a correct view of the topology is a core task for such high-speed networks.

Fault-tolerance is especially important for on-going tasks such as distributed network con-

trol which can su�er from transient faults of any nature. A useful type of fault tolerance is the

self-stabilizing property [Dij74]; it guarantees that regardless of the initial state of the system,

once each processor begins executing its program correctly, the system converges to a \correct"

state. An early topology maintenance protocol designed for the PARIS model [CGK88] is (or

at least can be made) self-stabilizing. This protocol stabilizes within O(d � logn) time, where

d is the diameter of the surviving network and n is the number of processors in the surviving

network. Abu-Amara [AA93] presented a protocol for the same model that stabilizes within

O(d) time.

The switch bandwidth is the number of messages a switch can handle at a time. Note that it

possible that the number of messages a switch can handle at a time is a function of their arrival

links and destination links; to compute the switch bandwidth we consider the worst case of

arrival and destination links that yields the minimal number of messages that can be handled

at a time. In the protocols of [CGK88] and [AA93] each processor repeatedly broadcasts its

view of the topology, implying that �(n) broadcasts can take place simultaneously Therefore,

the switch and link bandwidth required by these protocols is 
(n).

In [AC+90] the control protocols of the PARIS experimental network are described. Al-

though not stated, we believe that upon non-faulty operation the switch bandwidth required is

O(�), where � is the highest degree of a switching node. The topology maintenance protocol

presented in [AC+90] is event driven, i.e., it is activated when some change in the available

link bandwidth is detected. This protocol has a cyclic organization: the topology maintenance

module broadcasts over the tree computed by the tree maintenance module and the tree main-

tenance module uses the result of the topology module in order to compute the tree. This

approach is vulnerable to transient faults, which could result from an unfortunate combination
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of processor crashes, link failures and recovery, message loss and corruption, and unexpected

delays. The behavior of the protocol is not determined when either the topology view or the

tree is corrupted (e.g., the \tree" contains cycles). Thus the protocol is not self-stabilizing.

A di�erent approach for the design of high-speed networks is presented in [OY90]. The

design is based on having a ring embedded in a general topology. The ring can be obtained by

traversing a spanning tree of the network. This approach yields a protocol that only works in

the restrictive \one fault model." This protocol does not make use of a topology maintenance

protocol and thus does not tolerate general dynamic changes.

A topology change is a change of the status of a link or a processor (from up to down or

vice versa). In this paper we present methods to provide fast communication in a high-speed

network in the presence of faults, in particular when the topology changes dynamically. We

present two self-stabilizing topology maintenance protocols. Our �rst topology maintenance

protocol assumes O(n) bandwidth for a switch and stabilizes in O(logd) time in the worst case.

Its stabilization time compares favorably with the O(d) of the best previously known protocol

[AA93]. The second protocol stabilizes in O(d) time in the worst case and O(1) time when

changes are infrequent and assumes O(�) bandwidth for a switch1, where � is the maximum

degree of a node in the network. Figure 1 presents a comparison with related work. Note that

the time complexity for [AC+90] is actually for an execution beginning with a legitimate initial

state, since the protocol is not self-stabilizing. Our second topology maintenance protocol uses

the existence of a clock to optimize its stabilization time after a single topology change.

Worst Case Stabilization Time

Stabilization after a Single Switch Is It Self-

Time Topology Change Bandwidth Stabilizing?

[CGK88] O(d � logn) O(logn) O(n) Yes

[AA93] O(d) O(1) O(n) Yes

[AC+90] O(n) O(1) O(�) No

Protocol 1 O(logd) O(logd) O(n) Yes

Protocol 2 O(d) O(1) O(�) Yes

Figure 1: Comparison of Topology Maintenance Protocols

In our �rst self-stabilizing topology maintenance protocol, which we call the doubling pro-

tocol, each processor repeatedly uses its partially correct view of the topology to help all nodes

in the network converge to a correct view of the current topology. Roughly speaking, each

processor attempts to broadcast to all other processors using its own, possibly incorrect, view

1One can distinguish between (1) messages that are transferred from an input port to an output port of the

switch and (2) messages that are transferred only to the processor (and not to an output port). While messages

of type (1) cannot be queued (to avoid delays and complicated switches) messages of type (2) can be delivered to

the processor queue. When we only count the messages of type (1) that a switch has to handle simultaneously,

then O(1) (instead of O(�)) switch bandwidth is required.
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of the topology. The broadcast will reach some processors and may fail to reach others. A pro-

cessor P believes information that P receives from another processor Q concerning particular

nodes and links if Q is in the middle of a shortest path to the node or link in question. This

protocol utilizes the power of high-speed networks to achieve a stabilization time signi�cantly

better than the �(d) required in traditional network models.

Our second topology maintenance protocol, which we call the optimistic-with-backup pro-

tocol, has the pleasing property that it requires limited switch bandwidth. This protocol is

obtained by combining two layers. The bottom layer is a self-stabilizing point-to-point topology

maintenance protocol (e.g., [SG89, Do93]) which is permanently executed in the \background."

After this slow topology maintenance protocol has stabilized, links can go up or down. One

way to maintain the topology information would be to simply wait for the slow protocol to

stabilize again. Instead we use a layer on top of the bottom layer to quickly adjust the topology

view. The top layer is fast, but it is not self-stabilizing and can make mistakes if changes occur

too frequently2. The mistakes of the top layer are corrected through the systematic use of the

results of the slower bottom layer.

The bottom layer uses only communication between neighbors and hence limits the number

of topology maintenance messages received by a node in a single time unit to be the degree � of

the node. A priority scheme ensures that the messages of the bottom layer are never discarded

due to congestion. Every message includes few bits in its header that specify the priority of

the message. When an overloaded switching subsystem simultaneously receives messages with

di�erent priorities, the switching subsystem transfers the messages with the highest priority

and, it if is overloaded, discards messages with lower priorities.

