
Wireless Networks 0 (2001) ?{? 1

A Mutual Exclusion Algorithm for Ad Hoc Mobile Networks

Jennifer E. Walter � Jennifer L. Welch �� Nitin H. Vaidya ���

Department of Computer Science, Texas A&M University, College Station, TX 77843-3112

E-mail: jennyw@cs.tamu.edu, welch@cs.tamu.edu, vaidya@cs.tamu.edu

A fault-tolerant distributed mutual exclusion algorithm that adjusts to node mobility is presented, along with proof

of correctness and simulation results. The algorithm requires nodes to communicate with only their current neighbors,

making it well-suited to the ad hoc environment. Experimental results indicate that adaptation to mobility can improve

performance over that of similar non-adaptive algorithms when nodes are mobile.

Keywords: Mobile computing, ad hoc network, mutual exclusion, distributed algorithm.

1. Introduction

A mobile ad hoc network is a network wherein a pair

of nodes communicates by sending messages either over

a direct wireless link, or over a sequence of wireless

links including one or more intermediate nodes. Di-

rect communication is possible only between pairs of

nodes that lie within one another's transmission radius.

Wireless link \failures" occur when previously commu-

nicating nodes move such that they are no longer within

transmission range of each other. Likewise, wireless link

\formation" occurs when nodes that were too far sepa-

rated to communicate move such that they are within

transmission range of each other. Characteristics that

distinguish ad hoc networks from existing distributed

networks include frequent and unpredictable topology

changes and highly variable message delays. These

characteristics make ad hoc networks challenging envi-

ronments in which to implement distributed algorithms.

Past work on modifying existing distributed algo-

rithms for ad hoc networks includes numerous rout-

ing protocols (e.g., [8,9,11,13,16,18,19,22{24]), wireless

channel allocation algorithms (e.g., [14]), and protocols

for broadcasting and multicasting (e.g., [8,12,21,26]).

� Supported by GE Faculty of the Future and Dept. of Educa-

tion GAANN fellowships. Phone: (979) 845-3937. Fax: (979)

847-8578. Contact author.
�� Supported in part by NSF PYI grant CCR-9396098 and NSF

grant CCR-9972235. Phone: (979) 845-5076. Fax: (979) 847-

8578.
��� Supported in part by Texas Advanced Technology Program

grant 010115-248 and NSF grants CDA-9529442 and CCR-

9972235. Phone: (979) 845-0512. Fax: (979) 847-8578.

Dynamic networks are �xed wired networks that share

some characteristics of ad hoc networks, since failure

and repair of nodes and links is unpredictable in both

cases. Research on dynamic networks has focused on to-

tal ordering [17], end-to-end communication, and rout-

ing (e.g., [1,2]).

Existing distributed algorithms will run correctly on

top of ad hoc routing protocols, since these protocols

are designed to hide the dynamic nature of the net-

work topology from higher layers in the protocol stack

(see Figure 1(a)). Routing algorithms on ad hoc net-

works provide the ability to send messages from any

node to any other node. However, our contention is

that eÆciency can be gained by developing a core set

of distributed algorithms, or primitives, that are aware

of the underlying mobility in the network, as shown in

Figure 1(b). In this paper, we present a mobility aware

distributed mutual exclusion algorithm to illustrate the

layering approach in Figure 1(b).

The mutual exclusion problem involves a group of

processes, each of which intermittently requires access

to a resource or a piece of code called the critical section

(CS). At most one process may be in the CS at any given

time. Providing shared access to resources through mu-

tual exclusion is a fundamental problem in computer

science, and is worth considering for the ad hoc envi-

ronment, where stripped-down mobile nodes may need

to share resources.

Distributed mutual exclusion algorithms that rely on

the maintenance of a logical structure to provide order

and eÆciency (e.g., [20,25]) may be ineÆcient when run

2

User Applications

Distributed
Primitives

Routing
Protocol

Ad Hoc Network

(b)

Distributed Primitives

Routing Protocol

Ad Hoc Network

User Applications

(a)

Figure 1. Two possible approaches for implementing distributed

primitives.

in a mobile environment, where the topology can poten-

tially change with every node movement. Badrinath et

al.[3] solve this problem on cellular mobile networks,

where the bulk of the computation can be run on wired

portions of the network. We present a mutual exclusion

algorithm that induces a logical directed acyclic graph

(DAG) on the network, dynamically modifying the logi-

cal structure to adapt to the changing physical topology

in the ad hoc environment. We then present simulation

results comparing the performance of this algorithm to

a static distributed mutual exclusion algorithm running

on top of an ad hoc routing protocol. Simulation results

indicate that our algorithm has better average waiting

time per CS entry and message complexity per CS en-

try no greater than the cost incurred by a static mutual

exclusion algorithm running on top of an ad hoc routing

algorithm when nodes are mobile.

The next section discusses related work. In Section

3, we describe our system assumptions and de�ne the

problem in more detail. Section 4 presents our mutual

exclusion algorithm. We present a proof of correctness

and discuss the simulation results in Sections 5 and 6,

respectively. Section 7 presents our conclusions.

2. Related Work

Token based mutual exclusion algorithms provide ac-

cess to the CS through the maintenance of a single token

that cannot simultaneously be present at more than one

node in the system. Requests for CS entry are typically

directed to whichever node is the current token holder.

Raymond [25] introduced a token based mutual ex-

clusion algorithm in which requests are sent, over a

static spanning tree of the network, toward the token

holder; this algorithm is resilient to non-adjacent node

crashes and recoveries, but is not resilient to link fail-

ures. Chang et al.[7] extend Raymond's algorithm by

imposing a logical direction on a suÆcient number of

links to induce a token oriented DAG in which, for ev-

ery node i, there exists a directed path originating at i

and terminating at the token holder. Allowing request

messages to be sent over all links of the DAG provides

resilience to link and site failures. However, this al-

gorithm does not consider link recovery, an essential

feature in a system of mobile nodes.

Dhamdhere and Kulkarni [10] show that the algo-

rithm of [7] can su�er from deadlock and solve this

problem by assigning a dynamically changing sequence

number to each node, forming a total ordering of nodes

in the system. The token holder always has the highest

sequence number, and, by de�ning links to point from

a node with lower to higher sequence number, a token

oriented DAG is maintained. Due to link failures, a

node i that wants to send a request for the token may

�nd itself with no outgoing links to the token holder.

In this situation, i oods the network with messages

to build a temporary spanning tree. Once the token

holder becomes part of such a spanning tree, the token

is passed directly to node i along the tree, bypassing

other requests. Since priority is given to nodes that lose

a path to the token holder, it seems likely that other re-

questing nodes could be starved as long as link failures

continue. Also, ooding in response to link failures and

storing messages for delivery after link recovery make

this algorithm ill-suited to the highly dynamic ad hoc

environment.

Our token based algorithm combines ideas from sev-

eral papers. The partial reversal technique from [13],

used to maintain a destination oriented DAG in a packet

radio network when the destination is static, is used in

our algorithm to maintain a token oriented DAG with

a dynamic destination. Like the algorithms of [25], [7],

and [10], each node in our algorithm maintains a re-

quest queue containing the identi�ers of neighboring

nodes from which it has received requests for the to-

ken. Like [10], our algorithm totally orders nodes. The

lowest node is always the current token holder, mak-

ing it a \sink" toward which all requests are sent. Our

algorithm also includes some new features. Each node

dynamically chooses its lowest neighbor as its preferred

link to the token holder. Nodes sense link changes to

immediate neighbors and reroute requests based on the

3

status of the previous preferred link to the token holder

and the current contents of the local request queue. All

requests reaching the token holder are treated symmet-

rically, so that requests are continually serviced while

the DAG is being re-oriented and blocked requests are

being rerouted.

3. De�nitions

The system contains a set of n independent mobile

nodes, communicating by message passing over a wire-

less network. Each mobile node runs an application

process and a mutual exclusion process that communi-

cate with each other to ensure that the node cycles be-

tween its REMAINDER section (not interested in the

CS), its WAITING section (waiting for access to the

CS), and its CRITICAL section. Assumptions1 on the

mobile nodes and network are:

1. the nodes have unique node identi�ers,

2. node failures do not occur,

3. communication links are bidirectional and FIFO,

4. a link-level protocol ensures that each node is aware

of the set of nodes with which it can currently di-

rectly communicate by providing indications of link

formations and failures,

5. incipient link failures are detectable, providing reli-

able communication on a per-hop basis, and

6. partitions of the network do not occur.

The rest of this section contains our formal de�ni-

tions. We explicitly model only the mutual exclusion

process at each node. Constraints on the behavior of

the application processes and the network appear as

conditions on executions. The system architecture is

shown in Figure 2.

We assume the node identi�ers are 0; 1; : : : ; n � 1.

Each node has a (mutual exclusion) process, modeled

as a state machine, with the usual set of states, some of

which are initial states, and a transition function. Each

state contains a local variable that holds the node iden-

ti�er and a local variable that holds the current neigh-

bors of the node. The transition function is described

in more detail shortly.

1 See Section 7 for a discussion of relaxing assumption 6.

Application Process

Mutual Exclusion Process

Network

node i

ReleaseCSRequestCS

Recv(m)LinkUp Send(m) LinkDown

EnterCS

Figure 2. System architecture.

A con�guration describes the instantaneous state of

the whole system; formally, it is a set of n states, one

for each process. In an initial con�guration, each state

is an initial state and the neighbor variables describe a

connected undirected graph.

A step of the process at node i is triggered by the

occurrence of an input event. Input events are:

� RequestCSi: the application process on node i re-

quests access to the CS, entering its WAITING sec-

tion.

� ReleaseCSi: the application process on node i re-

leases its access to the CS, entering its REMAIN-

DER section.

� Recvi(j;m): node i receives messagem from node j.

� LinkUpi(l): node i receives noti�cation that the link

l incident on i is now up.

� LinkDowni(l): node i receives noti�cation that the

link l incident on i is now down.

The e�ect of a step is to apply the process' transition

function, taking as input the current state of the pro-

cess and the input event, and producing as output a

(possibly empty) set of output events and a new state

for the process. Output events are:

� EnterCSi: the mutual exclusion process on node i

informs its application process that it can enter the

CRITICAL section.

� Sendi(j;m): node i sends message m to node j.

The only constraint on the state produced by the tran-

sition function is that the neighbor set variable of i

must be properly updated in response to a LinkUp or

LinkDown event.

4

RequestCSi, EnterCSi, and ReleaseCSi are called

application events, while Sendi, Recvi, LinkUpi, and

LinkDowni are called network events.

An execution is a sequence of the form C0, in1, out1,

C1, in2, out2, C2; : : :, where the Ck's are con�gurations,

the ink's are input events, and the outk's are sets of out-

put events. An execution must end in a con�guration

if it is �nite. A positive real number is associated with

each ini, representing the time at which that event oc-

curs. An execution must satisfy a number of additional

conditions, which we now list. The �rst set of conditions

are basic \syntactic" ones.

� C0 is an initial con�guration.

� If ink occurs at node i, then outk and i's state in

Ck are correct according to i's transition function

operating on ink and i's state in Ck�1.

� The times assigned to the steps must be nondecreas-

ing. If the execution is in�nite, then the times must

increase without bound. At most one step by each

process can occur at a given time.

The next set of conditions require the application pro-

cess to interact properly with the mutual exclusion pro-

cess and to give up the CS in �nite time.

� If ink is RequestCSi, then the previous application

event at node i (if any) is ReleaseCSi.

� If ink is ReleaseCSi, then the previous application

event at node i must be EnterCSi.

� If outk includes EnterCSi, then there is a following

ReleaseCSi.

The remaining conditions constrain the behavior of

the network to match the informal description given

above. First, we consider the mobility noti�cation.

� LinkUpi(l) occurs at time t if and only if LinkUpj(l)

occurs at time t, where l joins i and j. Furthermore,

LinkUpi(l) only occurs if j is currently not a neigh-

bor of i (according to i's neighbor variable). The

analogous condition holds for LinkDown.

� A LinkDown never disconnects the graph.

Finally, we consider message delivery. There must

exist a one-to-one and onto correspondence between the

occurrences of Sendj(i;m) and Recvi(j;m), for all i, j

and m. This requirement implies that every message

sent is received and the network does not duplicate or

corrupt messages nor deliver spurious messages. Fur-

thermore, the correspondence must satisfy the follow-

ing:

� If Sendi(j;m) occurs at some time t, then the cor-

responding Recvj(i;m) occurs at some later time t0,

and the link connecting i and j is continuously up be-

tween t and t0. This implies that a LinkDown event

for link l cannot occur if any messages are in transit

on l.

Now we can state the problem formally. In every

execution, the following must hold:

� If outk includes EnterCSi, then the previous appli-

cation event at node i must be RequestCSi. I.e., CS

access is only given to requesting nodes.

� Mutual Exclusion: If outk includes EnterCSi, then

any previous EnterCSj event must be followed by a

ReleaseCSj prior to outk.

� No Starvation: If there are only a �nite number

of LinkUpi and LinkDowni events, then if ink is

RequestCSi, then there is a following EnterCSi.

For the last condition, the hypothesis that link changes

cease is needed because an adversarial pattern of link

changes can cause starvation.

4. Reverse Link (RL) Mutual Exclusion

Algorithm

In this section we �rst present the data structures

maintained at each node in the system, followed by an

overview of the algorithm, the algorithm pseudocode,

and examples of algorithm operation. Throughout this

section, data structures are described for node i, 0 �

i � n� 1. Subscripts on data structures to indicate the

node are only included when needed.

4.1. Data Structures

� status: Indicates whether node is in the WAITING,

CRITICAL, or REMAINDER section. Initially, sta-

tus = REMAINDER.

� N : The set of all nodes in direct wireless contact with

node i. Initially, N contains all of node i's neighbors.

� myHeight: A three-tuple (h1,h2,i) representing the

height of node i. Links are considered to be directed

from nodes with higher height toward nodes with

lower height, based on lexicographic ordering. E.g.,

5

if myHeight1 = (2, 3, 1) and myHeight2 = (2, 2, 2),

then myHeight1 > myHeight2 and the link between

these nodes would be directed from node 1 to node

2. Initially at node 0, myHeight0 = (0, 0, 0) and, for

all i 6= 0, myHeighti is initialized so that the directed

links form a DAG in which every node has a directed

path to node 0.

� height[j]: An array of tuples representing node i's view

of myHeightj for all j 2 Ni. Initially, height[j] =

myHeightj , for all j 2 Ni. In node i's viewpoint, if

j 2 N , then the link between i and j is incoming

to node i if height[j] > myHeight, and outgoing from

node i if height[j] < myHeight.

� tokenHolder: Flag set to true if node holds token and

set to false otherwise. Initially, tokenHolder = true if

i = 0, and tokenHolder = false otherwise.

� next: When node i holds the token, next= i, otherwise

next is the node on an outgoing link. Initially, next =

0 if i = 0, and next is an outgoing neighbor otherwise.

� Q: Queue containing identi�ers of requesting neigh-

bors. Operations on Q include Enqueue(), which en-

queues an item only if it is not already on Q, De-

queue() with the usual FIFO semantics, and Delete(),

which removes a speci�ed item from Q, regardless of

its location. Initially, Q = ;.

� receivedLI[j]: Boolean array indicating whether Link-

Info message has been received from node j, to which

a Token message was recently sent. Any height in-

formation received at node i from a node j for which

receivedLI[j] is false will not be recorded in height[j].

Initially, receivedLIi[j] = true for all j 2 Ni.

� forming[j]: Boolean array set to true when link to

node j has been detected as forming and reset to false

when �rst LinkInfo message arrives from node j. Ini-

tially, formingi[j] = false for all j 2 Ni.

� formHeight[j]: An array of tuples storing value of my-

Height when new link to j �rst detected. Initially,

formHeighti[j] = myHeighti for all j 2 Ni.

4.2. Overview of the RL Algorithm

The mutual exclusion algorithm is event-driven. An

event at a node i consists of receiving a message from

another node j 6= i, or an indication of link failure or

formation from the link layer, or an input from the ap-

plication on node i to request or release the CS. Each

message sent includes the current value of myHeight at

the sender. Modules are assumed to be executed atom-

ically.

The pseudocode triggered by input events from the

application process is shown in Figure 3.

When node i requests access to the CS:

1. status := WAITING

2. Enqueue(Q; i)

3. if (not tokenHolder)

4. if (jQj = 1) ForwardRequest()

5. else GiveTokenToNext()

When node i releases the CS:

1. if (jQj > 0) GiveTokenToNext()

2. status := REMAINDER

Figure 3. Pseudocode triggered by input events from application

process.