Note that in addition to the communication tra�c of the topology maintenance protocol

(which is part of the network control), messages are sent by the application layer. Obvi-

ously, the application layer uses topology information to communicate data (including video

and voice) through the network. If the topology information is incorrect and the topology

maintenance is blocked by the tra�c of the application layer, then the level of service of the

communicationnetwork can be drastically reduced. The priority scheme is especially important

in the context of self-stabilizing protocols where the system can be started with an applica-

tion layer that use the entire bandwidth. Therefore, if congestion occurs due to simultaneous

arrival of messages, then messages of the application layer are the �rst to be discarded. Then

messages of the top layer are discarded before any message of the bottom layer is discarded.

The priority scheme is used to ensure delivery of the messages of the bottom layer and to

guarantee progress.

When no topology change occurs for a long enough time, every processor knows the correct

topology of the system. The goal of the top layer is to achieve fast updates when the topology

changes are not too frequent. The top layer uses the fast communication capabilities of the

network hardware in order to try to foresee the result of the bottom layer, and therefore to

2The approach of dealing di�erently with frequent and infrequent events has been proposed in a di�erent

context in, e.g., [La87] and [AM91].
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achieve faster response time, thus eliminating the e�ect of temporarily inconsistent states that

might be produced while the slower bottom layer is stabilizing.

The top layer uses the result of the bottom layer initially to discover the topology and

periodically as a fault-tolerant back-up mechanism.

Because two layers are attempting to keep track of the topology, there must be a rule

for selecting which results to use. Each processor takes the results of the topology foresee

layer if that layer has recently indicated a topology change. Otherwise, it takes the results

of the bottom layer. The argument for self-stabilization is that in a su�ciently long interval

with no changes, the foresee layer will eventually stop sending messages, the bottom layer will

eventually stabilize to the true topology, and all processors will eventually choose to believe

the results of the bottom layer.

The remainder of the paper is organized as follows. In the next section we describe the

model for the high-speed network. Section 3 contains the �rst self-stabilizing topology main-

tenance protocol, which converges in O(logd) time in the worst case. Section 4 contains the

two-layer topology maintenance protocol, which stabilizes in O(d) time in the worst case and

O(1) time when changes are infrequent. Concluding remarks appear in Section 5.

2 High-Speed Networks

Consider a network of n processors. We model the network as a graph of n nodes, in

which each node represents a processor and each link represents a bidirectional communication

channel. Henceforth, we will not distinguish between a node and the processor it represents,

and we will not distinguish between a link and the channel it represents.

We use the model proposed in [CG88, CGK88, AC+90]. Each node consists of a switch-

ing subsystem and a node control unit. The switching subsystem of each node contains the

communication hardware responsible for receiving, sending, and forwarding messages. All of

the functions of the switching subsystem are implemented in hardware. Thus, the switching

subsystem performs its duties very rapidly. Because of the hardware implementation, how-

ever, the switching subsystem is not able to make decisions that are based on the information

content of the messages. Rather, the switching subsystem is able to examine only the header

of messages. The node control unit of each processor P contains the processing hardware and

software necessary to extract the information content of messages, do some internal computa-

tion, and generate messages to be forwarded to other nodes via P 's switching subsystem. Most

of the functions of the node control unit are implemented in software. Thus, the node con-

trol unit may be slow and may require the presence of message queues to bu�er the messages

forwarded by the switching subsystem.

For each processor P , each attached end-point of a link is assigned a small set of link labels.

The set of labels assigned to each end-point of a link may be dynamically con�gured (under

software control). The header of a message consists of a sequence of at most 2N link labels and
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a copy bit, where N is an upper bound on the number of processors in the network. A node

control unit P sends a message to another node control unit Q by attaching a header with the

labels of the links on the route from P to Q. P may also send a copy of the message to every

processor in the route to Q by setting the copy bit of the message.

When a message m arrives at a switching subsystem and the header of m contains at least

one label, then the switching subsystem removes the �rst label, l, and the shortened message

is sent on all links that (1) are not the link that the message arrived on and (2) have l as one

of its labels. Additionally, when the copy bit is set, a copy of the message is sent to the node

control unit. Otherwise, when there is no link label left, m is delivered to the node control

unit.

Figure 2 illustrates a 4-node network and a possible message. If the indicated message is

inserted into the network by the node control unit at node 1, it will be routed through the

switching subsystems at nodes 2, 3, and 4, with one copy delivered to each node control unit.

If, on the other hand, the message is inserted by the node control unit at node 2, it will be

discarded by the switching subsystem at that node because the �rst label in the route does

not match any of the labels on the incident links.

MESSAGE:

ROUTE: 4, 2, 5

COPY: YES

BODY: ABCD...

S.S.

2 4

NODE 1

&%
'$
N.C.U.

S.S.

5 2

NODE 2

&%
'$
N.C.U.

S.S.

4 5

NODE 3

&%
'$
N.C.U.

S.S.

5 1

NODE 4

&%
'$
N.C.U.