Requesting and releasing the CS: When node i re-

quests access to the CS, it enqueues its own identi�er

on Q and sets status to WAITING. If node i does not

currently hold the token and i has a single element on

its queue, it calls ForwardRequest() to send a Request

message. If node i does hold the token, i can set sta-

tus to CRITICAL and enter the CS, since it will be at

the head of Q. When node i releases the CS, it calls

GiveTokenToNext() to send a Token message if Q is

non-empty, and sets status to REMAINDER.

The pseudocode triggered by network input events is

shown in Figures 4 and 5.

Request messages: When a Request message sent by

a neighboring node j is received at node i, i ignores the

Request if receivedLI[j] is false. Otherwise, i changes

height[j], and enqueues j on Q if the link between i and

j is incoming at i. If Q is non-empty, and status =

REMAINDER, i calls GiveTokenToNext(), provided i

holds the token. Non-token holding node i calls Raise-

Height() if the link to j is now incoming and i has no

outgoing links or i calls ForwardRequest() if Q = [j] or

if Q is non-empty and the link to next has reversed.

Token messages: When node i receives a Token mes-

sage from some neighbor j, i sets tokenHolder = true.

Then i lowers its height to be lower than that of the last

token holder, node j, informs all its outgoing neighbors

of its new height by sending LinkInfo messages, and

calls GiveTokenToNext(). Node i also informs j of its

new height so that j will know that i received the token.

LinkInfo messages: If receivedLI[j] is true when a

LinkInfo message is received at node i from node j,

6

When Request(h) received at node i from node j:

// h denotes j's height when message was sent

1. if (receivedLI[j])

2. height[j] := h

// set i's view of j's height

3. if (myHeight < height[j]) Enqueue(Q; j)

4. if (tokenHolder)

5. if ((jQj > 0) and (status = REMAINDER))

6. GiveTokenToNext()

7. else // not tokenHolder

8. if (myHeight < height[k], 8 k 2 N)

9. RaiseHeight()

10. else if ((Q = [j]) or ((jQj > 0)

and (myHeight < height[next])))

11. ForwardRequest() // reroute request

When Token(h) received at node i from node j:

// h denotes j's height when message was sent

1. tokenHolder := true

2. height[j] := h

3. Send LinkInfo(h.h1, h.h2 �1; i)

to all outgoing k 2 N and to j

4. myHeight.h1 := h.h1

5. myHeight.h2 := h.h2 - 1 // lower my height

6. if (jQj > 0) GiveTokenToNext()

7. else next := i

When LinkInfo(h) received at node i from node j:

// h denotes j's height when message was sent

1. N := N [fjg

2. if ((forming[j]) and (myHeight 6= formHeight[j]))

3. Send LinkInfo(myHeight) to j

4. forming[j] := false

5. if (receivedLI[j]) height[j] := h

6. else if (height[j] = h) receivedLI[j] := true

7. if (myHeight > height[j]) Delete(Q;j)

8. if ((myHeight < height[k], 8k 2 N)

and (not tokenHolder))

9. RaiseHeight()

10. else if ((jQj > 0) and (myHeight < height[next]))

11. ForwardRequest() // reroute request

Figure 4. Pseudocode triggered by Recv network input events.

j's height is saved in height[j]. If receivedLI[j] is false,

i checks if the height of j in the message is what it

was when i sent the Token message to j. If so, i sets

receivedLI[j] to true. If forming[j] is true, the current

value of myHeight is compared to the value of myHeight

when the link to j was �rst detected, formHeight[j]. If

myHeight and formHeight[j] are di�erent, then a Link-

Info message is sent to j. Identi�er j is added to N and

forming[j] is set to false. If j is an element of Q and j

is an outgoing link, then j is deleted from Q. If node i

has no outgoing links and is not the token holder, i calls

RaiseHeight() so that an outgoing link will be formed.

Otherwise, if Q is non-empty, and the link to next has

reversed, i calls ForwardRequest() since it must send

another Request for the token.

When failure of link to j detected at node i:

1. N := N � fjg

2. Delete(Q;j)

3. receivedLI[j] := true

4. if (not tokenHolder)

5. if (myHeight < height[k], 8k 2 N)

6. RaiseHeight() // reroute request

7. else if ((jQj > 0) and (next 62 N))

8. ForwardRequest()

When formation of link to j detected at node i:

1. Send LinkInfo(myHeight) to j

2. forming[j] := true

3. formHeight[j] := myHeight

Figure 5. Pseudocode triggered by LinkDown and LinkUp net-

work input events.

Link failures: When node i senses the failure of a

link to a neighboring node j, it removes j from N , sets

receivedLI[j] to true, and, if j is an element of Q, deletes

j from Q. Then, if i is not the token holder and i has

no outgoing links, i calls RaiseHeight(). If node i is not

the token holder, Q is non-empty, and the link to next

has failed, i calls ForwardRequest() since it must send

another Request for the token.

Link formation: When node i detects a new link to

node j, i sends a LinkInfo message to j with myHeight,

sets forming[j] to true, and sets formHeight[j] = my-

Height.

The pseudocode for the procedures of the RL algo-

rithm is shown in Figure 6.

Procedure ForwardRequest: Selects node i's lowest

height neighbor to be next. Sends a Request message to

next.

Procedure GiveTokenToNext: Node i dequeues the

�rst node on Q and sets next equal to this value. If next

= i, i enters the CS. If next 6= i, i lowers height[next] to

(myHeight.h1, myHeight.h2�1; next), so any incoming

Request messages will be sent to next, sets tokenHolder

= false, sets receivedLI[next] to false, and then sends a

Token message to next. If Q is non-empty after sending

a Token message to next, a Request message is sent to

next immediately following the Token message so the

token will eventually be returned to i.

Procedure RaiseHeight: Called at non-token holding

7

Procedure ForwardRequest():

1. next := l 2 N : height[l] � height[j], 8 j 2 N

2. Send Request(myHeight) to next

Procedure GiveTokenToNext(): // called when jQj > 0

1. next := Dequeue(Q)

2. if (next 6= i)

3. tokenHolder := false

4. height[next]:=(myHeight.h1,myHeight.h2�1,next)

5. receivedLI[next] := false

6. Send Token(myHeight) to next

7. if (jQj > 0) Send Request(myHeight) to next

8. else // next = i

9. status := CRITICAL

10. Enter CS

Procedure RaiseHeight():

1. myHeight.h1:=1+mink2Nfheight[k].h1g

2. S := fl 2 N : height[l].h1=myHeight.h1g

3. if (S 6= ;) myHeight.h2 := minl2Sfheight[l].h2g�1

4. Send LinkInfo(myHeight) to all k 2 N

// raising own height can cause links to be outgoing

5. for (all k 2 N such that myHeight > height[k])

6. Delete(Q;k)

// reroute request if queue non-empty,

// just had no outgoing links

7. if (jQj > 0) ForwardRequest()

Figure 6. Pseudocode for procedures.

node i when i loses its last outgoing link. Node i raises

its height (in lines 1-3) using the partial reversal method

of [13] and informs all its neighbors of its height change

with LinkInfo messages. All nodes on Q to which links

are now outgoing are deleted from Q. If Q is not empty

at this point, ForwardRequest() is called since i must

send another Request for the token.

4.3. Examples of Algorithm Operation

We �rst discuss the case of a static network, followed

by a dynamic network. An illustration of the algorithm

on a static network (in which links do not fail or form) is

depicted in Figure 7. Snapshots of the system con�gu-

ration during algorithm execution are shown, with time

increasing from 7(a) to 7(e). The direct wireless links

are shown as dashed lines connecting circular nodes.

The arrow on each wireless link points from the higher

height node to the lower height node. The request queue

at each node is depicted as a rectangle, the height is

shown as a 3-tuple, and the token holder as a shaded

circle. The next pointers are shown as solid arrows.

Note that when a node holds the token, its next pointer

is directed towards itself.

2
(0, 0, 0)

(0, 2, 2)
2

1

3

1

(0, 2, 1)

(0, 1, 3)
3
1 2

3
0

(b)

(0, 0, 0)
2

(0, 2, 2)
2

1
1

(0, 2, 1)

2
0

3

1
0

(0, −1, 3)

(c)

(0, 0, 0)
2

(0, 2, 2)
2

2
(0, −1, 3) 0

(0, −2, 1)

0

3

1
3

(d)

1

0

(0, −2, 1)

(0, −3, 3)

3

2

(0, −4, 0)

(0, −5, 2)

(e)

2

3

(0, 0, 0)

(0, 2, 1)

(0, 2, 2)

(0, 1, 3) 0

2

1

3
2

3

(a)

Figure 7. Operation of reverse link mutual exclusion algorithm

on static network.

In Figure 7(a), nodes 2 and 3 have requested access

to the CS (note that nodes 2 and 3 have enqueued them-

selves on Q2 and Q3) and have sent Request messages

to node 0, which enqueued them on Q0 in the order

in which the Request messages were received. Part (b)

depicts the system at a later time, where node 1 has

requested access to the CS, and has sent a Request mes-

sage to node 3 (note that 1 is enqueued on Q1 and Q3).

Figure 7(c) shows the system con�guration after node

0 has released the CS and has sent a Token message

to node 3, followed by a Request sent by node 0 on be-

half of node 2. Observe that the logical direction of the

link between node 0 and node 3 changes from being di-

rected away from node 3 in part (b), to being directed

toward node 3 in part (c), when node 3 receives the To-

ken message and lowers its height. Notice also the next

pointers of nodes 0 and 3 change from both nodes hav-

ing next pointers directed toward node 0 in part (b) to

both nodes having next pointers directed toward node

3 in part (c). Part (d) shows the system con�guration

after node 3 sent a Token message to node 1, followed

by a Request message. The Request message was sent

because node 3 received the Request message from node

0. Notice that the items at the head of the nodes' re-

quest queues in part (d) form a path from the token

holder, node 1, to the sole remaining requester, node 2.

8

Part (e) depicts the system con�guration after Token

messages have been passed from node 1 to 3, node 3 to

0, and from node 0 to 2. Observe that the middle ele-

ment, h2, of each node's myHeight tuple decreases by 1

for every hop the token travels, so that the token holder

is always the lowest height node in the system.

We now consider the execution of the RL algorithm

on a dynamic network. The height information allows

each node i to keep track of the current logical direc-

tion of links to neighboring nodes, particularly to the

node chosen to be next. If the link to next changes

and jQj > 0, node i must reroute its request by calling

ForwardRequest().

(0, 1, 3)

3

3

2
(0, 0, 0)

(0, 2, 1)

(0, 2, 2)

0

2

1

2

(b)

2
(0, 0, 0)

(0, 2, 1)

(0, 2, 2)

0

2

1

2

3

3
(1, 1, 3)

(c)

2
(0, 0, 0)

(0, 2, 2)

0

2

1

2

3

3
(1, 1, 3)

(1, 0, 1)

3
1

(e)

2
(0, 0, 0)

(0, 2, 2)

0

2

1

2

3

3
(1, 1, 3)

(1, 0, 1)

3

(d)

2

3

(0, 0, 0)

(0, 2, 1)

(0, 2, 2)

(0, 1, 3) 0

2

1

3
2

3

(a)

Figure 8. Operation of reverse link mutual exclusion algorithm

on dynamic network.

Figure 8(a) shows the same snapshot of the system

execution as is shown in Figure 7(a), with time increas-

ing from 8(a) to 8(e). Figure 8(b) depicts the system

con�guration after node 3 has moved in relation to the

other nodes in the system, resulting in a network that is

temporarily not token oriented, since node 3 has no out-

going links. Node 0 has adapted to the lost link to node

3 by removing 3 from its request queue. Node 2 takes

no action as a result of the loss of its link to node 3,

since the link to next2 was not a�ected and node 2 still

has one outgoing link. In part (c), node 3 has adapted

to the loss of its link to node 0 by raising its height and

has sent a Request message to node 1 (that has not yet

arrived at node 1). Part (d) shows the system con�g-

uration after node 1 has received the Request message

from node 3, has enqueued 3 on Q1, and has raised its

height due to the loss of its last outgoing link. In part

(e), node 1 has propagated the Request received from

node 3 by sending a Request to node 2, also informing

node 2 of the change in its height. Node 2 subsequently

enqueued 1 on Q2, but did not raise its own height or

send a Request, because node 2 has an intact link to

next2, node 0, to which it already sent an unful�lled

request.

5. Correctness of Reverse Link Algorithm

The following theorem holds because there is only

one token in the system at any time.

Theorem 1. The algorithm ensures mutual exclusion.

To prove no starvation, we �rst show that, after link

changes cease, eventually the system reaches a \good"

con�guration, and then we apply a variant function ar-

gument.

We will show that after link changes cease, the log-

ical directions on the links imparted by height values

will eventually form a \token oriented" DAG. Since the

height values of the nodes are totally ordered, there can-

not be any cycles in the logical graph, and thus it is a

DAG. The hard part is showing that this DAG is token

oriented, de�ned next.

De�nition 1. A node i is the token holder in a con�g-

uration if tokenHolderi = true or if a Token message is

in transit from node i to nexti.

De�nition 2. The DAG is token oriented in a con�gu-

ration if for every node i; i 2 f0; : : : ; n�1g, there exists

a directed path originating at node i and terminating

at the token holder.

To prove Lemma 3, that the DAG is eventually token

oriented, we �rst show, in Lemma 1, that this condition

is equivalent to the absence of \sink" nodes [13], as de-

�ned below. We then show, in Lemma 2, that eventually

there are no more calls to RaiseHeight(). Throughout,

we assume that eventually link changes cease.

De�nition 3. A node i is a sink in a con�guration if

(tokenHolderi = false) and ((myHeighti < heighti[j]),

for all j 2 Ni).

9

Lemma 1. In every con�guration of every execution,

the DAG is token oriented if and only if there are no

sinks.

Proof: The only-if direction follows from the de�nition

of a token oriented DAG. The if direction is proved by

contradiction. Assume, in contradiction, that there ex-

ists a node i in a con�guration such that tokenHolderi =

false and for which there is no directed path starting

at i and ending at the token holder. Since there are

no sinks, i must have at least one outgoing link that

is incoming at some other node. Since the number of

nodes is �nite, the network is connected, and all links

are logically directed such that no logical path can form

a cycle, there must exist a directed path from i to the

token holder, a contradiction.

To show that eventually there are no sinks (Lemma

3), we show that there are only a �nite number of calls

to RaiseHeight().

Lemma 2. In every execution with a �nite number of

link changes, there exists a �nite number of calls to

RaiseHeight().

Proof: In contradiction, consider an execution with a

�nite number of link changes but an in�nite number of

calls to RaiseHeight(). Then, after link changes cease,

some node calls RaiseHeight() in�nitely often. We �rst

note that if one node callsRaiseHeight() in�nitely often,

then every node calls RaiseHeight() in�nitely often. To

see this, consider that a node i would call RaiseHeight()

in�nitely often only if it lost all its outgoing links in-

�nitely often. But this would happen in�nitely often

at node i only if a neighboring node j raised its height

in�nitely often, and neighboring node j would only call

RaiseHeight() in�nitely often if its neighbor k raised its

height in�nitely often, and so on. However, Claim 1

shows that at least one node calls RaiseHeight() only a

�nite number of times.

Claim 1. No node that holds the token after the last

link change ever calls RaiseHeight() subsequently.

Proof: Suppose the claim is false, and some node that

holds the token after the last link change calls Raise-

Height() subsequently. Let i be the �rst node to do so.

By the code, node i does not hold the token when it

calls RaiseHeight(). Suppose that node i sends the to-

ken to neighboring node j at time t1, setting its view

of j to be outgoing, and at a later time, t3, node i calls

RaiseHeight(). The reason i calls RaiseHeight() at time

t3 is that it lost its last outgoing link. Thus, at time

t2 between time t1 and t3, the link between i and j has

reversed direction in i's view from outgoing to incom-

ing. By the code, the direction change at node i must

be due to the receipt of a LinkInfo or Request message

from node j. We discuss these cases separately below.

Case 1: The direction change at node i is due to the

receipt of a LinkInfo message from node j at time t2.

By the code, when i sends the token to j at t1, it

sets receivedLI[j] to false. Therefore, when the Link-

Info message is received at i from j at time t2, node i

must have already reset receivedLI[j] to true or i would

still see the link to j as outgoing and would not call

RaiseHeight() at time t2. Since i called RaiseHeight()

after receiving the LinkInfo message from j at time t2,

i must have received the LinkInfo message node j sent

when it received the token from i before time t2, by

the FIFO assumption on message delivery. Then node

j must have received the token and sent it to another

node, k 6= i, after which j raised its height and sent

the LinkInfo message that node i received at time t2.

However, this violates our assumption that i is the �rst

node to call RaiseHeight() after the last link change, a

contradiction.