�

�

�

�
Figure 2: A Message and a Network of Four Nodes

In this paper, we assume the set of labels for each link consists of a single unique label

within the switching subsystem. In our model the functions of the switching subsystem are

implemented in hardware and no message queues are used. Messages simultaneously arriving

at a switch might be forwarded to the same outgoing link of the switch. However, if too many

messages arrive at the same time in some switching subsystem, the switch may not be able

to handle them all, and some of the messages will be lost. Hence, the number of messages a

switching subsystem can handle at the same time, which we call the bandwidth of the switch,

is an important parameter of the design. This parameter is not captured by the formal model

presented in [CGK88]. Thus many protocols developed for that model (including that presented

in Section 3 of this paper) tend to swamp switches with messages. The protocol presented in

Section 4 of this paper is designed to work with switches that have a limit on the number of
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messages that they can process simultaneously. Each message has a priority level. In case

the number of messages arriving at a switch is greater than its capacity, the messages with

the lowest priority are eliminated �rst. The correct operation of the topology maintenance

protocol in a heavily loaded network requires that its messages be of the highest priority. It is

the protocol's responsibility to ensure that the number of messages with highest priority that

simultaneously reach a switching subsystem will not exceed the switch bandwidth.

Due to the above network architecture, it is assumed that the message delay, measured in

real time, is bounded by one time unit. Thus, the total real time it takes to initiate a message

delivery by the node control unit, to communicate the message to the destinations switching

subsystem and then from the switching subsystem to the node control unit, takes one time

unit. If the process of sending m starts at real time t then the data part of m (m without the

header) is received by all of its destinations before real time t+1. Moreover, due to the \label

removal" technique and the limitation of at most 2N link labels in a single message, m (and

all the messages obtained by \label removals" from m) vanishes from the system before real

time t+ 1.

Each processor P always knows P 's local topology, i.e., all the names of its currently opera-

tional neighbors and the labels of the outgoing links that connect the switching subsystem of P

to its neighbors. Since processors and links may fail at any time, no processor can be sure that

it has the correct graph of the full network topology. We assume that P can test the status

(faulty/non-faulty) of each link incident on it (cf., [Taj77, MRR80, CGK88]) This assumption

is reasonable in current networks where P periodically can test an incident link by sending a

test message on the link and waiting for a response. In a totally asynchronous environment a

processor cannot detect whether a link is faulty or the neighbor at the other side is very slow.

Thus, real-time clocks are used for local topology detection. We do not include the time to

perform these tests in the analysis of our protocol.

Each processor has a local clock that may exhibit bounded drift from real time: at least

1=(1 + �) (real) time units and at most 1 + � (real) time units of the clock elapse in any real

time unit. Where � is the drift rate. The local clocks are not synchronized; the clocks are used

only to measure time intervals, e.g., message delay time.

The node control unit of a processor may send messages at approximately every time unit3.

However, since the clocks are not synchronized processors may send messages at di�erent times

rather than simultaneously. A round consists of at least one successful message delivery by

each (non-crashed) processor. These messages are either sent through one attached link or a

copy on each attached link according to the protocol. A round terminates when each of these

messages arrives at its destination. The round complexity is the number of rounds initiated

during the execution. Because clocks are not synchronized and can drift, it is possible for a

round to include more than one message sent by a given processor. In the sequel we sometimes

use round complexity (instead of time units) to measure time complexity. Note that if each

processor sends messages approximately every time unit and no message is lost , the fact that

3The approximation is due to the clock drift.

6



the clock rates are bounded implies an upper bound on the amount of real time that it takes

to accomplish a round.

For simplicity, we assume that if a node fails, then the switching subsystem that resides

in the same site fails too4. The amount of information that a message may contain may vary

from system to system. Clearly, if the number of bits that need to be transferred is larger

than the capacity of a message, the information can be sent in a sequence of messages, with

each message carrying a portion of the information. Standard mechanisms can be used to

eliminate out of order delivery of the information portions, e.g., using the same path for all

the portions, using bounded sequence numbers (taking into account the lifetime of a message),

or using timestamps. Keeping this possibility in mind, we assume, for the sake of readability,

that a single message can carry �(n� logn) bits; this number of bits is su�cient for a complete

topology description.

3 The Doubling Protocol

Cidon, Gopal, and Kutten [CGK88] presented a topology maintenance protocol for high-

speed networks. In this protocol, each processor periodically performs the following. It broad-

casts its local view (list of neighbors with which it can currently communicate), by using a

breadth-�rst broadcast protocol. (Breadth-�rstmeans that all processors at distance x from the

source are visited before any processor at distance x+ 1 is visited.) Upon receiving such mes-

sages, the processor uses them to update its global view of the network. (A processor's global

view is the list of links and processors that it currently believes to be functioning correctly.)

The protocol of [CGK88] is proven correct by a simple inductive argument. Speci�cally, it

is proven by induction on i, the number of rounds, that after i rounds of broadcast following

the last topology change, each processor knows the true network state of all components at

distance at most i+ 1 from itself.

The breadth-�rst broadcast protocol presented in [CGK88] takes O(logn) time per broad-

cast. Thus, the time needed for all processors to construct a correct view of the topology with

this protocol is O(d � logn), where d is the diameter of the network.

Subsequently, Abu-Amara [AA93] proved that there is a way to do a breadth-�rst broadcast

in such a network that terminates in time O(1). Roughly speaking, the broadcast of [AA93]

traverses a tree by �rst traversing the closest nodes. Let l1; l2; � � � ; li be the tree links connected
to the broadcast initiator. A message is sent from the broadcast initiator to a neighbor, Q,

through l1 then the message returns to the initiator through l1 and is forwarded to another

neighbor through l2 and so on until the message is forwarded by the initiator through li to a

neighbor R. A similar forwarding procedure to traverse the children of R in the tree is used and

then the message is forwarded back to the initiator. Next the message is forwarded through

4If a node can fail while its switching subsystem does not, then still information concerning the faulty node is

needed by the topology maintenance protocol. We believe that our protocols can be adapted to handle e�ciently

such rare cases too, not only by literally stopping the operation of the switching subsystem of a faulty processor.
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li�1 to the neighbor S and to the children of S. This technique repeats itself until all the N

labels of the message are eliminated. Note that the message contains topology information that

de�nes the spanning tree used by the initiator. Thus, processors that received the message can

deduce from the contents of the message that they are roots of subtrees in which no processor

received a broadcast message. These processors produce messages to continue the broadcast in

their subtrees in a similar fashion. It is proved that the broadcast is completed within 4 time

units. By substituting this broadcast protocol into the [CGK88] protocol, the stabilization

time is improved to O(d).