Case 2: The direction change at node i is due to the

receipt of a Request message from node j at time t2.

By a similar argument to case 1, any Request received

from node j would be ignored at node i as long as

receivedLI[j] is false. But this means that node j must

have called RaiseHeight() after it received the token

from node i and subsequently sent the Request received

by i at time t2. Again, this violates the assumption

that i is the �rst node to call RaiseHeight() after the

last link change, a contradiction.

Therefore, node i will not call RaiseHeight() at time

t2 and the claim is true.

Therefore, by Claim 1, there is only a �nite number

of calls to RaiseHeight() in any execution with a �nite

number of link changes.

Lemma 3 follows from Lemma 2, since if a node be-

comes a sink, it will eventually be informed via LinkInfo

messages and will then call RaiseHeight().

10

Lemma 3. Once link changes cease, the logical direc-

tion on links imparted by height values will eventually

always form a token oriented DAG.

Consider a node that is WAITING in an execution at

some point after link changes and calls to RaiseHeight()

have ceased. We �rst de�ne the \request chain" of a

node to be the path along which its request has propa-

gated. Then we modify the variant function argument

in [25] to show that the node eventually gets to enter

the CS.

De�nition 4. Given a con�guration, a request chain

for any node l with a non-empty request queue is the

maximal length list of node identi�ers p1 = l; p2; : : : ; pj ,

where for each i, 1 < i � j,

� pi's queue is not empty,

� pi = nextpi�1 ,

� the link between pi�1 and pi is outgoing at pi�1 and

incoming at pi,

� no Request message is in transit from pi�1 to pi, and

� no Token message is in transit from pi to pi�1.

Lemma 4 gives useful information about what is go-

ing on at the end of a request chain:

Lemma 4. The following is true in every con�gura-

tion: Let l be a node with a non-empty request queue

and let p1 = l; p2; : : : ; pj be l's request chain. Then

(a) l is in Ql i� l is WAITING,

(b) pi�1 is in Qpi ; 1 < i � j, and

(c) either pj is the token holder,

or a Token message is in transit to pj ,

or a Request message is in transit from pj to nextpj ,

or a LinkInfo message is in transit from nextpj to pj

with nextpj higher than pj ,

or nextpj sees the link to pj as failed.

Proof: By induction on the execution.

Property (a) can easily be shown to hold, since a

node enqueues its own identi�er when its application

requests access to the CS, at which point it changes

its status to WAITING. By the code, at no point will

a node dequeue its own identi�er until just before it

enters the CS and sets its status to CRITICAL.

Properties (b) and (c) are vacuously true in the initial

con�guration, since no node has a non-empty queue.

Suppose (b) and (c) are true in the (t � 1)st con�g-

uration, Ct�1, of the execution. It is possible to show

these properties are true in the tth con�guration, Ct, by

considering in turn every possibility for the tth event.

Most of the events applied to Ct�1 are easily shown to

yield a con�guration Ct in which properties (b) and (c)

are true. Here we discuss the events for which the out-

come is less clear by presenting the problematic cases

that can appear to disrupt a request chain. We note

that, in the following cases, non-token holding nodes

are often required to �nd an outgoing link due to link

reversals or failures. It is not hard to show that a node i

that is not the token holder can always �nd an outgoing

link due to the performance of RaiseHeight().

Case 1: Node i receives a Request(h) from node j and

does not enqueue j on its request queue. To ensure

that j's Request is not overlooked, causing possible star-

vation, we show that either a LinkInfo or a Token mes-

sage is sent to j from i if a Request from j is received

at i and j is not enqueued.

Case 1.1: receivedLI[j] is false at i. It must be that i

sent the token to j in some previous con�guration

and i has not yet received the LinkInfomessage that

j must send to i upon receipt of the token. If the

token is not in transit from i to j or held by j in

Ct�1, then earlier j had the token and passed it

on. The Request received by i was sent before the

LinkInfo message that j must send to i upon receipt

of the token. So if j is WAITING in Ct�1, it has

already sent a newer Request and properties (b) and

(c) hold for this request chain in Ct by the inductive

hypothesis.

Case 1.2: receivedLI[j] is true at i. Then if j is not

enqueued on i's request queue, it must be that

myHeighti > h. Since j viewed i as outgoing

when it sent the Request, node i must have either

called RaiseHeight() after j was in Ni or the rela-

tive heights of i and j changed between the time

link (i; j) was �rst detected and before j was added

to Ni. In either case, node j must eventually receive

a Linkinfo message from i and see that its link to

nextj has reversed, in which case j will take action

resulting in the eventual sending of another Request.

11

Case 2: Node i receives an input causing it to delete

identi�er j from its request queue. To ensure that j's

Request is not forgotten when i calls Delete(Q; j), we

show that either node j received a Token message prior

to the deletion, in which case j's Request is satis�ed, or

node j is noti�ed that the link to i failed, in which case

j will take the appropriate action to reroute the request

chain.

Case 2.1: Node i calls Delete(Q; j) because it receives

a LinkInfo message from j indicating that i's link to

j has become outgoing at i. Then, since i enqueued

j, it must be that in some earlier con�guration i saw

the link to j as incoming. Since the receipt of the

LinkInfo message from j caused the link to change

from incoming to outgoing in i's view, it must be

that the LinkInfo was sent by j when j received the

token and lowered its height. If the token is not held

by j in Ct�1, then earlier j had the token and passed

it on. If j is WAITING in Ct�1, it has already sent

a newer Request and properties (b) and (c) hold for

this request chain in Ct by the inductive hypothesis.

Case 2.2: Node i calls Delete(Q; j) because it received

an indication that link (i; j) failed. Then j must

receive the same indication, in which case it can take

appropriate action to advance any request chains.

Case 3: Node i receives an input which makes it see

the link to nexti as incoming or failed. In this case,

any request chains including node i in Ct�1 end at i in

Ct. We show that node i takes the correct action to

propagate these request chains by sending either a new

Request or a LinkInfo message.

Case 3.1: Node i receives a LinkInfo message from

neighbor j = nexti indicating that i's link to j has

become incoming at i. If the link to j was i's last

outgoing link, then in Ct i will call RaiseHeight().

Node i will delete the identi�ers of any nodes on

outgoing links from its request queue. Node i will

send a LinkInfo message to each neighbor, includ-

ing nodes whose identi�ers were removed from i's

request queue. If i's request queue is non-empty it

will call ForwardRequest() and send a Request mes-

sage to the node chosen as nexti in Ct.

Case 3.2: Node i receives an indication that the link to

nexti has failed. In Ct, i will take the same actions

as it did in case 3.1, when its link to nexti reversed.

Therefore, no action taken by node i can make prop-

erties (b) and (c) false and the lemma holds.

Lemma 5. Once link changes and calls to Raise-

Height() cease, for every con�guration in which a node

l's request chain does not include the token holder, then

there is a later con�guration in which l's request chain

does include the token holder.

Proof: By Lemma 3, after link changes cease, even-

tually a token oriented DAG will be formed. Consider

a con�guration after link changes and calls to Raise-

Height() cease in which the DAG is token oriented,

meaning that all LinkInfo messages generated when

nodes raise their heights have been delivered.

The proof is by contradiction. Assume node l's re-

quest chain never includes the token holder. So the

token can only be held by or be in transit to nodes

that are not in l's request chain. By our assumption

on the execution, no LinkInfo messages caused by a

call to RaiseHeight() will be in transit to a node in l's

request chain, nor will any node in l's request chain

detect a failed link to a neighboring node. Therefore,

by Lemma 4(c), a Request message must be in tran-

sit from a node in l's request chain to a node that is

not in l's request chain, and the number of nodes in

l's request chain will increase when the Request mes-

sage is received. At this point, l's request chain will

either include the token holder, another Request mes-

sage will be in transit from a node in l's request chain

to a node that is not in l's request chain, or l's request

chain will have joined the request chain of some other

node. While the number of nodes in l's request chain

increases, the number of nodes not in l's request chain

decreases, since there are a �nite number of nodes in

the system. So eventually l's request chain includes all

nodes. Therefore, if the token is not eventually con-

tained in l's request chain, it is not in the system, a

contradiction.

Let l be a node that is WAITING after link changes

and calls to RaiseHeight() cease. Given a con�gura-

tion s in the execution, a function Vl for l is de�ned

to be the following vector of positive integers. Let

p1 = l; p2; : : : ; pm be l's request chain. Vl(s) has either

m+1 or m elements hv1; v2; : : :i, depending on whether

a Request message is in transit from pm or not. In ei-

ther case, v1 is the position of p1(= l) in Ql, and for

12

1 < j � m, vj is the position of pj�1 in Qpj . (Positions

are numbered in ascending order with 1 being the head

of the queue.) If a Request message is in transit, then

Vl(s) has m+ 1 elements and vm+1 = n+1; otherwise,

Vl(s) has only m elements. These vectors are compared

lexicographically.

Lemma 6. Vl is a variant function.

Proof: The key points to prove are:

(1) Vl never has more than n entries and every entry

is between 1 and n + 1, so the range of Vl is well-

founded.

(2) Most events can be easily seen not to increase Vl.

Here we discuss the remaining events.

When the Request message at the end of l's re-

quest chain is received by node j from node pm,

l's request chain increases in length to m + 1, Vl

decreases from hv1,: : :, vm, n + 1i to hv1,: : :, vm,

v0m+1,: : :i, where v
0

m+1 < n + 1 since v0m+1 is pm's

position in Qj after the Requestmessage is received.

When a Token message is received by the node

pm at the end of l's request chain, it is either

- kept at pm, so Vl decreases from hv1; : : : ; vm�1; vmi

to hv1; : : : ; vm�1; vm � 1i,

- or sent toward l, so Vl decreases from hv1; : : : ;

vm�1; vmi to hv1; : : : ; vm�1i,

- or sent away from l, followed by a Request mes-

sage, so Vl decreases from hv1; : : : ; vm�1; vmi to

hv1; : : : ; vm�1; vm � 1; n+ 1i.

(3) To see that the events that cause Vl to decrease will

continue to occur, consider the following two cases:

Case 1: The token holder is not in l's request chain.

By Lemma 5, eventually the token holder will be

in l's request chain.

Case 2: The token holder is in l's request chain.

Since no node stays in the CS forever, at some

later time the token will be sent and received,

decreasing the value of Vl, by part (2) of this

proof.

Once Vl equals h1i, l enters the CS. We have:

Theorem 2. If link changes cease, then every request

is eventually satis�ed.

6. Simulation Results

In this section we discuss the static and dynamic per-

formance of the Reverse Link (RL) algorithm compared

to a mutual exclusion algorithm designed to operate on

a static network. We simulated Raymond's token based

mutual exclusion algorithm [25] as if it were running on

top of a \routing" layer that always provided shortest

path routes between nodes. In this section, we will refer

to this simulation as \Raymond's with routing" (RR).

Raymond's algorithm was used because it is the static

algorithm from which the RL algorithm was adapted

and because it does not provide for link failures and re-

covery and must rely on the routing layer to maintain

logical paths if run in a dynamic network.

Complexity comparison of a routing protocol is com-

plicated by the fact that the number of messages and

amount of time needed to maintain routes can be amor-

tized over the number of applications using those routes.

In order to make our results more generally applicable,

we made best-case assumptions about the underlying

routing protocol used with Raymond's algorithm: that

it always provides shortest paths and its time and mes-

sage complexity are zero. If our simulation shows that

the RL algorithm is better than the RR combination in

some scenario, then the RL algorithmwill also be better

than Raymond's algorithm in that scenario when any

real ad hoc routing algorithm is used. If our simulation

shows that the RL algorithm is worse than the RR com-

bination in some scenario, then it might or might not be

worse in an actual situation, depending on how much

worse it is in the simulation and what are the costs of

the routing algorithm.

A 30 node system was simulated under various sce-

narios. A 30 node system was chosen, in part, be-

cause for networks larger than 30 nodes the time needed

for simulation was very high. Also, ad hoc networks

are generally envisioned to be much smaller scale than

wired networks like the Internet. Typical numbers of

nodes used for simulations of ad hoc networks range

from 10 to 50 [4{6,15,18,26].

In all our experiments, each CS execution took one

time unit and each message delay was one time unit.

Requests for the CS were modeled as a Poisson process

with arrival rate �req . Thus the time delay between

when a node left the CS and made its next request to

enter the CS is an exponential random variable with

13

mean 1

�req
time units. Link changes were modeled as a

Poisson process with arrival rate �mob. Hence the time

delay between each change to the graph is an exponen-

tial random variable with mean 1

�mob
time units. Each

change to the graph consisted of the deletion of a link

chosen at random (whose loss did not disconnect the

graph) and the formation of a link chosen at random.

In each execution, we measured the average number

of time units that nodes spent in their WAITING sec-

tions and the average number of messages sent per CS

entry, while varying the load on the system (�req), the

degree of mobility (�mob), and the \connectivity" of the

graph. Connectivity was measured as the percentage of

possible links that were present in the graph. Note that

a clique on 30 nodes has 435 (undirected) links.

In the graphs of our results, each plotted point rep-

resents the average of �ve repetitions of the simulation.

Thus in plots of average time per CS entry, each point

is the average of the averages from �ve executions, and

similarly for plots of average number of messages per

CS entry.

The same set of initial graphs were used on both

the RL and RR simulations for each experiment. Dur-

ing periods of mobility, link changes were not allowed

to change the percent connectivity of the initial graph

more than 10% in either the positive or negative di-

rection. For example, when starting with an initial

graph with a connectivity of 30%, the connectivity of

the graph was maintained at values between 20% and

40% connectivity during simulations with mobility.

Throughout this section, part (a) of each �gure dis-

plays results when the graph is static, part (b) when

�mob = 5 � 10�2 (low mobility), and part (c) when

�mob = 5 � 10�1 (high mobility). Our choice for the

value of the low mobility parameter corresponds to the

situation where nodes remain stationary for a few tens

of seconds after moving and prior to making another

move. Our choice for the value of the high mobility

parameter represents a much more volatile network,

where nodes remain static for only a few seconds be-

tween moves.

6.1. Average waiting time per CS entry

Figure 9 plots the average number of time units

elapsed between host request and subsequent entry to

the CS against values of �req increasing from 10�3 (the

mean time units between requests is 103) to 1 (the mean

time units between requests is 1) from left to right along

the x axis. We chose the high load value of �req because

at this rate each node would have a request pending al-

most all the time. The low load value of �req represents

a much less busy network, with requests rarely pending

at all nodes at the same time. Plots are shown for runs

with 20% (87 links) and 80% (348 links) connectivity

for both the RL and RR simulations.

In the static case, shown in Figure 9(a), RR has wait-

ing time roughly equal to RL at the lowest and highest

loads and better average waiting time when load is 0.01.

In RL at a load of 0.001, the LinkInfo messages have

suÆcient time at the start of the execution to propagate

between token moves, reducing the path length between

potential requesters and the token holder. When load

is 0.01, LinkInfo messages in RL do not have suÆcient

time to propagate between token moves, resulting in

longer request paths and more token hops between con-

secutive requesters. Both simulations have roughly the

same average wait time when load is 0.1 or higher in the

static case. This similarity can be explained by the ob-

servation that the network begins to be saturated with

requests at these loads so that a given node must wait

for the token to be used by a greater number of other

nodes between its own consecutive CS entries.

Figure 9, parts (b) and (c), indicate that RL has

better performance than RR in terms of average wait-

ing time per CS entry for medium to high loads when

nodes are mobile. The waiting time advantage of RL

over RR increases with increasing load and increasing

mobility, particularly at low connectivity. At high con-

nectivity, it is less probable that a particular route be-

tween two nodes will be disrupted, resulting in similar

performance of the RL and RR simulations. When con-

nectivity decreases in a mobile network, the RR average

wait time increases because Raymond's algorithm sends

application messages over a static virtual spanning tree.

When a message is sent from a node to one of its neigh-

bors in the virtual spanning tree, it may actually be

routed over a long distance, thus increasing the time

delay. In contrast, the RL algorithm uses accurate in-

formation about the actual current topology, resulting

in less delay between each request and subsequent CS

entry.

In order to further study the e�ect of connectivity,

we ran the experiments shown in Figure 10: the av-

erage number of time units elapsed between host re-

14

0.001

0.001

0.001

0.01

0.01

0.01

0.1

0.1

0.1

1

1

1

0

1

1

20

10

10

40

100

100

60

1000

1000

80

100

RL, 20% Connectivity

RL, 80% Connectivity

RR, 20% Connectivity
RR, 80% Connectivity

Load

T
im

e
U

ni
ts

/C
S

E
nt

ry

(a)

(b)

Load

T
im

e
U

ni
ts

/C
S

E
nt

ry

Load

T
im

e
U

ni
ts

/C
S

E
nt

ry

(c)

Figure 9. Load vs. time per CS entry for (a) zero, (b) low (�mob =

5�10�2), and (c) high (�mob = 5�10�1) mobility in RL vs. RR

simulations.

quest and subsequent entry to the CS is plotted against

network connectivity increasing from 10% (43 links) to

100% (435 links) along the x axis. Curves are plotted

for low load, where �req = 10�3 (the mean number of

time units between requests is 103) and high load, where

�req = 1 (1 mean time unit between requests) for both

the RL and RR simulations.