Our new protocol further reduces the stabilization time of this approach by doubling a

processor's �eld of view at each iteration. In more detail, each processor, P , does the following

periodically. It broadcasts its current (possibly wrong) global view, VP , using the [AA93]

breadth-�rst broadcast based on VP . Upon receiving such a message, say from processor

Q, processor P uses it to update its global view. Let R be a processor in VP [ VQ. The

information about processor R is updated due to the received VQ, if (1) the distance, x, from
P to Q according to VP and the distance, y, from Q to R according to (the received) VQ are

equal (or di�er by one) and (2) the total distance x + y is less than the distance from P to

R according to VP . Rule (2) disallows an update that would increase the distance from P to

R according to VP . Such a rule cannot guarantee correct operation because it does not allow

updating the topology view when \bad news" arrives|namely, increase of the distance to a

certain processor. One example for this limitation is when the system is started in an initial

state where the distance of every processor from P according to VP is 1 (such an initial state

is possible when we deal with self-stabilizing systems). Another example is when VP is up

to date and a topology change that increases the distance to R occurs. Thus, we need some

mechanism to ensure the validity of the current (small) distance. Our choice is to recall the

identity of the processor, say Q, that is responsible for the last update and to check that this

processor repeatedly \stands behind its word" concerning the information on R. Namely, Q

must be in the middle of the shortest path from P to R. If this does not hold, we remove the

information concerning R from VP .

The code for the protocol appears in Figure 3. We use the following convention for the

representation of the topology view, VP , of a processor P : VP is a set with (up to)N elements.

Each element contains the �elds hid; dis; source; linksi which respectively represent, processor

identi�er, say Q, the distance from P to Q, the source for the information about Q, and (up

to) � processor identi�ers, an identi�er (of a neighbor of Q) for every active link of Q. We

use VP [Q] for the element with processor identi�er Q. VP [Q]:dis is the distance �eld of the

element VP [Q] if such an element exists and 1 otherwise. During the computation of an

updated topology view we use the set, T VP , to store temporary view. T VP contains up to

2N elements.

The code of a processor P starts with a broadcast of the current topology view VP . Then
VP is updated whenever another topology view, VQ, is received. \Good news" received from

a processor in the middle is adopted. Then the function Legalize legalizes the information

gathered from VP and VQ. Next we describe the operation of the Legalize function (which
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does not appear in Fig. 3).

The function Legalize chooses at most N elements of T VP and assigns them to VP . As an
initialization step all the elements in VP are deleted. Then, the �rst element to be included

in VP is VP [P ] which contains P as an identi�er, 0 as a distance, P as source and the list

of the active links that are attached to P . In the next step, an element is added for every

processor, Q, at distance 1 that is connected to P via an active link. For such an element to

be included, the source �eld should be Q. The process continues in an iterative fashion. At

iteration i, elements whose dis �eld value is i in T VP are included in VP . For such an element

to be included it must be connected via a path of active links that are already in VP and whose

source is a processor at distance di=2e from P . In addition an element is not included if its

information concerning active/non-active links con
icts with information of elements included

during previous iterations. The iterative process stops when either VP contains elements for

N processors or no element is added in the current iteration.

1: do forever
2: begin
3: every time unit broadcast(VP )
4: for every VQ received do
5: begin
6: T VP := nil

7: for every processor R 2 VP [ VQ do
8: if VP [R]:dis � VP [Q] + VQ[R] and (VP [Q]:dis� VQ[R]:dis) 2 f0; 1g then
9: begin
10: T VP [R] := VQ[R]
11: T VP [R]:dis := VP [Q]:dis+ VQ[R]:dis
12: T VP [R]:source := Q

13: end
14: else T VP [R] := VP [R]
15: VP :=Legalize(T VP )
16: end
17: end

Figure 3: Doubling Protocol, Code for P .

We use the de�nition of round of broadcast below in our correctness proof. Before we

de�ne round of broadcast we should notice that a broadcast can be ended either in a normal

or abnormal way. A broadcast ends normally when the topology view used by the initiator

of the broadcast re
ects the topology of the network. A broadcast ends abnormally when the

topology used by the initiator does not re
ect the network. In such a case, if the initiator of

the broadcast knows the correct topology only up to distance i, then the the broadcast ends

(abnormally) when every processor at distance less than or equal to i receives a message of the

broadcast.
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De�nition 3.1 A round of broadcast consists of at least one broadcast by each processor. The

round of broadcast terminates when all the initiated broadcasts have ended.

Note that the protocol of [AA93] implies that a round of broadcast consists of �(1) rounds.

Theorem 3.1 In the doubling protocol, after 2i + 2 rounds of broadcast following the last

topology change, for every processor P : (1) VP contains the true local topology (active/non-

active links) of every processor at distance at most 2i from P . (2) For every processor Q that

is at distance greater than 2i from P , VP [Q]:dis > 2i.

Proof: Following the �rst execution of the function Legalize it holds that the right local

topology of P appears in VP . Furthermore, there is no element with distance 0 other than the

element of P .

The rest of the proof is by induction on i.

Basis: i = 0. We prove that after the second round of broadcast, the hypothesis holds.

The result follows from the ability of each processor to test the status of each of its incident

links and the success of the �rst broadcast to reach (at least) the closest neighbors. For every

neighbor Q of P the information concerning the local topology of Q is broadcast by Q and

used by P . Every other broadcast message that is received is either from a non-neighbor of

P or has an element for Q with distance greater than 0. This implies (1) of the Lemma. The

Legalize procedure implies (2).

Induction: Assume for i and show for i+ 1. By the inductive hypothesis and because of

the use of breadth-�rst broadcast, each processor's round 2i+ 3 broadcast reaches processors

within distance 2i.

For every processor R within distance at most 2i+1 from P there is at least one processor

Q at distance x � 2i from P , such that Q is on a shortest path from P to R, Q is at distance

y � 2i from R and x � y 2 f0; 1g. By the induction hypothesis, for every such processor,

Q, Q has the right information concerning R's local topology prior to the 2i + 3'rd round of

broadcasts.

We �rst prove that before the 2i+4'th broadcast round it holds that VP [R]:dis is not smaller

than the distance z between P and R. If VP [R]:dis is indeed smaller than z then there must be

a \dummy" VP [R]:source say, X , such that in the last execution of Legalize it was veri�ed that

VP [X ]:dis is equal to dVP [R]:dis=2e. Since VP [R]:dis is less than the actual distance z then

VP [R]:dis < 2i+1 and dVP [R]:dis=2e � 2i. Therefore, by the induction hypothesis, VP [X ]:dis

is indeed the distance from P to X . Thus X 's broadcast is received by P during the 2i+ 3'rd

broadcast round. In this round VX contains the correct information concerning the status of

the links and processors that are at least up to distance 2i. Hence, if X is still the source for

R it re
ects the real distance from P to R via X that is smaller than z, a contradiction. By

a similar argument no processor within distance � 2i from P can become a \dummy" source

following the 2i + 3'rd broadcast round.
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During the 2i+4 broadcast round the broadcast of every such Q reaches P and P uses the

information concerning R.

The stabilization time of our new protocol is O(logd) in the worst case. The doubling

protocol can be used as a building block in the next protocol. This combination will yield

O(d) in the worst case and O(1) in the event that all processors have a correct view of the

topology and there is a single topology change. Such a combination requires O(n) switch

bandwidth.

4 The Optimistic-With-Backup Protocol

The protocol presented in the previous section pinpoints an important limitation of the

[CGK88] model. Since every processor repeatedly broadcasts the topology known to it, there

can be as many as n broadcasts in every unit of time. Consequently, a switch has to be able

to handle �(n) messages at the same time. In many cases the previous protocol will stabilize

even when the bandwidth of the switch is small and some messages are lost due to congestion.

However, there are scenarios in which message loss can prevent the protocol from stabilizing.

In this section we make sure that the bandwidth used by the message tra�c in a switch is

controlled.

Toward this goal we use a technique with two layers in each of which a di�erent protocol

operates. Figure 4 depicts the relationship between the two protocol layers. The bottom

layer is a slow self-stabilizing topology maintenance protocol that uses traditional point-to-

point communication. Following a topology change the topology view of the bottom layer

is inaccurate for some period of time. During this period the top layer tries to foresee the

resulting topology view of the bottom layer.

Because there are two layers keeping track of the topology, there must be rules for de-

termining which results to believe. The bottom layer ignores the top layer and performs its

calculation of the topology without reference to any computations done in the top layer. At

any processor P , the output of the bottom layer is a topology view VP . The top layer contains
two components, a foreseer and a chooser. The topology view produced by the foreseer is FP
and the view produced by the chooser is EP . The chooser computes its output view to be

equal to FP if the foreseer has recently indicated a topology change by sending a Vc message;

otherwise the chooser computes its output view to be equal to VP . The output of the chooser,
EP , is the topology view produced by the entire 2-layer protocol and is also used as input

by the foreseer. The foreseer communicates with other processors by sending or broadcasting

messages in routes that are based on the topology view EP . This communication happens

whenever a topology change is detected. The two purposes of the communication performed

by the foreseer are (1) to send Vc messages to cause the chooser to stop choosing the output

of the bottom layer during the time it takes for the bottom layer's view of the topology to

become stable and (2) to compute quickly FP , the foreseen topology. If no indication of a
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topology change and no topology foresee message arrives at the foreseer, then the foreseer

assigns FP := EP . Otherwise, the foreseer updates EP according to the topology change and

assigns the updated topology to FP .

local
physical
detection
of topology
change

-

-

-

point-to-point
topology

maintenance:
computes VP

6

VP

-�
topology maintenance messages

to/from other processors

topology foresee

CHOOSER:
if Vc msg seen
within last Td time
then EP := FP
else EP := VP

6

EP

6

Exported topology view

-�
topology foresee messages

to/from other processors

-
Vc messages to

other processors

FORESEER:
when top. change detected
bcast Vc over EP ;
when foresee msg arrives
update FP

?

FP

�
Vc messages from

other processors

Figure 4: Relationship Between the Two Protocol Layers at P
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4.1 Bottom Layer: Point-to-Point Topology Maintenance

For the bottom layer we use a slight modi�cation of the self-stabilizing topology mainte-

nance protocol of [SG89]. [SG89] is chosen for simplicity of presentation. Another possibility

is the self-stabilizing topology maintenance protocol of [Do93]. Unlike [SG89], the protocol in

[Do93] �rst determines only the membership relation, i.e., each processor knows the proces-

sors that belong to its connected component. Then the information about the links' status is

collected over a single tree, which implies a high volume of communication through only n� 1

links as opposed to �(n2) links of [SG89].