From Figure 10(a), the static case, we can see that,

at the loads tested, the RL and RR simulations have

nearly the same average waiting time at all connectivi-

ties. This corroborates the results shown in Figure 9(a).

At low load in the RL algorithm, there is suÆcient time

for LinkInfo messages to propagate to all neighbors be-

tween token moves, resulting in request paths that are

as short as those existing in the RR simulation. At high

load, there is always a request pending at every node,

resulting in a round robin pattern of CS entries for both

RR and RL, regardless of connectivity.

The advantage gained by the RL algorithm in terms

of waiting time per CS entry becomes apparent when

nodes are mobile, as shown in Figure 10, parts (b) and

(c). Because request paths and request queues change

to match the physical connectivity in the network in

RL, the token spends more time in actual use. In the

RR simulation, the token spends more time traveling

between nodes because request queues are not modi�ed

when links fail, resulting in higher average wait time at

all connectivity ranges. At the highest mobility, the RL

simulation had a lower average wait time at both tested

loads when the connectivity was 20% or lower.

The results of the simulations in this section are sum-

marized in Table 1. This table includes data points from

both sets of graphs depicted in this subsection. The

chosen data points show average waiting time for high

(80%) and low (20%) connectivity and for high and low

loads in all mobility scenarios.

6.2. Average messages per CS entry

The RR algorithm sends request and token messages

along the virtual spanning tree. Each message from a

node to its virtual neighbor is converted into a sequence

of actual messages, that traverse the (current) shortest

path from the sender to the recipient.

The RL algorithm sends Request and Tokenmessages

along the actual token oriented DAG. In addition, as the

token traverses a path, each node on that path sends

LinkInfo messages to all its outgoing neighbors. Ad-

ditional LinkInfo messages are sent, and propagated,

when a link failure causes a node to lose its last outgo-

ing link.

Our experimental results reect the relative number

of hops taken by algorithm messages for RR versus the

relative number of hops taken by algorithm messages

and LinkInfo messages to maintain the DAG for RL.

15

0

0

0

20

20

20

40

40

40

60

60

60

80

80

80

100

100

100

0

1

1

20

10

10

40

100

100

60

1000

1000

80

100

RL, Low Load

RR, High Load

(a)

T
im

e
U

ni
ts

/C
S

E
nt

ry

Connectivity

Connectivity
(c)

T
im

e
U

ni
ts

/C
S

E
nt

ry

Delay between CS release
& next request = 1 time unit.

Delay between CS release
& next request = 1000 time units.RR, Low Load

RL, High Load

Connectivity
(b)

T
im

e
U

ni
ts

/C
S

E
nt

ry

Figure 10. Connectivity vs. time per CS entry for (a) zero, (b)

low (�mob = 5� 10�2), and (c) high (�mob = 5� 10�1) mobility

in RL vs. RR simulations.

When interpreting these results, it is important to re-

member that the simulation of the RR algorithm is not

charged for messages needed to recalculate the routes

due to topology changes. Thus, if RL is better than RR

in some situation, it will certainly be better when rout-

ing messages are charged to it, even if they are prorated.

Table 1

Summary of average time per CS entry.

Static Lowa Highb

Case Mobility Mobility

20%c 80%c 20%c 80%c 20%c 80%c

RR high

loadd 85 85 193 114 401 125

RL high

loadd 85 86 82 84 70 79

RR low

loade 7 4 22 7 65 8

RL low

loade 7 4 7 4 10 4

a Mean time units between each link change = 500.
b Mean time units between each link change = 50.
c Average network connectivity.
d Mean time units between requests = 1.
e Mean time units between requests = 1000.

Also, if RR is better than RL in another situation, de-

pending on how much better it is, RL might be com-

parable or even better than RR when routing messages

are charged to RR.

Figure 11 plots the average number of messages re-

ceived per CS execution against values of �req ranging

from 10�3 (the mean time units between requests is 103)

to 1 (the mean time units between requests is 1) from

left to right along the x axis. Plots are shown for runs

with 20% (87 links) and 80% (348 links) connectivity

for both the RL and RR simulations.

Figure 11 shows that the RR algorithm sends fewer

messages per CS entry than the RL algorithm in all

simulation trials at these two particular connectivity

values.

In all situations studied, except the RL simulation

in the static case with high connectivity, the number

of messages per CS entry tends to decrease as load in-

creases. The reason for this decrease in number of mes-

sages is that, although the overall number of messages

increases with load in both algorithms due to the addi-

tional token and request messages, the overall number

of CS entries increases proportionately faster as load

increases. In the extreme, at very high load, every time

the token moves, it is likely to cause a CS entry.

In the static case (Figure 11(a)) with 80% connec-

tivity, the RL algorithm reaches a peak in number of

messages per CS entry at a load of 0.01, a pattern that

16

0.001

0.001

0.001

0.01

0.01

0.01

0.1

0.1

0.1

1

1

1

0

0

1

5

10

10

10

20

100

15

30

1000

20

40

25

50

30

60

35

70

80

M
es

sa
ge

s/
C

S
E

nt
ry

(b)
Load

(c)
Load

M
es

sa
ge

s/
C

S
E

nt
ry

RL, 20% Connectivity

RL, 80% Connectivity

RR, 20% Connectivity
RR, 80% Connectivity

M
es

sa
ge

s/
C

S
E

nt
ry

Load
(a)

Figure 11. Load vs. messages per CS entry for (a) zero, (b) low

(�mob = 5 � 10�2), and (c) high (�mob = 5 � 10�1) mobility in

RL vs. RR simulations.

is not apparent in the RL simulation at 20% connec-

tivity. An explanation for this peak may be that to-

ken movement more e�ectively shortens request path

length at high connectivity with load below 0.01. At

loads higher than 0.01, the token is used more often in

a given number of hops because more nodes request the

CS simultaneously, resulting in a lower overall number

of messages per CS entry.

The RL algorithm sends more messages per CS en-

try than the RR algorithm when mobility causes link

changes, and the number of messages sent in the RL al-

gorithm grows very large under low loads, as can be

observed in Figures 11(b) and (c). When links fail

and form, the RL algorithm sends many LinkInfo mes-

sages to maintain the token oriented DAG, resulting in

a higher message to CS entry ratio at low loads when

the degree of mobility remains constant.

Figure 12 shows the results of experiments designed

to understand the e�ect of connectivity on the num-

ber of messages per CS entry. In the �gure, the aver-

age number of messages per CS entry is plotted against

network connectivity increasing from 10% (43 links) to

100% (435 links) from left to right on the x axis. Curves

are plotted for low load, where �req = 10�3 (the mean

time units between requests is 103) and high load, where

�req = 1 (the mean time units between requests is 1)

for both the RL and RR simulations.

In the static case (Figure 12 (a)), the number of

RL messages per CS entry increases with connectiv-

ity. As connectivity increases, the number of neighbors

per node increases, resulting in more LinkInfo messages

being sent as the token travels. The number of mes-

sages sent per CS entry in the RR simulation decreases

with connectivity, since the shortest path lengths be-

tween neighbors in the virtual spanning tree decrease.

At high load, simulation results for the RR simulation in

the static case match the performance of approximately

4 messages per CS entry cited by Raymond [25] for all

connectivity levels. This performance is also matched

by the RR simulation at lower loads when connectivity

is above 80%, due to the extremely short request paths

when connectivity is high.

In the RL algorithm, there are two opposing trends

with increasing connectivity when nodes are moving

(Figure 12, parts (b) and (c)) that appear to cancel each

other out: 1) higher connectivity means more neighbors

per node, which means more LinkInfo messages will be

sent with each failure, and 2) more neighbors per node

means that it is less likely for a link failure or reversal to

involve the last outgoing link, and thus LinkInfo mes-

sages due to failure will propagate less. At high load,

the RL simulation sends nearly as few or even fewer

messages than does RR when connectivity is below 20%

and nodes are mobile (Figures 12(b) and (c)).

17

0

0

0

20

20

20

40

40

40

60

60

60

80

80

80

100

100

100

0

1

0

5

10

20

10

100

40

15

1000

60

20

80

25

100

30

120

35

140

160

M
es

sa
ge

s/
C

S
E

nt
ry

Connectivity
(c)

RR, High Load

RL, Low Load

M
es

sa
ge

s/
C

S
E

nt
ry

Connectivity
(a)

M
es

sa
ge

s/
C

S
E

nt
ry

(b)
Connectivity

RL, High Load

RR, Low Load

Delay between CS release
& next request = 1 time unit

& next request = 1000 time units
Delay between CS release

Figure 12. Connectivity vs. messages per CS entry for (a) zero,

(b) low (�mob = 5 � 10�2), and (c) high (�mob = 5 � 10�1)

mobility in RL vs. RR simulations.

The results of the simulations measuring messages

per CS entry are summarized in Table 2. This table

includes data points from both sets of graphs depicted

in this subsection. The chosen data points show aver-

age number of messages for high (80%) and low (20%)

connectivity and for high and low loads in all mobility

scenarios.

Table 2

Summary of average messages per CS entry.

Static Lowa Highb

Case Mobility Mobility

20%c 80%c 20%c 80%c 20%c 80%c

RR high

loadd 4 4 11 6 29 7

RL high

loadd 10 27 13 27 43 44

RR low

loade 6 4 22 7 48 8

RL low

loade 13 17 73 48 496 331

a Mean time units between each link change = 500.
b Mean time units between each link change = 50.
c Average network connectivity.
d Mean time units between requests = 1.
e Mean time units between requests = 1000.

7. Conclusion and Discussion

We presented a distributed mutual exclusion algo-

rithm designed to be aware of and adapt to node mo-

bility, along with a proof of correctness, and simulation

results comparing the performance of this algorithm to

that of a static token based mutual exclusion algorithm

running on top of an ideal ad hoc routing protocol.

We assumed there were no partitions in the network

throughout this paper for simplicity; partitions can be

handled in our algorithm by using a method similar to

that used in the TORA ad hoc routing protocol [22]. In

[22], additional labels are used to represent the heights

of nodes, allowing nodes to detect, by recognition of the

originator of a chain of height increases, when a series of

height changes has occurred at all reachable nodes with-

out encountering the \destination". A similar partition

detection mechanism could be encorporated into our

mutual exclusion algorithm at the expense of slightly

larger messages.

Our algorithm compares favorably to the layered ap-

proach using an ad hoc routing protocol, generally pro-

viding better average waiting time per CS entry in sce-

narios when nodes are mobile. Our simulation results

indicate that in many situations the message complex-

18

ity per CS entry of our algorithm would not be greater

than the message cost incurred by a static mutual ex-

clusion algorithm running on top of an ad hoc routing

algorithm, when messages of both the mutual exclusion

algorithm and the routing algorithm are counted.

Acknowledgements

We thank Savita Kini for many discussions on pre-

vious versions of the algorithm, Soma Chaudhuri for

careful reading and helpful comments on the liveness

proof, and Debra Elkins for helpful discussions.

References

[1] Y. Afek, E. Gafni, and A. Rosen. The slide mechanism with

applications in dynamic networks. In Proc. of 11th Annual

Symp. on Prin. of Dist. Computing, pages 35{46, 1992.

[2] B. Awerbuch, Y. Mansour, and N. Shavit. Polynomial end

to end communication. In Proc. of 30th Annual Symp. on

Found. of Comp. Sci., pages 358{363, 1989.

[3] B. R. Badrinath, A. Acharya, and T. Imielinski. Structuring

distributed algorithms for mobile hosts. In Proc. of 14th

IEEE Intl. Conf. on Distributed Computing, pages 21{28,

1994.

[4] S. Basagni, I. Chlamtac, and V. R. Syrotiuk. A distance

routing e�ect algorithm for mobility (DREAM). In Proc.

of 4th ACM/IEEE Intl. Conf. on Mobile Computing and

Networking, pages 76{84, 1998.

[5] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu, and

J. Jetcheva. A performance comparison of multi-hop wire-

less ad hoc network routing protocols. In Proc. of 4th

ACM/IEEE Intl. Conf. on Mobile Computing and Network-

ing, pages 85{97, 1998.

[6] R. Caste~neda and S. R. Das. Query localization techniques

for on-demand routing protocols in ad hoc networks. In

Proc. of 5th ACM/IEEE Intl. Conf. on Mobile Computing

and Networking, pages 186{194, 1999.

[7] Y. Chang, M. Singhal, and M. Liu. A fault tolerant algo-

rithm for distributed mutual exclusion. In Proc. of 9th IEEE

Symp. on Reliable Dist. Systems, pages 146{154, 1990.

[8] C. Chiang and M. Gerla. Routing and multicast in multihop,

mobile wireless networks. In Proc. of ICUPC '97, pages 546{

551, 1997.

[9] M. S. Corson and A. Ephremides. A distributed routing

algorithm for mobile wireless networks. ACM J. Wireless

Networks, 1(1):61{81, 1997.

[10] D. M. Dhamdhere and S. S. Kulkarni. A token based k-

resilient mutual exclusion algorithm for distributed systems.

Information Processing Letters, 50:151{157, 1994.

[11] R. Dube, C. D. Rais, K. Wang, and S. K. Tripathi. Signal

stability based adaptive routing (SSA) for ad-hoc mobile net-

works. IEEE Personal Communications, pages 36{45, Feb.

1997.

[12] A. Ephremides and T. V. Truong. Scheduling broadcasts in

multihop radio networks. IEEE Trans. on Communications,

38(4):456{460, 1990.

[13] E. Gafni and D. Bertsekas. Distributed algorithms for gener-

ating loop-free routes in networks with frequently changing

topology. IEEE Trans. on Communications, C-29(1):11{18,

1981.

[14] M. Gerla and T.-C. Tsai. Multicluster, mobile, multimedia

radio network. Wireless Networks, pages 255{265, 1995.

[15] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and

M. Degermark. Scenario-based performance analysis of rout-

ing protocols for mobile ad-hoc networks. In Proc. of 5th

ACM/IEEE Intl. Conf. on Mobile Computing and Network-

ing, pages 195{206, 1999.

[16] D. B. Johnson and D. A. Maltz. Dynamic source routing in

ad hoc wireless networks. In Mobile Computing, T. Imielin-

ski and H. Korth, Eds., Kluwer Academic Publishers, pages

153{181, 1996.

[17] I. Keidar and D. Dolev. EÆcient message ordering in dy-

namic networks. In Proc. of 15th Annual Symp. on Prin. of

Dist. Computing, pages 68{76, 1996.

[18] Y. B. Ko and V. H. Vaidya. Location-aided routing (LAR)

in mobile ad hoc networks. In Proc. of 4th ACM/IEEE Intl.

Conf. on Mobile Computing and Networking, pages 66{75,

1998.

[19] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan.

A cluster-based approach for routing in dynamic networks.

In Proc. of ACM SIGCOMM Computer Communication Re-

view, pages 372{378, 1997.

[20] M. L. Neilsen and M. Mizuno. A DAG-based algorithm for

distributed mutual exclusion. In Proc. of Intl. Conf. on Dist.

Comp. Systems, pages 354{360, 1991.

[21] E. Pagani and G. P. Rossi. Reliable broadcast in mobile

multihop packet networks. In Proc. of 3rd ACM/IEEE Intl.

Conference on Mobile Computing and Networking, pages

34{42, 1997.

[22] V. Park and M. S. Corson. A highly adaptive distributed

routing algorithm for mobile wireless networks. In Proc. of

INFOCOM '97, pages 1405{1413, 1997.

[23] C. E. Perkins and P. Bhagwat. Highly dynamic destination-

sequenced distance-vector routing for mobile computers. In

Proc. of ACM SIGCOMM Symp. on Communication, Ar-

chitectures and Protocols, pages 234{244, 1994.

[24] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance

vector routing. In Proc. of 2nd IEEE Workshop on Mobile

Computing Systems and Applications, pages 90{100, 1999.

[25] K. Raymond. A tree-based algorithm for distributed mu-

tual exclusion. ACM Transactions on Computer Systems,

7(1):61{77, 1989.

[26] E. M. Royer and C. E. Perkins. Multicast operation of the

ad-hoc on-demand distance vector routing protocol. In Proc.

of 5th ACM/IEEE Intl. Conf. on Mobile Computing and

Networking, pages 207{218, 1999.