The modi�cation that we make to the [SG89] protocol is that at each processor a delay (of

approximately two time units) is inserted between the time that the processor actually detects

a topology change and the time the processor acts on the change. The purpose of this delay is

to give the top layer a chance to foresee the new topology before the results of the bottom layer

start to change: The bottom layer at the processors that detected a topology change stops its

activity until the top layer identi�es the nature of the topology change (i.e., a link or processor

fails or recovers) and elects a processor to broadcast the new topology. This ensures that the

rest of the processors will be noti�ed �rst with the new topology through the top layer and only

then start the convergence of the bottom layer protocol. Thus, the intermediate (incorrect)

states of the bottom layer protocol do not a�ect the topology view of the processors.

In the [SG89] protocol, every processor P maintains its topology view VP . P repeatedly

updates VP . The update is done according to the local topology and the topology view VQ
of each neighbor Q. For every neighbor Q, P maintains a local variable that contains the

last topology view received from Q; this local variable is updated whenever a message from Q

arrives. The current topology view VP is de�ned by the current local topology (i.e., the status

of neighboring links) and the last topology view received from P 's neighbors (as described

later). P repeatedly sends its topology view VP to all of its neighbors.

P computes a new value for VP whenever P receives a message with a topology from one

of its neighbors. The computation of VP is by a local iterative process similar to the shortest

path algorithm of Dijkstra [Dij59]. Note that this iterative process is executed without any

communication and thus is assumed to be executed within a negligible time5. The iterative

process of P uses a topology view variable V 0
P . First V

0
P is set equal to P and the links that

are connected to P . Then in each iteration V 0
P is extended (if possible) to include the local

topology of the processors R that are connected to the outgoing links of V 0
P . Thus, in the i-th

iteration, P includes in V 0
P the processors that are at distance i� 1 from P . Each such local

topology is taken from the view of the neighbor Q that is closest (in terms of number of hops)

to R according to VQ. In case of ties, i.e., if there are two neighbors of P , Q and Q0, such

that R is closest to Q (respectively, Q0) according to VQ (respectively, VQ0), then P includes

the local topology of R according to VQ if the identi�er of Q is larger than the identi�er of

5Typically, in high-speed networks the actual communication of a message is faster than the processing time.

However, the preparations for the delivery of a message is a processing task that involves interaction (using
bu�ers) between the node control unit and the switching subsystem.
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Q0 (in fact P can arbitrary choose either of the local topologies). The local iterative process

stops when no processor is added to V 0
P . The value of V

0
P at the end of the iterative process is

assigned to VP , the topology view of P .

The protocol of [SG89] is proven correct by a simple inductive argument similar to what

we have already seen in the previous section. Speci�cally, it is proven by induction on i that

i rounds following the last topology change, each processor knows the true network topology

of all components at distance at most i from itself. Thus, in terms of rounds as de�ned

in Section 2, the above topology maintenance protocol stabilizes within O(d) rounds. The

communication used by this protocol is point-to-point. This ensures the existence of at most

one arriving message in any incoming link at any time. Thus, the switch bandwidth used by

this protocol is at most O(�).

4.2 Top Layer: Topology Foresee

The drawback of the point-to-point topology maintenance protocol is its response time

for topology changes. Each topology change will generally require O(d) time to propagate

throughout the network. In fact the bottom layer does not use the power of the high-speed

network. We now present a topology foresee layer that utilizes the high-speed property of

the network. The combination of the bottom and top layers is a self-stabilizing topology

maintenance protocol that stabilizes within O(1) time if topology changes are not too frequent

and O(d) time following the last change, otherwise.

We �rst describe the protocol of the top layer informally. The two components in this

layer are the foreseer and the chooser. The chooser at processor P continually picks between

FP , the topology view computed by the foreseer, and VP , the topology view computed by the

bottom layer. It chooses FP during periods of time that follow a topology change and VP at

other times. The view chosen is called EP .

We de�ne a clock time unit to be the quantity 1 + �, a period of clock time large enough

to ensure, even for the fastest clock, that at least one (real) time unit has elapsed.

Following a topology change, the processors that are neighboring to the topology change

stop sending messages that are related to the bottom layer and use the high-speed capability

to notify the processors to stop choosing to assign VP to EP . Then the message delivery of the

bottom layer is resumed. As we detail in the sequel, the noti�cation process takes at most two

clock time units. The delay in the activity of the bottom layer is essential for the top layer to

detect whether the topology change is a link failure/recovery or a processor failure/recovery

and to elect a single processor to notify the rest of the processors of the change. (The election of

a single processor guarantees limited bandwidth usage upon broadcasting the change.) While

the above activities of the top layer are taking place, the bottom layer does not change the

topology view. Thus, when the top layer broadcasts the change in the topology, every processor

has the topology view prior to the topology change and the information concerning the topology

change, which yields the current topology. Then the processors that are neighboring to the
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topology change continue executing the traditional point-to-point protocol which starts to

stabilize to re
ect the new topology. Let td be an upper bound on the number of (real)

time units required for the point-to-point protocol to stabilize (note that td is O(d) since the

round complexity of the topology maintenance protocol of [SG89] is O(d)). In the period of

stabilization that follows this topology change, VP , the topology view of each processor P ,

may be changed more than once before it re
ects the new topology. Our goal is to eliminate

assignment of VP into EP during this period. Instead the protocol tries to foresee the value

FP that VP will have following the stabilization period and assign the value it foresees to EP .

Whenever a topology change occurs the change is locally detected by the neighboring

processors. These processors use their E variables to broadcast a change message Vc with

the topology change. For simplicity and time performance we assume the following broadcast

procedure: A processor P uses its topology view to choose a spanning tree of the communication

tree (say a breadth-�rst tree rooted at P ). Then a message with copy bit equal to 1 is sent to

traverse the tree in a depth-�rst order (see, e.g., [Ev79] for the de�nitions of breadth �rst tree

and depth �rst search). Note that the message traverses each link of the tree at most twice.

Thus the number of link traversals experienced by such a message is less than 2N . As a result,

the message traverses the tree in a single time unit.

Upon receiving a change message Vc, a processor Q assigns FQ according to the topology

reported in Vc, and Q sets a timer with value Td = td(1+�). Td is chosen so that when Td time

has elapsed on the fastest clock, at least td real time has elapsed (recall that td is the upper

bound on the stabilization time of the bottom layer). Q does not refer to VQ until at least Td
clock time has elapsed since this timer setting. (If Td is chosen to be too short, say because

the bound on the clock drift is not obeyed, then the top layer might not succeed in foreseeing

the topology; however, the combined protocol will eventually stabilize once the bottom layer

does so and Td clock time has elapsed for every processor.)

Ideally, when any two successive topology changes do not occur too close in time, the top

layer always foresees the result of the bottom layer, i.e., the correct topology. Thus, the later

assignment of VP into EP will not have any e�ect. In case the topology changes are too frequent,

the top layer may not succeed in maintaining the correct view of the topology. However, even

in this case it holds that when there is no topology change for long enough time, every message

of the top layer regarding a topology change vanishes and the bottom layer stabilizes; thus

every processor eventually has the correct topology.

The detailed description of the way the foresee layer acts upon a single topology change (i.e.,

a single link/processor failure/recovery) follows. The code appears in Figure 5. Throughout

the description it is assumed that EP contains the correct topology before the current topology

change and that the foresee layer �nishes updating the topology before the next topology change

occurs (Later we discuss relaxing these assumptions). In general, the processors neighboring

to the topology change communicate with other processors to determine the type of topology

change that took place (e.g. whether it is a link or a node failure). Once the topology change

has been identi�ed by the processors neighboring to the topology change they use EP and the

identi�ed change to deduce the current topology E 0P . Then (one or more) processors that are
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neighboring to the topology change broadcast E 0P ; the broadcast procedure itself uses E
0
P as

the view of the topology.

� Link (P;Q) or Q recovers: Line 1 of the code checks whether Q was in the connected

component of P before the recovery of (P;Q). If Q was not in the connected component of P

then (P was not in the connected component of Q either and) P sends the topology view of

its component to Q. In case only the link (P;Q) recovers (as opposed to the recovery of Q)

P receives the topology view of Q. Then, the one among P and Q, with the greater identi�er

broadcasts the combined topology. The combined topology is denoted in line 5 of the code by

EP + EQ. Line 7 of the code is for the case P and Q were in the same component before the

recovery of (P;Q). If P has a larger identi�er P broadcasts the updated topology that includes

the link (P;Q).

� Link (P;Q) fails or Q fails: A failure of a single processor, Q, can cause all the neighbors,

P , of Q to detect approximately at the same time that the link (P;Q) failed. In turn, every

neighbor may take action, i.e., send messages to indicate this change, and thus an over
ow of

the switch bandwidth may occur. Next we show how our protocol eliminates this scenario.

If Q has no other path to P according to EP , then the network communication graph is dis-

connected and P cannot discover whether (P;Q) failed or Q failed. The function \connected"

executed in line 8 of the code checks whether the topology view of the remaining communi-

cation graph is a single connected component. If according to EP , Q has no other path to P ,

then P broadcasts the new topology on the portion of the topology in which P resides. This

portion is denoted by (EP � (P;Q))jP in line 8 of the code | in words, omit (P;Q) from the

previous topology EP and pick the component in which P resides. Note that if Q did not fail

then Q broadcasts the new topology in its connected component according to EQ.

Otherwise, when Q has at least one other path to P according to EP , the following procedure
is used to distinguish whether (P;Q) failed or Q failed. Let C0P be the connected component

of P (according to EP ) assuming Q failed, and let N be the set of Q's neighbors that are in

C0P . In line 11 of the code we use the function neighbor(X;Q; EP), which is true if and only if

X is a neighbor of Q in EP . Note that P is in N . If P has either the largest or the smallest

identi�er among N , then P broadcasts a message \Q failed?" to the nodes in C0P (lines 12

and 13). Then (even in the case P does not broadcast) P waits one clock time unit to receive

such an inquiring message from a processor in N . If no such message arrives, P concludes that

Q is active and the link (P;Q) failed; otherwise P concludes that Q failed.

Note that when Q fails at most two messages are sent in every connected component of the

resulting graph. Furthermore, when (P;Q) fails only P and Q may send messages. Thus, we

ensure that the switch bandwidth used for this detection is of size of at most two messages.

Following the detection of the type of topology change that took place, i.e., was it a link

failure or processor failure, P takes action as follows. If Q failed and P has the largest identi�er

among the neighbors of Q in P 's connected component then P broadcast the new topology in

C0P (line 16). In case the failure of (P;Q) has been detected and P has a larger identi�er than

Q, then P broadcasts EP � (P;Q) (line 18) using the new topology.
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� Processor P recovers: P waits for the neighbors to send their topology views upon detecting

the recovery of the links connecting them with P . At this stage it is assumed that EP consists

of P 's local topology, i.e., P and the links to its neighbors. Once P receives the topology views

of its neighbors, P combines their topology views and its own local view and broadcasts the

combined topology throughout the network.

Next we describe the interaction between the topology foresee layer and the point to point

topology maintenance layer. (note that Figure 5 includes only the topology foreseer). For all

the above cases, a processor, P , that is neighboring to a topology change does not update VP
until the broadcast of the new topology should be terminated. Namely, P does not update

VP for the �rst 2(1 + �)2 time (measured by its clock) following the detection of the topology

change. It is easy to check that, for every topology change the broadcast is done following

(1+ �) time units measured by a processor clock. Thus, at most (1+ �)2 time units measured

by P 's clock. The broadcast should arrive to every processor before (1 + �) additional time

units measured by P 's clock. This sums up to (1 + �) + (1 + �)2 < 2(1 + �)2 units that are

measured by P 's clock. This delay in updating VP ensures that a Vc message arrives at a

processor before any (partial) update takes place caused by the (relatively slow) update of the

point to point topology maintenance layer.

Whenever a new topology broadcast of the top layer arrives at some processor R, R assigns

the new topology to FR. In particular, the initiator of a broadcast assigns the new topology

to FP .

Up to this point in the protocol description, we have assumed that EP is correct when a

topology change occurs. When this assumption does not hold, a processor that is incident to a

topology change might send wrong messages and/or omit the right messages. Since the switch

bandwidth is limited we would like to eliminate unnecessary usage of the switch bandwidth as

soon as possible. Consequently, a processor incident to a topology change is restricted to send

a topology foresee layer message only during the �rst (1+�) time units following the topology

change.

The system is in a safe state when it holds that if no further topology change occurs then:

(1) EP re
ects the correct topology, (2) EP = FP for every P , and (3) no message of the foresee

layer is in transit.

Recall that td is an upper bound on the number of (real) time units required for the point-

to-point protocol to stabilize and is O(d) time units.

Theorem 4.1 Let T = (td + 1)(1 + �)2 + 1. If no topology change occurs during T real time

units, then at the end of this period the system is in a safe state.

Proof: Fix an interval I of length T time units during which no topology change occurs. Let

t be the real time at the beginning of I .

No message of the topology foresee layer is sent after real time t + (1 + �)2 (recall that

a clock time unit is 1 + �, which can take as long as (1 + �)2 real time to elapse). By the
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Link (P;Q) recovers or Q recovers:
1: if Q 62 EP then fdi�erent componentsg
2: send(EP ) to Q

3: wait one clock time unit or until receive(msg,Q)
4: if received(EQ) and P > Q then
5: broadcast(E 0

P = EP + EQ)
6: else fsame componentsg
7: if P > Q then broadcast(E 0

P = EP + (P;Q))

Link (P;Q) fails or Q fails:
8: if connected(EP � (P;Q)) then broadcast(E 0

P = (EP � (P;Q))jP )
9: else f check whether Q failed or (P;Q) failedg
10: C0

P := (EP � Q)jP
11: N := fXjneighbor(X;Q; EP ) ^ (X 2 C0

P )g
12: if P = max(N ) or P = min(N ) then
13: broadcast(C0

P ,\Q failed?")
14: wait one clock time unit or until receive(\Q failed?")
15: if received(\Q failed?") then fQ failedg
16: if P = max(N ) then broadcast(C0

P )
17: else fQ did not failg
18: if P > Q then broadcast(E 0

P = EP � (P;Q))

Processor P recovers:
19: wait one clock time unit or until receive(EQi

) from every neighbor Qi

20: if for every neighbor Qi received(EQi
) then

21: broadcast(E 0

P = EP + EQ1
+ EQ2

+ � � �+ EQj
)

Figure 5: The Topology Foresee Layer, Code for P

characteristic of the network, no message of the topology foresee layer still exists in the system

after another (real) time unit, i.e., after time t + (1 + �)2 + 1.

Thus the latest real time at which any processor receives a Vc message is t + (1 + �)2 + 1.

Hence, after real time t + (1 + �)2 + 1, FP is always assigned to be the value of EP . After

a further Td clock time units elapse, which is at most Td(1 + �) real time, every processor

subsequently assigns VP to EP . Since Td = td(1+�), this means that after real time t+T , i.e.,

the end of I , every processor subsequently assigns VP to EP .

Since the bottom layer stabilizes within td time units, every assignment to EP after the end

of I results in the correct topology view.

The above proves the requirements (1), (2) and (3) for a safe con�guration.

The proof of the next theorem is straightforward from the description of the protocol.

Theorem 4.2 When the system is in a safe state and a single topology change occurs then
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the system reaches a safe state within O(1) time following this change.

5 Concluding Remarks

This paper presented two self-stabilizing topology maintenance protocols for high-speed

networks.

For a self-stabilizing protocol it is important to avoid sequence numbers; our protocols do

not use sequence numbers.

Our �rst protocol is the �rst to break the O(d) (�(d) for traditional networks) bound on the

stabilization time of topology update protocol. The protocol uses the high-speed capabilities

to achieve an exponentially faster protocol.

We addressed an important aspect of the high-speed network|the bandwidth of the switch-

ing subsystem. We suggested a priority scheme to ensure progress in spite of congestion. An-

other contribution of this paper is the new foresee technique which \smoothes" the e�ect of

the stabilization period following a topology change.

One possible optimization is to reduce the communication bandwidth used by the tradi-

tional point-to-point topology maintenance protocol by having it send checking information

(e.g., check sum and random key) rather than the whole topology. When every processor has

the same topology view the check sum (for the chosen key) will be the same for every processor

and the topology will not be transferred. When the topology views of two neighbors are dif-

ferent, then within short expected time a key is chosen such that the check sum is di�erent for

both processors. This in turn triggers exchange of topology views as done by the traditional

point-to-point topology maintenance.

One of the anonymous referees suggested examining whether the topology view of the

unchanged nearby portion of the graph converges to the correct view in the presence of frequent

remote topology changes. We remark that our doubling protocol as well as the bottom layer

of the optimistic with back-up protocol converge to a correct view of the nearby portion of the

network, in the presence of frequent remote topology changes.

Our protocols can be used as a building block in the distributed control of high-speed

network. Some details on such usage may be found in [AC+94b].
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